Accumulation of Toxic Elements in Bone and Bone Marrow of Deer Living in Various Ecosystems. A Case Study of Farmed and Wild-Living Deer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Analysis of Mineralstoxic Elements Content in Bone and Bone Marrow
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Zukowska, J.; Biziuk, M. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci. 2008, 73, R21–R29. [Google Scholar] [CrossRef]
- Biehl, M.L.; Buck, W.B. Chemical contaminantsb- their metabolism and their residues. J. Food Protect. 1987, 50, 1058–1073. [Google Scholar] [CrossRef] [PubMed]
- Chamrad, A.D.; Box, T.W. Food habits of white-tailed deer in south Texas. J. Range Manag. 1968, 28, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Gee, K.L.; Porter, M.D.; Demarais, S.; Bryant, F.C.; Van Vreede, G. White-Tailed Deer: Their Foods and Management in the Cross Timbers; Samuel Noble Roberts Foundation: Ardmore, OK, USA, 1991. [Google Scholar]
- Janiszewski, P.; Szczepański, W. The content of shoot fooder in the autumn and winter food of red deer (Cervus elaphus L.). Sylwan 2001, 5, 83–90. [Google Scholar]
- Janiszewski, P.; Szczepański, W. Analysis of autumn-winter diet of stags, hinds and calves of red deer (Cervus elaphus L.) based on rumen content. Folia For. Pol. Ser. A For. 2001, 43, 69–83. [Google Scholar]
- Richardson, C.; Lionberger, J.; Miller, G. White-Tailed Deer Management in the Rolling Plains of Texas; Wildlife Biologists Texas Parks and Wildlife Department: Austin, TX, USA, 2008. [Google Scholar]
- Burke, K.M. Seasonal Diets and Foraging Selectivity of White-tailed Deer in the Rolling Plains Ecological Region. Master’s Thesis, Southwest Texas State University, San Marcos, TX, USA, 2003. [Google Scholar]
- Mattiello, S. Welfare issues of modern deer farming. Ital. J. Anim. Sci. 2009, 8, 205–217. [Google Scholar] [CrossRef]
- Alldredge, M.W.; Peek, J.M.; Wall, W.A. Nutritional quality of forages used by elk in northern Idaho. J. Range Manag. 2002, 55, 253–259. [Google Scholar] [CrossRef]
- Tajchman, K.; Steiner-Bogdaszewska, Ż.; Żółkiewski, P. Requirements and role of selected micro and macro elements in nutrition of Cervids (Cervidae)—Review. Appl. Ecol. Environ. Res. 2018, 16, 7669–7686. [Google Scholar] [CrossRef]
- Medvedev, N. Concertrations of Cadmium, Lead And Sulphur In Tissues Of Wild, Forest Reindeer From North-West Russia. Environ. Pollut. 1995, 90, 1–5. [Google Scholar] [CrossRef]
- Cousins, R.J.; Barber, A.K.; Trout, J.R. Cadmium toxicity in growing swine. J. Nutr. 1973, 103, 964–972. [Google Scholar] [CrossRef]
- Gunson, D.E.; Kowalczck, D.F.C.; Shoop, R.; Ramberg, C.F. Environmental zinc and cadmium pollution associated with generalized osteochondrosis, osteoporosis, and nephrocalcinosis in horses. J. Am. Vet. Med. Assoc. 1982, 180, 295–299. [Google Scholar] [PubMed]
- Shearer, T.R.; Britton, J.L.; Desart, D.J. Influence of post-developmental cadmium on caries and cariostosis by fluoride. Environ. Health Perspect. 1980, 34, 219–221. [Google Scholar] [CrossRef]
- Anonymous. Mineral Tolerance of Domestic Animals; National Academy of Sciences: Washington, DC, USA, 1980. [Google Scholar]
- Sileo, L.; Beyer, W.N. Heavy metals in white-tailed deer living near a zinc smeltet in Pennsylvania. J. Wildl. Dis. 1985, 21, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Kuiters, A.T. Accumulation of cadmium and lead in red deer and wild boar at the veluwe, the netherlands. Vet. Q. 1996, 18 (Suppl. 3), 134–135. [Google Scholar] [CrossRef] [PubMed]
