Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Breeding Management System
2.2. Blood Collection and DNA Extraction
2.3. PCR Amplification of Microsatellite Sequences and Identification of Alleles and Genotype
2.4. Data Analysis
3. Results
3.1. Genetic Diversity Analysis of Musk Deer Population
3.2. Comparison of Genetic Diversity among Different Generations in the Population
4. Discussion
4.1. Genetic Characteristics of Captive Musk Deer Population
4.2. Analysis of Genetic Diversity in Populations at Different Generations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IUCN. Red List of threatened Species. 2017. Available online: http://www.iucnredlist.org/ (accessed on 1 March 2019).
- Sheng, H. Genus moschus in China. In China Red Data Book of Endangered Animals; Wang, S., Zheng, G.M., Wang, Q.S., Eds.; National Environment Protection Agency of China: Beijing, China; Agris Publisher: Rome, Italy, 1998. [Google Scholar]
- Xia, S.; Zou, F.D.; Yue, B.S. Six microsatellite loci in forest musk deer (Moschus berezovskii). Mol. Ecol. Notes 2006, 6, 113–115. [Google Scholar] [CrossRef]
- Meng, X.X.; Zhou, C.Q.; Hu, J.C.; Li, C.; Meng, Z.B.; Feng, J.C.; Zhou, Y.J.; Zhu, Y.J. Musk deer farming in China. Anim. Sci. 2006, 82, 1–6. [Google Scholar]
- Yang, Q.; Meng, X.; Xia, L.; Feng, Z. Conservation status and causes of decline of musk deer (Moschus spp.) in China. Biol. Cons. 2003, 109, 333–342. [Google Scholar] [CrossRef]
- Sheng, H.; Liu, Z. The Musk Deer in China; The Shanghai Scientific & Technical Publishers: Shanghai, China, 2007. [Google Scholar]
- Wu, J.; Wang, W. The Musk Deer of China; The China Forestry Publishing House: Beijing, China, 2006. [Google Scholar]
- Lu, X.H.; Qiao, J.Y.; Wu, X.M.; Su, L.N. A review of mainly affected on musk deer diseasee: Purulent, respiratory system and paraasitic diseases. J. Econ. Anim. 2009, 13, 104–107. [Google Scholar]
- Barker, J.S.F. Animal breeding and conservation genetics. In Conservation Genetics; Loeschcke, V., Jain, S.K., Tomiuk, J., Eds.; Birkhäuser Press: Basel, Switzerland, 1994; pp. 381–395. [Google Scholar]
- Hamada, H.; Petrino, M.G.; Kakunaga, T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 1982, 79, 6465–6469. [Google Scholar] [CrossRef] [Green Version]
- Tautz, D.; Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef] [Green Version]
- Aboukhalid, K.; Machon, N.; Lambourdière, J.; Abdelkrim, J.; Bakha, M.; Douaik, A.; Korbecka-Glinka, G.; Gaboun, F.; Tomi, F.; Lamiri, A. Analysis of genetic diversity and population structure of the endangered Origanum compactum from Morocco, using SSR markers: Implication for conservation. Biol. Conserv. 2017, 212, 172–182. [Google Scholar] [CrossRef]
- Dachapak, S.; Somta, P.; Poonchaivilaisak, S.; Yimram, T.; Srinives, P. Genetic diversity and structure of the zombi pea (Vigna vexillata (I.) A. Rich) gene pool based on SSR marker analysis. Genetica 2017, 145, 189–200. [Google Scholar] [CrossRef]
