Effect of Sex and Breed on HSPA1A, Blood Stress Indicators and Meat Quality of Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Slaughter Procedure
2.2. Blood Sample Collection and Storage
2.3. Heat Shock Protein Analysis 70 kDa (HSPA1A)
2.4. Plasma Cortisol Determination
2.5. Glucose and Lactate Determination
2.6. Carcass Description
2.7. pH and Temperature Measurements
2.8. Meat Quality Measurements
2.9. Thawing Loss, Cooking Loss and Warner Bratzler Shear Force
2.10. Statistical Analysis
3. Results
3.1. Sex and Breed Effects on Blood Stress Indicators
3.2. Sex and Breed Effects on Carcass and Meat Quality Attributes
3.3. Pearson’s Correlations (r) for Plasma Heat Shock Proteins, Stress Indicators, Carcass and Meat Quality Attributes from Lambs Slaughtered at a Commercial Abattoir
4. Discussion
4.1. Sex and Breed Effects on Blood Stress Indicators
4.2. Sex and Breed Effects on Carcass and Meat Quality Attributes
4.3. Pearson’s Correlations (r) for Plasma Heat Shock Proteins, Stress Indicators, Carcass and Meat Quality Attributes from Lambs Slaughtered at a Commercial Abattoir
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dwyer, C.M.; Lawrence, A.B. Introduction to animal welfare and the sheep. In The Welfare of Sheep; Dwyer, C., Ed.; Springer: New York, NY, USA, 2008; pp. 1–40. [Google Scholar]
- Lomiwes, D.; Farouk, M.M.; Wu, G.; Young, O.A. The development of meat tenderness is likely to be compartmentalised by ultimate pH. Meat Sci. 2014, 96, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: Cell survival and cell death. Int. J. Cell Biol. 2010, 2010, 214074. Available online: http://www.hindawi.com/journals/ijcb/2010/214074 (accessed on 11 November 2019). [CrossRef] [PubMed] [Green Version]
- Haslbeck, M.; Franzmann, T.; Weinfurtner, D.; Buchner, J. Some like it hot: The structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 2005, 12, 842–846. [Google Scholar] [CrossRef]
- Chulayo, A.Y.; Bradley, G.; Muchenje, V. Effects of transport distance, lairage time and stunning efficiency on cortisol, glucose, HSPA1A and how they relate with meat quality in cattle. Meat Sci. 2016, 117, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.K.; Cho, S.; Lee, S.H.; Park, H.R.; Lee, C.S.; Cho, Y.M.; Choy, Y.H.; Yoon, D.; Im, S.K.; Park, E.W. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 2008, 80, 1068–1073. [Google Scholar] [CrossRef]
- Hwang, I.H.; Park, B.Y.; Kim, J.H.; Cho, S.H.; Lee, J.M. Assessment of post-mortem proteolysis by gel based analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 2005, 69, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Bórnez, R.; Linares, M.B.; Vergara, H. Haematological, hormonal and biochemical blood parameters in lamb: Effect of age and blood sampling time. Livest. Sci. 2009, 121, 200–206. [Google Scholar] [CrossRef]
- Shaw, D.F.; Tume, K.R. The assessment of pre-slaughter treatments of livestock by measurement of plasma constituents: A review of recent work. Meat Sci. 1992, 32, 311–329. [Google Scholar] [CrossRef]
- Probst, J.K.; Spengler Neff, A.; Hillmann, E.; Kreuzer, M.; Koch-Mathis, M.; Leiber, F. Relationship between stress-related exsanguination blood variables, vocalisation, and stressors imposed on cattle between lairage and stunning box under conventional abattoir conditions. Livest. Sci. 2014, 164, 154–158. [Google Scholar] [CrossRef]