- Demesko, J.; Markowski, J.; Demesko, E.; Słaba, M.; Hejduk, J.; Minias, P. Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus capreolus). AECT 2019, 7, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, J.; Frasca, I.; Garcia, A.; Landete-Castillejos, T.; Luccarini, S.; Gallego, L.; Morimando, F.; Varuzza, P.; Zaccaroni, M. Roe deer as a bioindicator: Preliminary data on the impact of the geothermal power plants on the mineral profile internal and bone tissues in Tuscany (Italy). Environ. Sci. Pollut. Res. 2020, 27, 36121–36131. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, M.J. Bone: Nature of the calcium phosphate crystals and cellular, structural and physical chemica; mechanisms in their formation. Rev. Miner. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Zaichick, S.; Zaichick, V.; Karandashev, V.K.; Moskvina, I.R. The.efect of age and gender on 59 trace-element contents in human.rib bone investigated by inductively coupled plasma mass spectrometry. Biol. Trace Element. Res. 2011, 143, 41–57. [Google Scholar] [CrossRef]
- Srebočan, E.; Janicki, Z.; Crnić, A.P.; Tomljanović, K.; Šebečić, M.; Konjević, D. Cadmium, lead and mercury concentrations in selected red deer (Cervus elaphus L.) tissues from north-eastern Croatia. J. Environ. Sci. Health A 2012, 47, 2101–2108. [Google Scholar] [CrossRef]
- Silberstein, L.; Anastasi, J. Hematology Basic Principles and Practice, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- DEFRA Code of Recommendations for the Welfare of Farmed Deer. 2006. Available online: http://www.defra.gov.uk/animalh/welfare/farmed/othersps/deer/pb0055/deercode.htm (accessed on 12 October 2020).
- FEDFA Federation of European Deer Farmers Associations. Available online: https://www.fedfa.com/ (accessed on 12 October 2020).
- Darmochwał, T.; Rumiński, M.J. Warmia and Masuria Travel Guide; Agencja TD: Białystok, Poland, 1998. [Google Scholar]
- Falandysz, J.; Szymczyk-Kobrzyńska, K.; Brzostowski, A.; Zalewski, K.; Zasadowski, A. Concentrations of heavy metals in the tissues of red deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit. Contam. 2005, 22, 141–149. [Google Scholar] [CrossRef]
- Tajchman, K.; Bogdaszewki, M.; Kowalczuk-Vasilew, E. Effects of supplementation with different levels of calcium and phosphorus on mineral content of first antler, bone, muscle, and liver of farmed fallow deer (Dama dama). Can. J. Anim. Sci. 2020, 100, 17–26. [Google Scholar] [CrossRef]
- Janiszewski, P.; Kolasa, S. Zoometric Characteristics of Red Deer (Cervus elaphus L.) Stags from Nothern Poland. Balt. For. 2006, 12, 122–127. [Google Scholar]
- Flis, M. Variability of individual quality and dressing percentage of roe deer in the Lublin Upland. Sci. Ann. Pol. Soc. Anim. Prod. 2015, 11, 53–63. [Google Scholar]
- Nagy, J.; Szabó, A.; Donkó, T.; Bokor, J.; Romvári, R.; Repa, I.; Horn, P.; Fébel, H. Body composition and venison quality of farmed red deer (Cervus elaphus) hinds reared on grass, papilionaceous or mixed pasture paddocks. Arch. Anim. Breed. 2019, 62, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.A.; Rylander, C.; Brustad, M.; Sandanger, T.M. Level of selected toxic elements in meat, liver, tallow and bone marrow of young semi-domesticated reindeer (Rangifer tarandus tarandus L.) from Northen Norway. Int. J. Circumpolar Health 2012, 71, 18187. [Google Scholar] [CrossRef] [Green Version]
- Arnett, T.; Henderson, B. (Eds.) Methods in Bone Biology; Chapman & Hall Ltd.: London, UK, 1998. [Google Scholar]
