Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. General Results
3.2. Skin Pigmentation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vasconcellos, J.P.; Vasconcellos, S.A.; Pinheiro, S.R.; de Oliveira, T.H.N.; Ribeiro, N.A.S.; Martins, C.N.; Porfírio, B.A.; Sanches, S.A.; de Souza, O.B.; Telles, E.O.; et al. Individual determinants of fish choosing in open-air street markets from Santo André, SP/Brazil. Appetite 2013, 68, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Colihueque, N.; Araneda, C. Appearance traits in fish farming: Progress from classical genetics to genomics, providing insight into current and potential genetic improvement. Front. Genet. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chatzifotis, S.; Pavlidis, M.; Doñate Jimeno, C.; Vardanis, G.; Sterioti, A.; Divanach, P. The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus). Aquac. Res. 2005, 36, 1517–1525. [Google Scholar] [CrossRef]
- Shahidi, F.; Metusalach, A.; Brown, J.A. Carotenoid pigments in seafood and aquaculture. Crit. Rev. Food Sci. Nutr. 1998, 38, 1–67. [Google Scholar] [CrossRef]
- Kalinowski, C.T.; Robaina, L.E.; Fernàndez-Palacios, H.; Schuchardt, D.; Izquierdo, M.S. Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin colour. Aquaculture 2005, 244, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Clydesdale, F.M. Colour as a factor in food choice. Crit. Rev. Fd. Sci. Nut. 1993, 33, 83–101. [Google Scholar] [CrossRef]
- Sylvia, G.; Morrisey, M.T.; Graham, T.; Garcia, S. Organoleptic qualities of farmed and wild salmon. J. Aquat. Food Prod. Technol. 1995, 4, 51–64. [Google Scholar] [CrossRef]
- Sylvia, G.; Morrisey, M.T.; Graham, T.; Garcia, S. Changing trends in seafood markets: The case of farmed and wild salmon. J. Food Prod. Market 1996, 3, 49–63. [Google Scholar] [CrossRef]
- Basurco, B.; Abellán, E. Finfish species diversification in the context of the Mediterranean marine fish farming development. Cah. Opt. Méditer Ser. B Etud. Rech. 1999, 24, 9–25. [Google Scholar]
- Booth, M.; Warner-Smith, R.; Allan, G.; Glencross, B. Effects of dietary astaxanthin source and light manipulation on the skin colour of Australian snapper Pagrus auratus (Bloch & Schneider, 1801). Aquac. Res. 2004, 35, 458–464. [Google Scholar]
- Doolan, B.J.; Allan, G.L.; Booth, M.A.; Jones, P.L. Effect of carotenoids and background colour on the skin pigmentation of Australian snapper Pagrus auratus (Bloch & Schneider, 1801). Aquac. Res. 2008, 39, 1423–1433. [Google Scholar] [CrossRef]
- Huntingford, F.; Kadri, S. Welfare and Fish; Blackwell: Oxford, UK, 2008; pp. 19–31. [Google Scholar]
- Grigorakis, K.; Alexis, M.N. Effects of fasting on the meat quality and fat deposition of commercial-size farmed gilthead seabream (Sparus aurata L.) fed different dietary regimes. Aquacul. Nutr. 2005, 11, 341–344. [Google Scholar] [CrossRef]
- Wassef, E.A.; Saleh, N.E.; El-Hady, H.A. Vegetable oil blend as alternative lipid resources in diets for gilthead seabream, Sparus aurata. Aquac. Int. 2009, 17, 421–435. [Google Scholar] [CrossRef]
- Rogdakis, Y.G.; Koukou, K.K.; Ramfos, A.; Dimitriou, E.; Katselis, G.N. Comparative morphology of wild, farmed and hatchery released gilthead sea bream (Sparus aurata) in western Greece. Int. J. Fish Aquac. 2011, 3, 1–9. [Google Scholar]
- Šimat, V.; Bogdanović, T.; Poljak, V.; Petričević, S. Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: Effect of fish farming activities. J. Food Compost. Anal. 2005, 40, 120–125. [Google Scholar] [CrossRef]