- Pighin, D.G.; Davies, P.; Pazos, A.A.; Ceconi, I.; Cunzolo, S.A.; Mendez, D.; Buffarini, M.; Grigioni, G. Biochemical profiles and physicochemical parameters of beef from cattle raised under contrasting feeding systems and pre-slaughter management. Anim. Prod. Sci. 2015, 55, 1310–1317. [Google Scholar] [CrossRef]
- Knowles, T.G.; Warriss, P.D. Stress physiology of animals during transport. In Livestock Handling and Transport; Grandin, T., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 385–408. [Google Scholar]
- Grandin, T. The feasibility of using vocalization scoring as an indicator of poor welfare during cattle slaughter. Appl. Anim. Behav. Sci. 1998, 56, 121–128. [Google Scholar] [CrossRef]
- Hambrecht, E.; Eissen, J.J.; Nooijen, R.I.J.; Ducro, B.J.; Smits, C.H.M.; den Hartog, L.A.; Verstegen, M.W.A. Preslaughter stress and muscle energy largely determine pork quality at two commercial processing plants. J. Anim. Sci. 2004, 82, 1401–1409. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Velandia Valero, M.; Campo, M.M.; Sañudo, C. Some factors that affect ruminant meat quality: From the farm to the fork. Review. Acta. Sci. Anim. Sci. 2013, 35, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Wilches, D.; Rovira, J.; Jaime, I.; Palacios, C.; Lurueña-Martínez, M.A.; Vivar-Quintana, A.M.; Revilla, I. Evaluation of the effect of a maternal rearing system on the odour profile of meat from suckling lamb. Meat Sci. 2011, 88, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.G.; Warriss, P.D. Stress physiology of animals during transport. In Livestock Handling and Transport, 3rd ed.; Grandin, T., Ed.; CABI Publishing: Wallingford, UK, 2007; pp. 312–328. [Google Scholar]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Al-Ajmi, D.S.; Al-Maqbali, R.S.; Al-Lawati, S.M. The influence of seasonal temperatures on meat quality characteristics of hot-boned, m. psoas major and minor, from goats and sheep. Meat Sci. 2008, 80, 210–215. [Google Scholar] [CrossRef]
- Gregory, N.G. How climatic changes could affect meat quality. Food Res. Int. 2010, 43, 1866–1873. [Google Scholar] [CrossRef]
- Ekiz, B.; Ekiz, E.E.; Kocak, O.; Yalcintan, H.; Yilmaz, A. Effect of pre-slaughter management regarding transportation and tine in lairage on certain stress parameters, carcass and meat quality characteristics in Kivircik lambs. Meat Sci. 2012, 90, 967–976. [Google Scholar] [CrossRef]
- Meat Safety Act (Act No. 40 of 2000); Government Notice No. 1106; Parliament of the Republic of South Africa: Cape Town, South Africa, 1 November 2000.
- South African Meat Industry Company (SAMIC). Classification of Red Meat; South African Meat Industry Company (SAMIC): Pretoria, South Africa, 2006. [Google Scholar]
- Commission International De L’ Éclairage (CIE). Colorimetry, 2nd ed.; CIE: Vienna, Switzerland, 1976. [Google Scholar]
- Wyszecki, G.; Stiles, W.S. Colour Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed.; Wiley: New York, NY, USA, 1982. [Google Scholar]
- American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation and Instrumental Tenderness Measurements of Fresh Meat, 2nd ed.; American Meat Science Association in cooperation with National Live Stock and Meat Board: Chicago, IL, USA, 2015. [Google Scholar]