- Li, X.L.; Gong, Y.F.; Zhang, J.W.; Liu, Z.Z.; Valentini, A. Study on polymorphisms of microsatellites DNA of six Chinese indigenous sheep breeds. Acta Genet. Sin. (Yi Chuan Xue Bao) 2004, 31, 1203–1210. [Google Scholar]
- Wang, J.; Chu, M.; Wang, A.; Li, N.; Fu, J.; Xie, F.; Chen, G. Genetic relationships among seven sheep populations using four microsatellite markers. Yi Chuan (Hereditas) 2004, 26, 637–643. [Google Scholar]
- Zhao, Z.; Wang, G.; Guo, J.; Li, D. Polymorphism distributions of 9 microsatellite loci in Chinese Merino sheep. Yi Chuan (Hereditas) 2006, 28, 939–944. [Google Scholar]
- Zhang, S.C.; Yue, B.S.; Zou, F.D. Isolation and characterization of microsatellite DNA markers from forest musk deer (Moschus berezovskii). Zool. Res. 2007, 28, 24–272. [Google Scholar]
- Zhou, G.L.; Jin, H.G.; Zhu, Q.; Guo, S.L.; Wu, Y.H. Genetic diversity analysis of five cattle breeds native to China using microsatellites. J. Genet. 2005, 84, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Fuji, K.; Kobayashi, K.; Hasegawa, O.; Coimbra, M.R.M.; Sakamoto, T.; Okamoto, N. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 2006, 254, 203–210. [Google Scholar] [CrossRef]
- Guan, F.; Shi, G.; Ai, J.; Liu, S.; Yang, L. Relationship between genetic diversity of chromosome 6 determined by microsatellite markers and litter size in Hu sheep. Yi Chuan (Hereditas) 2007, 29, 1230–1236. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Wan, Q. Assessment of genetic diversity in the forest musk deer (Moschus berezovskii) using microsatellite and AFLP markers. Chin. Sci. Bull. 2011, 56, 2565–2569. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.Y.; Liu, S.; Zou, F.; Zeng, B.; Yue, B. Genetic diversity of captive forest musk deer (Moschus berezovskii) inferred from the mitochondrial DNA control region. Anim. Genet. 2010, 40, 65–72. [Google Scholar] [CrossRef]
- Peng, H.Y.; Zhang, X.Y.; Yue, B.S. A primary analysis on the amplification of the complete mitochondrial genome of forest musk deer (Moschus berezovskii) and their sequence structures. J. Yulin Norm. Univ. 2011, 2, 20. [Google Scholar]
- Feng, H.; Feng, C.; Huang, Y.; Tang, J. Structure of mitochondrial DNA control region and genetic diversity of Moschus berezovskii populations in Shaanxi Province. Genet. Mol. Res 2016, 15, gmr7578. [Google Scholar] [CrossRef]
- Zhao, S.S.; Chen, X.; Fang, S.G.; Wan, Q.H. Development and characterization of 15 novel microsatellite markers from forest musk deer (Moschus berezovskii). Conserv. Genet. 2008, 9, 723–725. [Google Scholar] [CrossRef]
- Zou, F.; Yue, B.; Xu, L.; Zhang, Y. Isolation and characterization of microsatellite loci from forest musk deer (Moschus berezovskii). Zool. Sci. 2005, 22, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.L.; Zeng, B.; Peng, Q.K.; Yue, B.S.; Zou, F.D. Microsatellite analysis of the genetic structure of captive forest musk deer populations and its implication for conservation. Biochem. Syst. Ecol. 2009, 37, 166–173. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.Z.; Li, P.; Yue, H.; Zhang, X.Y.; Li, X.X.; Zou, F.D.; Ming, H.; Moermond, T.; Yue, B.S. Genetic quality of the Miyaluo captive forest musk deer (Moschus berezovskii) population as assessed by microsatellite loci. Biochem. Syst. Ecol. 2013, 47, 25–30. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Condensed Protocols from Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: New York, NY, USA, 2002. [Google Scholar]