- Dryden, G.M. Nutrition of antler growth in deer. Anim. Prod. Sci. 2016, 56, 962–970. [Google Scholar] [CrossRef]
- Malara, P.; Fischer, A.; Malara, B. Selected toxic and essential heavy metals in impacted teeth and the surrounding mandibular bones of people exposed to heavy metals in the environment. J. Occup. Med. Toxicol. 2016, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.; Roberts, R.D. Arsenic in small, mammals. Environ. Technol. 1992, 13, 1091–1095. [Google Scholar] [CrossRef]
- O’Hara, T.M.; George, J.C.; Blake, J.; Burek, K.; Carrol, G.; Dau, J.; Bennett, L.; McCoy, C.P.; Gerard, P.; Woshner, V. Investigation of heavy metals in a large mortality event in caribou of Northers Alaska. Arctic 2003, 58, 125–135. [Google Scholar] [CrossRef]
- Demesko, J.; Markowski, J.; Słaba, M.; Hejduk, J.; Minias, P. Age-related patterns in trace element content vary between bone and teeth of European Roe deer (Capreolus capreolus). Arch. Environ. Contam. Toxicol. 2018, 74, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez -Estival, J.; Álvarez-Lioret, P.; Rodríguez-Navarro, A.B.; Mateo, R. Chronic effects of lead (Pb) on bone properties in red deer and wild boar: Relatioship with vitamins A and D3. Environ. Pollut. 2013, 174, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Conder, J.M.; Lanno, R.P. Heavy metal concentratins in mandibles of white-tailed deer living in the Picher mining district. Bull. Environ. Contam. Toxicol. 1999, 63, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Zofkova, I.; Davis, M.; Blahos, J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol. Res. 2017, 66, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Mandalunis, P.M. A Review of Metal Exposure and Its Effects on Bone Health. J. Toxicol. 2018, 11, 4854152. [Google Scholar] [CrossRef]
- Odstrcil, A.D.C.A.; Carino, S.N.; Ricci, J.C.D.; Mandalunis, P.M. Effect of arsenic in endochondral ossification of experimental animals. Exp. Toxicol. Pathol. 2010, 62, 243–249. [Google Scholar] [CrossRef]
- Hu, Y.C.; Cheng, H.L.; Hsieh, B.S.; Huang, L.W.; Huang, T.C.; Chang, K.L. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 2012, 50, 1406–1415. [Google Scholar] [CrossRef]
- Cai, B.; Meng, F.; Zhu, S.L.; Zhao, J.; Liu, J.Q.; Liu, C.J.; Chen, N.; Ye, M.L.; Li, Z.Y.; Ai, J.; et al. Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calciumsignal and caspase-3 pathways. Toxicol. Lett. 2010, 193, 173–178. [Google Scholar] [CrossRef]
- Tang, C.H.; Chiu, Y.C.; Huang, C.F.; Chen, Y.W.; Chen, P.C. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. Toxicol. Appl. Pharmacol. 2009, 241, 173–181. [Google Scholar] [CrossRef]
- Chiu, P.R.; Hu, Y.C.; Hsieh, B.S.; Huang, T.C.; Cheng, H.L.; Huang, L.W.; Chang, K.L. Osteoblasts active the Nrf2 signalling pathway in response to arsenic trioxide treatment. Int. J. Biochem. Cell Biol. 2016, 79, 327–336. [Google Scholar] [CrossRef]
- Zannèse, A.; Morellet, N.; Targhetta, C.; Coulon, A.; Fuser, S.; Hewison, A.J.M.; Ramanzin, M. Spatial structure of roe deer populations: Towards defining management units at a landscape scale. J. Appl. Ecol. 2006, 43, 1087–1097. [Google Scholar] [CrossRef]
- Borsy, A.; Podani, J.; Stéger, V.; Balla, B.; Horváth, A.; Kósa, J.P.; Gyurjan, I.; Molnár, A.; Szabolcsi, Z.; Szabó, L.; et al. Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol. Genet. Genom. 2009, 281, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Stéger, V.; Molnár, A.; Borsy, A.; Gyurján, I.; Szabolcsi, Z.; Dancs, G.; Molnár, J.; Papp, P.; Nagy, J.; Puskás, L.; et al. Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: Expression dynamics for regulatory and effector genes. Mol. Genet. Genom. 2010, 284, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Ceacero, F. Lon or heavy? Physiological constraints in the evolution of antlers. J. Mammal. Evol. 2015, 23, 2209–2216. [Google Scholar] [CrossRef]