- Statistical Analysing System. In SAS User’s Guide: Statistics, 6th ed.; SAS Institute Inc.: Cary, NC, USA, 2009.
- Mounier, L.; Dubroeucq, H.; Andanson, S.; Veissier, I. Variations in meat pH of beef bulls in relation to conditions of transfer to slaughter and previous history of the animals. J. Anim. Sci. 2006, 84, 1567–1576. [Google Scholar] [CrossRef]
- Mohanarao, G.J.; Mukherjee, A.; Banerjee, D.; Gohain, M.; Dass, G.; Brahma, B.; Datta, T.K.; Upadhyay, R.C.; De, S. HSP70 family genes and HSP27 expression in response to heat and cold stress in vitro in peripheral blood mononuclear cells of goat (Capra hircus). Small Rumin. Res. 2014, 116, 94–99. [Google Scholar] [CrossRef]
- Dangi, S.S.; Gupta, M.; Nagar, V.; Yadav, V.P.; Dangi, S.K.; Shankar, O.M.; Sarkar, M. Impact of short-term heat stress on physiological responses and expression profile of HSPs in Barbari goats. Int. J. Biometeorol. 2014, 58, 2085–2093. [Google Scholar] [CrossRef]
- Ferguson, D.M.; Warner, R.D. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci. 2008, 80, 12–19. [Google Scholar] [CrossRef]
- Cloete, J.J.E.; Cloete, S.W.P.; Scholtz, A.J.; Hoffman, L.C. Behaviour response of Namaqua Afrikaner, Dorper and South African Mutton Merino lambs towards humans. S. Afr. J. Anim. Sci. 2013, 43, S116–S120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, D.; Geng, Z.; Bian, H.; Liu, F.; Zhu, Y.; Xu, W. The level of heat shock protein 90 in pig Longissimus dorsi muscle and its relationship with meat pH and quality. Food Chem. 2014, 165, 337–341. [Google Scholar] [CrossRef]
- Gonzalez-Bulnes, A.; Meza-Herrera, C.A.; Rekik, M.; Ben Salem, H.; Kridli, R.T. Limiting factors and strategies for improving reproductive outputs of small ruminants reared in semi-arid environments. In Semi-Arid Environments: Agriculture, Water Supply and Vegetation; Degenovine, K.M., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2011; pp. 41–60. [Google Scholar]
- Johnson, P.L.; Purchas, R.W.; McEwan, J.C.; Blair, H.T. Carcass and meat quality composition and meat quality differences between pasture-reared ewe and ram lambs. Meat Sci. 2005, 71, 383–391. [Google Scholar] [CrossRef]
- Devine, C.E.; Graafhuis, P.H.; Muir, P.D.; Chrystall, B.B. The effect of growth rate and ultimate pH on meat quality of lambs. Meat Sci. 1993, 35, 63–77. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.; Zheng, C.; Hu, Y.; Wang, L. Nutritional regulation for meat quality and nutrient metabolism of pigs exposed to high temperature environment. J. Nutr. Food Sci. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Stempa, T.; Muchenje, V.; Abrahams, A.M.; Bradley, G. Sex and breed affect plasma glucose, lactate, cortisol, meat quality but not muscle glycolytic potential of Dorper and Merino lambs. Anim. Prod. Sci. 2016, 58, 958–964. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Peῆa, R.E.; Andrés, A.I. Effect of live weight and sex on physic-chemical and sensorial characteristics of Merino lamb meat. Meat Sci. 2008, 80, 1061–1067. [Google Scholar] [CrossRef]
- Calnan, H.B.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Factors affecting the colour of lamb meat from longissimus muscle during display: The influence of muscle weight and muscle oxidative capacity. Meat Sci. 2014, 96, 1049–1057. [Google Scholar] [CrossRef]