- Gomes, E.; Dias, J.; Silva, P.; Valente, L.; Empis, J.; Gouveia, J.B.; Young, A. Utilization of natural and synthetic sources of carotenoids in the skin pigmentation of gilthead seabream (Sparus aurata). Eur. Food Res. Technol. 2002, 214, 287–293. [Google Scholar] [CrossRef]
- Gouveia, L.; Choubert, G.; Gomes, E.; Pereira, N.; Santinha, J.; Empis, J. Pigmentation of gilthead sea bream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) micro alga. Aquac. Res. 2002, 33, 987–993. [Google Scholar] [CrossRef]
- Wassef, E.A.; Chatzifotis, S.; Sakr, E.M.; Saleh, N.E. Effect of Two Natural Carotenoid Sources in Diets for Gilthead Seabream, Sparus aurata, on Growth and Skin Coloration. J. Appl. Aquac. 2010, 22, 216–229. [Google Scholar] [CrossRef]
- Allahpichay, I.; Shimizu, C.; Kono, M. Pigmentation of cultured red sea bream, Chrysophrys major, using astaxanthin from antarctic krill, Euphausia superba, and a mysid, Neomysis sp. Aquaculture 1984, 38, 45–57. [Google Scholar]
- Cejas, R.J.; Almansa, E.; Tejera, N.; Jerez, S.; Bolaños, A.; Lorenzo, A. Effect of dietary supplementation with shrimp on skin pigmentation and lipid composition of red porgy (Pagrus pagrus) alevins. Aquaculture 2003, 218, 457–469. [Google Scholar] [CrossRef]
- Tejera, N.; Cejas, J.R.; Rodríguez, C.; Bjerkeng, B.; Jerez, S.; Bolaños, A.; Lorenzo, A. Pigmentation, carotenoids, lipid peroxides and lipid composition of skin of red porgy (Pagrus pagrus) fed diets supplemented with different astaxanthin sources. Aquaculture 2007, 270, 218–230. [Google Scholar] [CrossRef]
- García-Romero, J.; Kalinowski, C.T.H.; Izquierdo, M.S.L.; Robaina, L.E.R. Marine and freshwater crab meals in diets for red porgy (Pagrus pagrus): Effect on growth, fish composition and skin colour. Aquac. Res. 2010, 41, 1759–1769. [Google Scholar] [CrossRef]
- Manganaro, A.; Sanfilippo, M.; Fortino, G.; Daprà, F.; Battista Palmegiano, G.; Gai, F.; Lembo, E.; Reale, A.; Ziino, M. Artificial pigmentation and flesh quality in red porgy (Pagrus pagrus). Int. Aquat. Res. 2012, 4. [Google Scholar] [CrossRef] [Green Version]
- García-Romero, J.; Ginés, R.; Izquierdo, M.S.; Harounb, R.; Badilla, R.; Robaina, L.E.R. Effect of dietary substitution of fish meal for marine crab and echinoderm meals on growth performance, ammonia excretion, skin colour, and flesh quality and oxidation of red porgy (Pagrus pagrus). Aquaculture 2012, 422–423, 239–248. [Google Scholar] [CrossRef]
- Ramalho Ribeiro, A.; Gonçalves, A.; Barbeiro, M.; Bandarra, N.; Nunes, M.L.; Carvalho, M.L.; Silva, J.; Navalho, J.; Dinis, M.T.; Silva, T.; et al. Phaeodactylum tricornutum in finishing diets for gilthead seabream: Effects on skin pigmentation, sensory properties and nutritional value. J. Appl. Phycol. 2017, 29, 1945–1956. [Google Scholar] [CrossRef]
- Lorenz, R.T.; Cysewski, G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160–167. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.X.; Deming, C.; Yongbin, H.; Zhigang, C.; Feirong, G. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT Food Sci. Technol. 2008, 41, 1082–1088. [Google Scholar] [CrossRef]
- Murray, P.M.; Moane, S.; Collins, C.; Beletskaya, T.; Thomas, O.P.; Duarte, A.W.; Nobre, F.S.; Owoyemi, I.O.; Pagnocca, F.C.; Sette, L.D.; et al. Sustainable production of biologically active molecules of marine based origin. N. Biotechnol. 2013, 30, 839–850. [Google Scholar] [CrossRef]
- Khoa Dang, N. Astaxanthin: A Comparative Case of Synthetic VS Natural Production. Chem. Biomol. Eng. Pub. Other Works. 2013. Available online: http://trace.tennessee.edu/utk_chembiopubs/94 (accessed on 2 October 2020).