- Ceacero, F.; Pluháček, J.; Landete-Castillejos, T.; García, A.J.; Gallego, L. Inter-specific differences in the structure and mechanics but not the chemical composition of antlers in three deer species. In Annales Zoologici Fennici; Finnish Zoological and Botanical Publishing Board: Helsinki, Finland, 2015; Volume 52, pp. 368–376. [Google Scholar] [CrossRef] [Green Version]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, T.; Falk, S.; Rohrbeck, A.; Georgii, S.; Herzog, C.; Wiegand, A.; Hotz, S.; Boschek, B.; Zorn, H.; Brunn, H. Migration of aluminum from food contact materials to food—A health risk for consumers? Part I of III: Exposure to aluminum, release of aluminum, tolerable weekly intake (TWI), toxicological effects of aluminum, study design, andmethods. Environ. Sci. Eur. 2017, 29, 19. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huo, X.; Li, Y.; Wu, K.; Liu, J.; Huang, J.; Zheng, G.; Xiao, Q.; Yang, H.; Wang, Y.; et al. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci. Total Environ. 2010, 408, 3113–3117. [Google Scholar] [CrossRef] [PubMed]
- Priest, N.D. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: Review and study update. J. Environ. Monit. 2004, 6, 375–403. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, C.; Zhu, Y.; Sun, H.; Li, Y.; Zhang, Z. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats. Biol. Trace Elem. Res. 2011, 143, 378–385. [Google Scholar] [CrossRef]
- Grace, N.D.; Castillo-Alcala, F.; Wilson, P.R. Amounts and distribution of mineral elements associated with liveweight gains of grazing red deer (Cervus elaphus). N. Z. J. Agric. Res. 2008, 51, 439–449. [Google Scholar] [CrossRef]
- Gad, S.C. Antimony. In Encyclopedia of Toxicology, 3d ed.; Academic Press: San Diego, CA, USA, 2014; pp. 274–276. [Google Scholar]
- Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational toxicology of nickel and nickel compounds. J Environ. Pathol. Toxicol. Oncol. 2009, 28, 177–208. [Google Scholar] [CrossRef]
- Łanocha-Arendarczyk, N.; Kalisińska, E.; Kosik-Bogacka, D.; Budis, H.; Lewicka, K.; Sokołowski, S.; Dobiecki, K.; Kołodziej, Ł. Effect of environmental parameters on the concentration of nickel (Ni) in bones of the hip joint from patient with osteoarthritis. J. Pre-Clin. Clin. Res. 2016, 10, 6–11. [Google Scholar] [CrossRef] [Green Version]
Analyzed Parameters | Wild Red Deer | Farm Red Deer | t a/Z b | p | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | |||||
Bone marrow | Be | mg/kg | <LOD | <LOD | <LOD | <LOD | - | - |
Al | 0.685 | 0.186 | 2.638 | 0.753 | 4.000 b | 0.004 * | ||
As | 0.008 | 0.002 | 0.003 | 0.001 | 2.093 a | 0.056 | ||
Cd | <LOD | <LOD | <LOD | <LOD | - | - | ||
Sb | <LOD | <LOD | <LOD | <LOD | - | - | ||
Ba | 0.969 | 0.321 | 1.077 | 0.371 | −0.215 a | 0.833 | ||
Pb | 0.003 | 0.001 | 0.003 | 0.003 | 26.000 b | 0.954 | ||
V | <LOD | <LOD | <LOD | <LOD | - | - | ||
Ni | 0.042 | 0.023 | 0.014 | 0.006 | 16.000 b | 0.224 | ||
Tl | <LOD | <LOD | <LOD | <LOD | - | - | ||
Bone | Be | <LOD | <LOD | 0.002 | 0.001 | 22.500 b | 0.607 | |
Al | 2.028 | 0.350 | 26.229 | 4.396 | −6.823 a | <0.001 * | ||
As | 0.231 | 0.014 | 0.046 | 0.007 | 10.171 a | <0.001 * | ||
Cd | 0.001 | 0.001 | 0.003 | 0.0003 | 6.000 b | 0.012 * | ||