- Marshall, T.; Slate, J.; Kruuk, L.; Pemberton, J. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef] [Green Version]
- Raymond, M. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Ballou, J.D. Strategies for maintaining genetic diversity in captive populations through reproductive technology. Zoo Biol. 2005, 3, 311–323. [Google Scholar] [CrossRef]
- Donaldson, S.L.; Chopin, T.; Saunders, G.W. An assessment of the AFLP method for investigating population structure in the red alga Chondrus crispus Stackhouse (Gigartinales, Florideophyceae). J. Appl. Phycol. 2000, 12, 25–35. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Kuehn, R.; Haller, H.; Schroeder, W.; Rottmann, O. Genetic roots of the red deer (Cervus elaphus) population in Eastern Switzerland. J. Hered. 2004, 95, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Thévenon, S.; Thuy, L.T.; Lv, L.Y.; Maudet, F.; Bonnet, A.; Jarne, P.; Maillard, J.C. Microsatellite analysis of genetic diversity of the Vietnamese sika deer (Cervus nippon pseudaxis). J. Hered. 2004, 95, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Deyoung, R.W.; Demarais, S.; Honeycutt, R.L.; Rooney, A.P.; Gonzales, R.A.; Gee, K.L. Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol. Ecol. 2003, 12, 3237–3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankham, R.; Hemmer, H.; Ryder, O.A.; Cothran, E.G.; Soulé, M.E.; Murray, N.D.; Snyder, M. Selection in captive populations. Zoo Biol. 1986, 5, 127–138. [Google Scholar] [CrossRef]
Locus ID | Repeated Sequence | Primer Sequence (5′→3′) [25,26] | Annealing Temp (°C) | Accession Number |
---|---|---|---|---|
Mb102C | (GT)10…(GT)8…(GT)9 | Upstream: TGACTGATACTCTGAAGGGTGT Downstream: GCTCCTCTCATTACTGGCTC | 53 | DQ852336 |
Mb118H | (GT)23 | Upstream: TGTCAAGCACCAACCTCC Downstream: GTGCGTATTGAAGTGATGAGA | 54 | DQ852335 |
Mb116H | (GT)23 | Upstream: TGCGTATTGAAGTGATGAGA Downstream: GCTGTCAAGCACCAACCT | 59–49 | DQ852334 |
Mb43 | (GT)22 | Upstream: TGGTGGCTGTTACCCTAT Downstream: AAACCTGCATCTCCTGAA | 56.9 | EF599347 |
Mb41 | (AC)3A(AC)13A(AC)9 | Upstream: GGACTATCAGCCCACCTCT Downstream: TTCTTAACCACTGGACCACC | 53.3 | EF599346 |
Mb40 | (GT)15GC(GT)7…(GT)9GC(GT)5 | Upstream: CACCTAGTGGCGATTTCA Downstream: AACAGAGGGCGGTTGGAT | 56.9 | EF599345 |
Mb39 | (GT)34 | Upstream: ATCAAACCCACATCTCCT Downstream: TGCCCTGGTTAGAACTCC | 56.9 | EF599344 |
Mb38 | (AC)14…(AC)14 | Upstream: AGTGAGGCGAGTCTGTGAG Downstream: TCCCGTGTCCAAGAAAGT | 60 | EF599343 |
Mb37 | (GT)9ATGG(GT)13ATG(GT)9 | Upstream: TGTGGGTGAACTCAATCT Downstream: ATGGTATCTGACTCCAATAT | 58.2 | EF599342 |
Mb34 | (GT)16…(GT)13…CT(GT)6 | Upstream: CAACATTTGGGAGGAGGAT Downstream: GTGAGGGCTTCTGGTGAT | 57.9 | EF599341 |