- Jacob, R.H.; D’Antuono, M.F.; Gilmour, A.R.; Warner, R.D. Phenotypic characterisation of colour stability of lamb meat. Meat Sci. 2014, 96, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Cloete, J.J.E.; Hoffman, L.C.; Cloete, S.W.P. A comparison between slaughter traits and meat quality of various sheep breeds: Wool dual-purpose and mutton. Meat Sci. 2012, 91, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Pannier, L.; Gardner, G.E.; Pearce, K.L.; McDonagh, M.; Ball, A.J.; Jacob, R.H.; Pethick, D.W. Associations of sire estimated breeding values and objective meat quality measurements with sensory scores in Australian lamb. Meat Sci. 2014, 96, 1076–1087. [Google Scholar] [CrossRef]
- Erkiz, B.; Atalay, H.; Akin, P.D.; Ozturk, N.; Birkiye, M.; Yilmaz, A. Carcass and meat quality of Karacabey Merino and Kivircik lambs under intensive finishing system. S. Afr. J. Anim. Sci. 2009, 49, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Veiseth, E.; Shackelford, S.; Wheeler, T.; Koohmaraie, M. Factors regulating lamb longissimus tenderness are affected by age at slaughter. Meat Sci. 2004, 68, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.L.; Fogarty, N.M. Diverse lamb genotypes-2. Meat pH, colour and tenderness. Meat Sci. 1998, 49, 477–488. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Stanley, D.F.; Martin, L.C.; Toohey, E.S.; Gilmour, A.R. Genotype and age effects on sheep meat production. 3. Meat quality. Anim. Prod. Sci. 2007, 47, 1155–1164. [Google Scholar] [CrossRef]
- Kannan, G.; Terrill, T.H.; Kouakou, B.; Gazal, O.S.; Gelaye, S.; Amoah, E.A.; Samaké, S. Transportation of goats: Effects on physiological stress responses and live weight loss. J. Anim. Sci. 2000, 78, 1450–1457. [Google Scholar] [CrossRef]
- Minka, N.S.; Ayo, J.O. Physiological responses of food animals to road transportation stress. Afr. J. Biotechnol. 2010, 9, 6601–6613. [Google Scholar]
- Martin, K.M.; McGilchrist, P.; Thompson, J.M.; Gardner, G.E. Progeny of high muscling sires have reduced muscle response to adrenaline in sheep. Animal 2011, 5, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Lorentzen, T.K.; Vangen, O. Genetic and phenotypic analysis of meat quality traits in lamb and correlations to carcass composition. Livest. Sci. 2012, 143, 201–209. [Google Scholar] [CrossRef]
- Hunt, M.C.; Acton, J.C.; Benedict, R.C.; Calkins, C.R.; Cornforth, D.P.; Jeremiah, L.E.; Olsen, D.G.; Salm, C.P.; Savell, J.W.; Shivas, S.D. Guidelines for Meat Colour Evaluation; American Meat Science Association Kansas State University: Manhattan, NY, USA, 1991; pp. 1–17. [Google Scholar]
- Chulayo, A.Y.; Muchenje, V. The effects of pre-slaughter stress and season on the activity of plasma creatine kinase and mutton quality from different sheep breeds slaughtered at a smallholder abattoir. Asian Australas. J. Anim. Sci. 2013, 26, 1762–1772. [Google Scholar] [CrossRef] [Green Version]
Breed | Sex | Avg Live Weights (kg) | Conformation | Carcass Fatness (mm) |
---|---|---|---|---|
Dorper (n = 50) | Non-pregnant ewes | 36.40 | 3 | 2 |
Intact rams | 39.50 | 3 | 2 | |
Merino (n = 50) | Non-pregnant ewes | 38.00 | 3 | 2 |
Intact rams | 43.00 | 3 | 2 |
Parameters | Breed | Sex | Breed*Sex Interaction | Breed*Sex Interaction | p-value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dorper (D) (n = 50) | Merino (M) (n = 50) | Female (F) (n = 51) | Male (M) (n = 49) | D*M | D*F | M*F | M*M | Breed (B) | Sex (S) | B*S | |