Sb | 0.0004 | 0.0003 | 0.005 | 0.002 | 15.000 b | 0.181 | ||
Ba | 238.951 | 38.158 | 87.978 | 5.366 | 3.176 a | 0.007 * | ||
Pb | 0.977 | 0.136 | 0.545 | 0.095 | 2.344 a | 0.035 * | ||
V | 0.093 | 0.027 | 0.119 | 0.033 | −0.616 a | 0.548 | ||
Ni | 0.375 | 0.028 | 1.667 | 1.334 | 26.000 b | 0.954 | ||
Tl | <LOD | <LOD | <LOD | <LOD | - | - | ||
Body mass | kg | 46.5 | 2.916 | 49.5 | 2.091 | 16.500 b | 0.224 |
Comparison of Measurements in Bone Marrow and Bone | Wild Red Deer | Farm Red Deer | All | |||
---|---|---|---|---|---|---|
t a/Z b | p | t a/Z b | p | t a/Z b | p | |
Be | - | - | - | - | - | - |
Al | 2.310 b | 0.021 * | −5.457 a | 0.002 * | 3.237 b | 0.001 * |
As | −16.184 a | <0.001 * | −5.314 a | 0.003 * | −6.046 a | <0.001 * |
Cd | - | - | 2.201 b | 0.027 * | 2.366 b | 0.017 * |
Sb | - | - | 1.603 z | 0.108 | 1.825 b | 0.076 |
Ba | −6.274 a | <0.001 * | −16.703 a | <0.001 * | 3.407 b | <0.001 * |
Pb | −7.185 a | <0.001 * | −5.817 a | 0.002 * | −7.724 a | <0.001 * |
V | −3.486 a | 0.008 * | −3.657 a | 0.015 * | 3.407 b | <0.001 * |
Ni | 2.665 b | 0.007 * | 2.201 b | 0.027 * | 3.407 b | <0.001 * |
Tl | - | - | - | - | - | - |
Analyzed Parameters | Wild Red Deer Body Mass | Farm Red Deer Body Mass | All | ||||
---|---|---|---|---|---|---|---|
R a/r b | p | R a/r b | p | R a/r b | p | ||
Bone marrow | Be | - | - | - | - | - | - |
Al | −0.468 a | 0.203 | 0.257 a | 0.623 | 0.112 a | 0.689 | |
As | 0.577 a | 0.103 | 0.179 b | 0.734 | 0.100 a | 0.722 | |
Cd | - | - | - | - | - | - | |
Sb | - | - | - | - | - | - | |
Ba | 0.393 a | 0.295 | −0.317 b | 0.540 | 0.109 a | 0.698 | |
Pb | 0.144 a | 0.711 | −0.135 a | 0.798 | −0.016 a | 0.953 | |
V | - | - | - | - | - | - | |
Ni | −0.728 a | 0.026 * | 0.509 b | 0.302 | −0.296 a | 0.282 | |
Tl | - | - | - | - | - | - | |
Bone | Be | - | - | 0.654 a | 0.158 | 0.371 a | 0.172 |
Al | 0.292 a | 0.444 | −0.134 b | 0.800 | 0.407 a | 0.131 | |
As | −0.025 a | 0.948 | −0.170 b | 0.747 | −0.083 b | 0.768 | |
Cd | 0.343 a | 0.365 | −0.257 a | 0.623 | 0.314 a | 0.253 | |
Sb | 0.550 a | 0.124 | 0.394 a | 0.438 | 0.583 a | 0.022 * | |
Ba | 0.561 a | 0.116 | −0.548 b | 0.260 | −0.146 a | 0.601 | |
Pb | −0.058 a | 0.881 | 0.462 b | 0.356 | −0.208 b | 0.457 | |
V | −0.778 a | 0.013 * | 0.393 b | 0.441 | −0.316 a | 0.250 | |
Ni | 0.518 a | 0.152 | 0.714 a | 0.111 | 0.522 a | 0.045 * | |
Tl | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Dziki-Michalska, K. Accumulation of Toxic Elements in Bone and Bone Marrow of Deer Living in Various Ecosystems. A Case Study of Farmed and Wild-Living Deer. Animals 2020, 10, 2151. https://doi.org/10.3390/ani10112151
Tajchman K, Ukalska-Jaruga A, Bogdaszewski M, Pecio M, Dziki-Michalska K. Accumulation of Toxic Elements in Bone and Bone Marrow of Deer Living in Various Ecosystems. A Case Study of Farmed and Wild-Living Deer. Animals. 2020; 10(11):2151. https://doi.org/10.3390/ani10112151
Chicago/Turabian StyleTajchman, Katarzyna, Aleksandra Ukalska-Jaruga, Marek Bogdaszewski, Monika Pecio, and Katarzyna Dziki-Michalska. 2020. "Accumulation of Toxic Elements in Bone and Bone Marrow of Deer Living in Various Ecosystems. A Case Study of Farmed and Wild-Living Deer" Animals 10, no. 11: 2151. https://doi.org/10.3390/ani10112151
APA StyleTajchman, K., Ukalska-Jaruga, A., Bogdaszewski, M., Pecio, M., & Dziki-Michalska, K. (2020). Accumulation of Toxic Elements in Bone and Bone Marrow of Deer Living in Various Ecosystems. A Case Study of Farmed and Wild-Living Deer. Animals, 10(11), 2151. https://doi.org/10.3390/ani10112151