- Mohammed, M.K.; Mohd, M.K. Production of carotenoids in Spirulina platensis in response to indole acetic acid (IAA). Int. J. Eng. Sci. Technol. 2011, 3, 4973–4979. [Google Scholar]
- Ranga Rao, A.; Phang, S.M.; Sarada, R.; Ravishankar, G.A. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Ranga Rao, A.; Sindhuja, H.N.; Dharmesh, S.M.; Sankar, K.U.; Sarada, R.; Ravishankar, G.A. Effective inhibition of skin cancer, tyrosinase, and antioxidant properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J. Agric. Food Chem. 2013, 61, 3842–3851. [Google Scholar] [CrossRef]
- McWilliams, A. The Global Market for Carotenoids; BCC Research: Wellesley, MA, USA, 2000. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995.
- Folch, J.; Less, M.; Stanley, H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Parisenti, J.; Beirão, L.H.; Maraschin, M.; Mouriño, J.L.; Do Nascimento Vieira, F.; Bedin, L.H.; Rodrigues, E. Pigmentation and carotenoid content of shrimp fed with Haematococcus pluvialis and soy lecithin. Aquac. Nutr. 2011, 17, e530–e535. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Mellado-Ortega, E.; Hornero-Méndez, D. Carotenoids in cereals: An ancient resource with present and future applications. Phytochem. Rev. 2015, 14, 873–890. [Google Scholar] [CrossRef] [Green Version]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo. Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Secci, G.; Bovera, F.; Nizza, S.; Baronti, N.; Gasco, L.; Conte, G.; Serra, A.; Bonelli, A.; Parisi, G. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animals 2018, 12, 2191–2197. [Google Scholar] [CrossRef]
- Tibaldi, E.; Failla, S.; Capoccioni, F.; Pulcini, D.; Contò, M.; Cardinaletti, G.; Tulli, F.; Pomilio, F.; di Marzio, V.; Marfoglia, C.; et al. Valori nutritivi di alimenti innovativi o sotto-sfruttati di interesse per l’acquacoltura. Monograph, in preparation.
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 2018, 120, 810–818. [Google Scholar] [CrossRef]
- Tibaldi, E.; Chini Zittelli, G.; Parisi, G.; Bruno, M.; Giorgi, G.; Tulli, F.; Venturini, S.; Tredici, M.R.; Poli, B.M. Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dired Isochrysis sp. (T-ISO) biomass as a source of protein and n-e long chain PUFA in partial substitution of fish derivatives. Aquaculture 2015, 440, 60–68. [Google Scholar] [CrossRef]
- Tulli, F.; Chini Zittelli, G.; Giorgi, G.; Poli, B.M.; Tibaldi, E.; Tredici, M.R. Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. J. Aquat. Food Prod. 2012, 21, 188–197. [Google Scholar] [CrossRef]
- Ruangsomboon, S.; Choochote, S.; Taveekijakarn, P. Growth performance and nutritional composition of red tilapia (Oreochromis niloticus x O. mossambicus) fed diets containing raw Spirulina platensis. In The International Conference on Sustainable Community Development; Khon Kaen University, Nongkhai Campus: Nong Kom Ko, Thailand; Vientiane, Laos, 2010. [Google Scholar]
- Xiangjun, S.; Chang, Y.; Ye, Y.; Ma, Z.; Liang, Y.; Li, T.; Jiang, N.; Xing, W.; Luo, L. The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio). Aquac. Nutr. 2012, 342, 62–68. [Google Scholar]