Mb33 | (GT)26 | Upstream: TCCTCGCTGATTATTTGG CGGATTCGTAAAGTGGGT | 55.2 | EF599340 |
Mb18 | (GT)15 | Upstream: CTCCAGGCAAGAACACTG Downstream: GCAAGAAGTTATGCAATCAA | 55.2 | EF599337 |
Locus | N | A | AR | PIC | Ho | HE | FIS |
---|---|---|---|---|---|---|---|
Mb102C | 221 | 11 | 6 | 0.721 | 0.385 | 0.746 * | 0.486 |
Mb118H | 238 | 21 | 16 | 0.825 | 0.840 | 0.843 | 0.005 |
Mb116H | 238 | 14 | 9 | 0.797 | 0.811 | 0.820 | 0.013 |
Mb43 | 234 | 9 | 3 | 0.781 | 0.603 | 0.803 | 0.254 |
Mb41 | 94 | 4 | 1 | 0.330 | 0.383 | 0.360 | −0.065 |
Mb40 | 86 | 16 | 8 | 0.880 | 0.767 | 0.895 | 0.143 |
Mb39 | 238 | 11 | 8 | 0.477 | 0.244 | 0.512 * | 0.526 |
Mb38 | 238 | 15 | 9 | 0.812 | 0.824 | 0.834 | 0.013 |
Mb37 | 237 | 10 | 3 | 0.811 | 0.878 | 0.833 | −0.052 |
Mb34 | 235 | 9 | 3 | 0.796 | 0.562 | 0.822 * | 0.317 |
Mb33 | 238 | 19 | 12 | 0.789 | 0.660 | 0.804 | 0.179 |
Mb18 | 237 | 2 | 0 | 0.373 | 0.827 | 0.496 * | −0.668 |
All loci | - | 11.75 | 6.50 | 0.699 | 0.649 | 0.731 | 0.115 |
Locus | 1st Generation | 2nd Generation | 3rd Generation | 4th Generation | 5th Generation | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | A | AR | RA | PR | N | A | AR | RA | PR | N | A | AR | RA | PR | N | A | AR | RA | PR | N | A | AR | RA | PR | |
Mb102C | 25 | 7 | 5.320 | 4 | 0 | 47 | 8 | 6.247 | 2 | 0 | 52 | 7 | 5.718 | 3 | 0 | 49 | 9 | 5.896 | 4 | 0 | 48 | 10 | 6.887 | 4 | 2 |
Mb118H | 32 | 15 | 9.150 | 9 | 3 | 48 | 16 | 8.588 | 11 | 1 | 55 | 12 | 7.860 | 5 | 0 | 52 | 14 | 7.485 | 10 | 0 | 51 | 15 | 8.295 | 11 | 0 |
Mb116H | 32 | 10 | 7.338 | 6 | 1 | 48 | 10 | 7.021 | 3 | 0 | 55 | 10 | 7.561 | 3 | 0 | 52 | 10 | 6.358 | 5 | 0 | 51 | 12 | 6.890 | 8 | 1 |
Mb43 | 31 | 9 | 6.982 | 6 | 1 | 48 | 8 | 6.359 | 2 | 0 | 54 | 9 | 7.383 | 1 | 0 | 52 | 8 | 6.704 | 1 | 0 | 50 | 8 | 6.500 | 1 | 0 |
Mb41 | 11 | 3 | 2.909 | 1 | 0 | 21 | 4 | 3.345 | 1 | 0 | 19 | 2 | 1.983 | 0 | 0 | 14 | 3 | 2.966 | 0 | 0 | 29 | 4 | 3.167 | 1 | 0 |
Mb40 | 10 | 8 | 8.000 | 0 | 0 | 19 | 13 | 10.437 | 3 | 1 | 20 | 12 | 9.641 | 3 | 0 | 17 | 11 | 8.546 | 5 | 0 | 20 | 12 | 9.486 | 3 | 0 |
Mb39 | 32 | 6 | 4.011 | 3 | 0 | 48 | 7 | 3.933 | 4 | 2 | 55 | 9 | 4.590 | 6 | 1 | 52 | 7 | 4.312 | 5 | 0 | 51 | 6 | 3.789 | 3 | 0 |
Mb38 | 32 | 10 | 6.697 | 5 | 0 | 48 | 14 | 8.670 | 7 | 1 | 55 | 13 | 6.801 | 9 | 1 | 52 | 10 | 6.513 | 5 | 0 | 51 | 11 | 7.156 | 6 | 0 |
Mb37 | 32 | 8 | 6.753 | 3 | 0 | 48 | 9 | 6.902 | 2 | 0 | 55 | 8 | 6.564 | 1 | 0 | 52 | 10 | 7.126 | 5 | 1 | 50 | 9 | 7.221 | 2 | 0 |
Mb34 | 32 | 8 | 6.356 | 3 | 0 | 46 | 8 | 6.493 | 2 | 0 | 54 | 8 | 5.571 | 3 | 0 | 52 | 7 | 5.953 | 1 | 0 | 51 | 9 | 6.700 | 3 | 1 |
Mb33 | 32 | 13 | 8.606 | 7 | 1 | 48 | 12 | 7.762 | 5 | 0 | 55 | 15 | 8.339 | 9 | 1 | 52 | 13 | 7.929 | 8 | 0 | 51 | 13 | 7.806 | 6 | 1 |
Mb18 | 31 | 2 | 2.000 | 0 | 0 | 48 | 2 | 2.000 | 0 | 0 | 55 | 2 | 2.00 | 0 | 0 | 52 | 2 | 2.000 | 0 | 0 | 51 | 2 | 2.000 | 0 | 0 |
Total | 32 | 99 | 6.177 | 47 | 6 | 48 | 111 | 6.48 | 42 | 5 | 55 | 107 | 6.168 | 43 | 3 | 52 | 104 | 5.982 | 49 | 1 | 51 | 111 | 6.325 | 48 | 5 |