Plasma HSPA1A (ng/mL) | 15.94 ± 4.405 | 34.89 ± 4.462 | 32.86 ± 4.610 | 17.97 ± 4.250 | 16.15 ± 6.229 | 15.74 ± 6.229 | 49.99 ± 6.796 | 19.79 ± 5.783 | 0.0032 ** | 0.0195 * | 0.0164 * |
Plasma Cortisol (ng/mL) | 49.09 ± 2.483 | 50.64 ± 2.516 | 50.52 ± 2.599 | 49.22 ± 2.396 | 49.59 ± 3.512 | 48.58 ± 3.512 | 52.44 ± 3.832 | 48.84 ± 3.261 | 0.6618 | 0.7140 | 0.5157 |
Plasma Glucose (mmol/L) | 4.41 ± 0.165 | 4.26 ± 0.167 | 4.14 ± 0.173 | 4.53 ± 0.159 | 4.52 ± 0.233 | 4.30 ± 0.233 | 3.99 ± 0.255 | 4.53 ± 0.217 | 0.5248 | 0.1050 | 0.4857 |
Plasma Lactate (mmol/L) | 3.58 ± 0.232 | 5.01 ± 0.235 | 4.29 ± 0.242 | 4.29 ± 0.224 | 3.56 ± 0.328 | 3.61 ± 0.328 | 4.98 ± 0.358 | 5.03 ± 0.305 | <0.0001 *** | 0.9968 | 0.8879 |
Parameters | Breed | Sex | Breed * Sex Interaction | Breed * Sex Interaction | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dorper (n = 50) | Merino (n = 50) | Female (n = 51) | Male (n = 49) | D*M | D*F | M*F | M*M | Breed (B) | Sex (S) | B*S | |
HCW (kg) | 19.71 ± 0.344 | 22.96 ± 0.349 | 21.42 ± 0.360 | 21.25 ± 0.332 | 19.51 ± 0.487 | 19.90 ± 0.487 | 22.95 ± 0.531 | 22.97 ± 0.452 | <0.0001 *** | 0.7231 | 0.6754 |
CCW (kg) | 18.74 ± 0.409 | 22.27 ± 0.415 | 20.76 ± 0.429 | 20.24 ± 0.395 | 18.19 ± 0.579 | 19.30 ± 0.579 | 22.26 ± 0.632 | 22.29 ± 0.538 | <0.0001 *** | 0.3590 | 0.3337 |
CF (mm) | 2.40 ± 0.151 | 2.53 ± 0.152 | 2.56 ± 0.158 | 2.37 ± 0.145 | 2.40 ± 0.213 | 2.40 ± 0.213 | 2.71 ± 0.232 | 2.34 ± 0.198 | 0.5470 | 0.3909 | 0.3909 |
pH45min | 6.06 ± 0.022 | 5.99 ± 0.022 | 6.05 ± 0.022 | 6.01 ± 0.021 | 6.05 ± 0.031 | 6.08 ± 0.031 | 6.01 ± 0.034 | 5.98 ± 0.029 | 0.0307 * | 0.2640 | 0.9618 |
Tm45min (°C) | 22.16 ± 0.206 | 23.29 ± 0.209 | 22.89 ± 0.215 | 22.56 ± 0.198 | 21.94 ± 0.291 | 22.38 ± 0.291 | 23.40 ± 0.318 | 23.18 ± 0.270 | 0.0002 *** | 0.2589 | 0.7151 |
pHu | 5.99 ± 0.021 | 5.99 ± 0.021 | 6.03 ± 0.022 | 5.95 ± 0.020 | 5.93 ± 0.030 | 6.05 ± 0.030 | 6.02 ± 0.032 | 5.98 ± 0.028 | 0.8873 | 0.0087 * | 0.1644 |
Tm24h (°C) | 25.95 ± 0.073 | 25.42 ± 0.073 | 25.74 ± 0.075 | 25.62 ± 0.070 | 25.88 ± 0.103 | 26.02 ± 0.103 | 25.47 ± 0.112 | 25.36 ± 0.095 | <0.0001 *** | 0.2300 | 0.8823 |
L* | 41.27 ± 0.483 | 37.33 ± 0.489 | 39.67 ± 0.505 | 38.93 ± 0.465 | 40.28 ± 0.683 | 42.26 ± 0.683 | 37.08 ± 0.745 | 37.58 ± 0.634 | <0.0001 *** | 0.2865 | 0.0742 |
a* | 16.73 ± 0.269 | 16.91 ± 0.272 | 16.69 ± 0.281 | 16.94 ± 0.259 | 17.06 ± 0.380 | 16.40 ± 0.380 | 16.98 ± 0.415 | 16.83 ± 0.353 | 0.6463 | 0.5119 | 0.2887 |
b* | 10.20 ± 0.262 | 9.92 ± 0.265 | 10.19 ± 0.273 | 9.93 ± 0.252 | 10.062 ± 0.370 | 10.33 ± 0.370 | 10.04 ± 0.404 | 9.799±0.343 | 0.4615 | 0.4957 | 0.9715 |
C* | 19.66 ± 0.301 | 19.65 ± 0.310 | 19.62 ± 0.320 | 19.69 ± 0.295 | 19.86 ± 0.432 | 19.47 ± 0.432 | 19.77 ± 0.472 | 19.52 ± 0.401 | 0.9666 | 0.8677 | 0.4554 |
H* | 0.55 ± 0.011 | 0.51 ± 0.011 | 0.55 ± 0.011 | 0.53 ± 0.011 | 0.53 ± 0.016 | 0.56 ± 0.016 | 0.53 ± 0.071 | 0.53 ± 0.015 | 0.3722 | 0.2857 | 0.4968 |
TL% | 14.51 ± 0.808 | 11.62 ± 0.819 | 12.53 ± 0.846 | 13.61 ± 0.780 | 13.70 ± 1.143 | 15.33 ± 1.143 | 9.727 ± 1.25 | 13.52 ± 1.061 | 0.0137 * | 0.3505 | 0.0203 * |
CL% | 26.90 ± 1.271 | 28.42 ± 1.287 | 28.49 ± 1.330 | 26.82 ± 1.226 | 23.89 ± 1.797 | 29.91 ± 1.797 | 27.08 ± 1.961 | 29.75 ± 1.669 | 0.4043 | 0.3375 | 0.0181 * |