- Ju, Z.Y.; Deng, D.F.; Dominy, W. A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 2012, 354, 50–55. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. Available online: http://www.sciencedirect.com/science/article/pii/S1381514800000389 (accessed on 2 October 2020). [CrossRef]
- Pérez-Gálvez, A.; Negro-Balmaseda, J.J.; Mínguez-Mosquera, M.I.; Cascajo-Almenara, M.V.; Garrido-Fernández, J. Astaxanthin from crayfish (Procambarus clarkii) as a pigmentary ingredient in the feed of laying hens. Grasas Aceites 2008, 59, 139–145. [Google Scholar]
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Inter. 2012, 46, 438–450. [Google Scholar] [CrossRef]
Species | Feed Ingredient | Main Results | Reference |
---|---|---|---|
Chrisophrys major | Euphasia superba; Neomysis sp. | Higher rate of carotenoid deposition and distinct pigmentation | [20] |
Sparus aurata | Haematococcus pluvialis; synthetic astaxanthin | Total carotenoid concentration of the skin was not significantly affected by the dietary pigment sources | [17] |
Sparus aurata | Chorella vulgaris; synthetic astaxanthin | Carotenoids content in muscle was very low; no variation in the amount of carotenoid in the skin tissue | [18] |
Pagrus pagrus | Plesionika sp. | Pink-colored skin like that of the wild fish | [21] |
Pagrus auratus | Synthethic astaxanthin (36 or 72 mg/kg) | Diet containing 72 mg astaxanthin/kg gave more reddish coloration; color saturation after six weeks | [10] |
Pagrus pagrus | Astaxathin; β-carotene; lycopene | Astaxanthin increased skin carotenoid content; β-carotene and lycopene had no effect | [3] |
Pagrus pagrus | Synthetic canthaxanthin; astaxanthin from shrimp shell | Only astaxanthin from shrimp shell meal gave skin an overall natural reddish coloration | [5] |
Pagrus pagrus | Haematococcus pluvialis; synthesized astaxanthin | Synthetic and natural astaxanthin increased pink skin pigmentation; esterified astaxanthin gave better results in terms of skin pigmentation | [22] |
Pagrus auratus | Astaxanthin; canthaxanthin; apocarotenoic acid ethyl ester; selected combinations of the above | Astaxanthin conferred greatest skin pigmentation | [11] |
Sparus aurata | Capsicum annuum; Daucus carota | Carotenoid supplementation from red pepper meal significantly increased skin carotenoids content; gilthead seabream failed to use carotenoids in carrot | [19] |
Pagrus pagrus | Procambarus clarkii meal; Chaceon affinis meal | P. clarkii meal was shown to be a more efficient pigment source for this species | [23] |
Pagrus pagrus | Astaxanthin; xanthophylls | Supplementation of synthetic carotenoids affected skin color indexes: higher values of redness, yellowness, and chroma recorded in the fish fed with astaxanthin | [24] |
Pagrus pagrus | Paramola cuvieri; Diadema africanum | P. cuvieri meal inclusion improved skin colouration; D. africanum meal promoted yellow coloration | [25] |
Sparus aurata | Phaeodactylum tricornutum | P. tricornutum biomass inclusion induced a more vivid yellow coloration of operculum | [26] |
Test Diets | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ingredients | CV | H10 | H20 | H40 | P20 | P40 | H10P30 | RC10 | MA10 |
Ingredient composition% | |||||||||
Plant-protein mix 1 | 69.0 | 60.5 | 52.6 | 36.6 | 52.5 | 35.4 | 35.4 | 58.8 | 58.3 |