Locus | 1st Generation | 2nd Generation | 3rd Generation | 4th Generation | 5th Generation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ho | HE | FIS | Ho | HE | FIS | Ho | HE | FIS | Ho | HE | FIS | Ho | HE | FIS | |
Mb102C | 0.6 | 0.746 | 0.199 | 0.362 | 0.798 | 0.55 | 0.385 | 0.697 | 0.451 | 0.449 | 0.690 | 0.351 | 0.229 | 0.766 | 0.703 |
Mb118H | 0.844 | 0.869 | 0.029 | 0.854 | 0.851 | −0.004 | 0.836 | 0.852 | 0.018 | 0.827 | 0.822 | −0.006 | 0.843 | 0.83 | −0.016 |
Mb116H | 0.938 | 0.815 | −0.153 | 0.875 | 0.817 | −0.072 | 0.764 | 0.849 | 0.101 | 0.827 | 0.808 | −0.024 | 0.706 | 0.773 | 0.087 |
Mb43 | 0.6 | 0.769 | 0.262 | 0.646 | 0.780 | 0.174 | 0.648 | 0.848 | 0.237 | 0.615 | 0.798 | 0.231 | 0.500 | 0.801 | 0.378 |
Mb41 | 0.727 | 0.515 | −0.441 | 0.429 | 0.373 | −0.154 | 0.263 | 0.235 | −0.125 | 0.143 | 0.373 | 0.626 | 0.414 | 0.359 | −0.157 |
Mb40 | 1.00 | 0.874 | −0.154 | 0.632 | 0.919 | 0.319 | 0.850 | 0.906 | 0.064 | 0.647 | 0.848 | 0.243 | 0.800 | 0.900 | 0.114 |
Mb39 | 0.281 | 0.543 | 0.486 | 0.292 | 0.522 | 0.444 | 0.218 | 0.532 | 0.592 | 0.212 | 0.484 | 0.565 | 0.235 | 0.496 | 0.528 |
Mb38 | 0.813 | 0.795 | −0.022 | 0.708 | 0.873 | 0.19 | 0.891 | 0.818 | −0.090 | 0.769 | 0.816 | 0.058 | 0.922 | 0.843 | −0.095 |
Mb37 | 1.00 | 0.839 | −0.195 | 0.833 | 0.830 | −0.005 | 0.964 | 0.822 | −0.174 | 0.788 | 0.836 | 0.058 | 0.840 | 0.838 | −0.002 |
Mb34 | 0.688 | 0.823 | 0.167 | 0.63 | 0.842 | 0.254 | 0.389 | 0.765 | 0.494 | 0.596 | 0.809 | 0.265 | 0.569 | 0.850 | 0.333 |
Mb33 | 0.813 | 0.827 | 0.018 | 0.563 | 0.790 | 0.290 | 0.655 | 0.818 | 0.201 | 0.673 | 0.775 | 0.132 | 0.647 | 0.821 | 0.214 |
Mb18 | 0.613 | 0.489 | −0.258 | 0.896 | 0.503 | −0.795 | 0.818 | 0.502 | −0.640 | 0.846 | 0.502 | −0.697 | 0.882 | 0.498 | −0.786 |
All loci | 0.743 | 0.742 | 0.001 | 0.643 | 0.742 | 0.134 | 0.640 | 0.720 | 0.112 | 0.616 | 0.713 | 0.139 | 0.632 | 0.731 | 0.137 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Yang, J.; Wang, J.; Yang, Y.; Fu, W.; Zheng, C.; Cheng, J.; Zeng, Y.; Zhang, Y.; Xu, L.; et al. Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions. Animals 2020, 10, 255. https://doi.org/10.3390/ani10020255
Cai Y, Yang J, Wang J, Yang Y, Fu W, Zheng C, Cheng J, Zeng Y, Zhang Y, Xu L, et al. Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions. Animals. 2020; 10(2):255. https://doi.org/10.3390/ani10020255
Chicago/Turabian StyleCai, Yonghua, Jiandong Yang, Jianming Wang, Ying Yang, Wenlong Fu, Chengli Zheng, Jianguo Cheng, Yutian Zeng, Yan Zhang, Ling Xu, and et al. 2020. "Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions" Animals 10, no. 2: 255. https://doi.org/10.3390/ani10020255
APA StyleCai, Y., Yang, J., Wang, J., Yang, Y., Fu, W., Zheng, C., Cheng, J., Zeng, Y., Zhang, Y., Xu, L., Ren, Y., Lu, C., & Zhang, M. (2020). Changes in the Population Genetic Structure of Captive Forest Musk Deer (Moschus berezovskii) with the Increasing Number of Generation under Closed Breeding Conditions. Animals, 10(2), 255. https://doi.org/10.3390/ani10020255