WBSF(N) | 37.78 ± 1.230 | 37.52 ± 1.246 | 34.43 ± 1.287 | 34.87 ± 1.186 | 33.30 ± 1.739 | 30.26 ± 1.739 | 38.61 ± 1.897 | 36.43 ± 1.615 | 0.0015 ** | 0.8037 | 0.1387 |
N = 100 | Cort | Lact | Glu | HSPA1A | HCW | CCW | CF | pH45min | Tm45min | pHu | Tm24h | L* | a* | b* | C* | H* | TL% | CL% | WBSF(N) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cort | - | 0.13 ns | 0.09 ns | 0.17 ns | −0.08 ns | −0.08 ns | 0.11 ns | 0.02 ns | −0.23 ns | −0.02 ns | 0.06 ns | 0.21 ns | −0.34 * | −0.01 ns | −0.31 * | 0.16 ns | −0.10 ns | 0.05 ns | 0.15 ns |
Lact | - | 0.14 ns | 0.08 ns | 0.24 ns | 0.24 ns | 0.03 ns | −0.22 ns | 0.24 ns | −0.13 ns | −0.35 * | −0.26 ns | 0.06 ns | 0.09 ns | 0.07 ns | 0.07 ns | −0.11 ns | 0.05 ns | 0.39 ** | |
Glu | - | −0.08 ns | −0.08 ns | 0.00 ns | −0.08 ns | −0.02 ns | 0.07 ns | −0.08 ns | 0.06 ns | 0.03 ns | 0.01 ns | −0.15 ns | −0.05 ns | −0.15 ns | 0.15 ns | 0.05 ns | 0.09 ns | ||
HSPA1A | - | 0.32 * | 0.19 ns | 0.34 * | 0.01 ns | 0.24 ns | 0.21 ns | 0.05 ns | −0.01 ns | 0.25 ns | 0.37 ** | 0.34 * | 0.21 ns | 0.07 ns | 0.21 ns | −0.15 ns | |||
HCW | - | 0.99 *** | 0.35 *** | −0.19 ns | 0.09 ns | -0.06 ns | 0.04 ns | 0.08ns | −0.04 ns | −0.03 ns | −0.04 ns | −0.03 ns | -0.11 ns | −0.03 ns | 0.07 ns | ||||
CCW | - | 0.35 *** | −0.06 ns | 0.38 ** | 0.08 ns | −0.04 ns | 0.05 ns | −0.02 ns | −0.03 ns | −0.03 ns | −0.04 ns | -0.11 ns | 0.04 ns | 0.09 ns | |||||
CF | - | 0.01 ns | −0.08 ns | 0.16 ns | 0.02 ns | −0.05 ns | 0.05 ns | −0.12 ns | 0.05 ns | 0.03 ns | -0.10 ns | −0.10ns | 0.56 *** | ||||||
pH45min | - | −0.15 ns | 0.11 ns | 0.06 ns | −0.08 ns | −0.04 ns | 0.05 ns | 0.05 ns | 0.05 ns | 0.04 ns | −0.15 ns | 0.12 ns | |||||||
Tm45min | - | −0.02 ns | −0.08 ns | 0.28 ns | −0.22 ns | 0.09 ns | −0.13 ns | 0.22 ns | 0.18 ns | −0.08 ns | −0.04 ns | ||||||||
pHu | - | 0.08 ns | −0.24 ns | 0.23 ns | −0.04 ns | 0.15 ns | −0.21 ns | 0.20 ns | 0.24 ns | −0.05 ns | |||||||||
Tm24h | - | −0.10 ns | 0.08 ns | −0.03 ns | 0.05 ns | 0.07 ns | −0.06 ns | −001 ns | −0.12 ns | ||||||||||
L* | - | −0.65 *** | 0.10 ns | −0.48 *** | 0.14 ns | 0.21 ** | −0.12 ns | −0.22 ns | |||||||||||
a* | - | 0.59 * | −0.05 ns | 0.16 ** | −0.12 ns | 0.09ns | 0.20 * | ||||||||||||
b* | - | 0.84 *** | 0.93 *** | 0.09 ns | −0.20 * | 0.03 ns | |||||||||||||
C* | - | 0.17 ns | 0.19 ns | −0.20 * | 0.18 ns | ||||||||||||||
H* | - | 0.13 ns | 0.13 ns | −0.07 ns | |||||||||||||||
TL% | - | 0.13 ns | −0.23 * | ||||||||||||||||
CL% | - | 0.00 ns | |||||||||||||||||
WBSF (N) | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stempa, T.; Bradley, G. Effect of Sex and Breed on HSPA1A, Blood Stress Indicators and Meat Quality of Lambs. Animals 2020, 10, 1514. https://doi.org/10.3390/ani10091514
Stempa T, Bradley G. Effect of Sex and Breed on HSPA1A, Blood Stress Indicators and Meat Quality of Lambs. Animals. 2020; 10(9):1514. https://doi.org/10.3390/ani10091514
Chicago/Turabian StyleStempa, Thuthuzelwa, and Graeme Bradley. 2020. "Effect of Sex and Breed on HSPA1A, Blood Stress Indicators and Meat Quality of Lambs" Animals 10, no. 9: 1514. https://doi.org/10.3390/ani10091514
APA StyleStempa, T., & Bradley, G. (2020). Effect of Sex and Breed on HSPA1A, Blood Stress Indicators and Meat Quality of Lambs. Animals, 10(9), 1514. https://doi.org/10.3390/ani10091514