Hermetia pupae meal 2 | - | 8.1 | 16.2 | 32.4 | - | - | 8.1 | - | - |
PBM 3 | - | - | - | - | 13.8 | 27.5 | 20.6 | - | - |
RCM 4 | - | - | - | - | - | - | - | 10.1 | - |
MA mix 5 | - | - | - | - | - | - | - | - | 11.6 |
Feeding stimulants 6 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
Fish oil | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 |
Veg oil mix 7 | 11.4 | 10.0 | 8.4 | 5.4 | 9.8 | 8.2 | 7.4 | 10.8 | 10.5 |
Wheat meal | 0.4 | 0.6 | 1.6 | 4.5 | 3.0 | 5.6 | 5.5 | 0.4 | |
Whole pea | 3.0 | 4.8 | 5.8 | 6.0 | 6.2 | 9.0 | 8.8 | 4.1 | 4.0 |
Vitamin, mineral suppl. 8 | 3.5 | 3.4 | 3.1 | 2.9 | 2.6 | 2.2 | 2.1 | 3.4 | 3.2 |
L-Lys | 0.5 | 0.5 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 |
DL-Met | 0.5 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 |
Proximate composition as fed (%) | |||||||||
Crude protein | 44.9 | 45.0 | 44.9 | 45.2 | 45.2 | 45.1 | 45.1 | 44.9 | 45.0 |
Crude fat | 20.1 | 20.0 | 20.1 | 20.1 | 20.3 | 20.2 | 19.9 | 19.9 | 20.1 |
Carotenoids concentration (mg kg−1 d.w.) | 4.6 | 3.5 | 3.5 | 3.5 | 3.3 | 2.4 | 2.7 | 5.4 | 234.2 |
Treatment | N | TL (cm) | W (g) | Lateral Pixels | Lateral SDD | Lateral% | Frontal Pixels | Frontal SDD | Frontal % |
---|---|---|---|---|---|---|---|---|---|
CV | 55 | 21.7 ± 1.0 a | 177.7 ± 22.4 ab | 4641 ± 327 | 147.5 ± 1.3 | 1.25 ± 0.08 | 6560 ± 664 | 76.8 ± 7.2 | 8.20 ± 0.83 |
H10 | 53 | 22.5 ± 1.0 cd | 186.8 ± 26.9 bc | 4042 ± 255 | 145.2 ± 1.2 | 1.09 ± 0.0.8 | 6956 ± 684 | 86.7 ± 7.6 | 8.69 ± 0.86 |
H20 | 54 | 23.0 ± 0.8 bd | 187.5 ± 22.0 bc | 4052 ± 376 | 152.8 ± 1.1 | 1.00 ± 0.0.9 | 6534 ± 529 | 73.1 ± 7.2 | 8.17 ± 0.66 |
H40 | 53 | 23.3 ± 1.0 bd | 192.2 ± 22.2 c | 4506 ± 303 | 150.1 ± 1.2 | 1.12 ± 0.07 | 6003 ± 619 | 81.2 ± 6.9 | 7.50 ± 0.77 |
P20 | 53 | 22.9 ± 0.9 bd | 191.6 ± 24.3 c | 2757 ± 221 | 148.6 ± 0.7 | 0.68 ± 0.06 | 8717 ± 619 | 78.6 ± 10.6 | 10.89 ± 0.90 |
P40 | 52 | 23.0 ± 0.8 bd | 192.3 ± 23.2 c | 2211 ± 191 | 153.6 ± 0.6 | 0.54 ± 0.04 | 7795 ± 679 | 82.1 ± 7.8 | 9.74 ± 0.85 |
H10P30 | 53 | 22.0 ± 0.8 ac | 190.7 ± 21.6 bc | 3214 ± 332 | 146.3 ± 0.9 | 0.85 ± 0.09 | 6386 ± 804 | 87.1 ± 7.9 | 7.98 ± 1.00 |
RC10 | 54 | 22.3 ± 0.8 c | 180.5 ± 23.9 abc | 4501 ± 335 | 147.1 ± 1.2 | 1.17 ± 0.07 | 9698 ± 722 | 79.9 ± 9.1 | 12.12 ± 1.57 |
MA10 | 54 | 22.2 ± 0.8 ac | 166.9 ± 19.8 a | 4517 ± 279 | 146.8 ± 1.3 | 1.16 ± 0.09 | 13,613 ± 1,255 | 81.1 ± 14.2 | 17.01 ± 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulcini, D.; Capoccioni, F.; Franceschini, S.; Martinoli, M.; Tibaldi, E. Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal. Animals 2020, 10, 2138. https://doi.org/10.3390/ani10112138
Pulcini D, Capoccioni F, Franceschini S, Martinoli M, Tibaldi E. Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal. Animals. 2020; 10(11):2138. https://doi.org/10.3390/ani10112138
Chicago/Turabian StylePulcini, Domitilla, Fabrizio Capoccioni, Simone Franceschini, Marco Martinoli, and Emilio Tibaldi. 2020. "Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal" Animals 10, no. 11: 2138. https://doi.org/10.3390/ani10112138
APA StylePulcini, D., Capoccioni, F., Franceschini, S., Martinoli, M., & Tibaldi, E. (2020). Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal. Animals, 10(11), 2138. https://doi.org/10.3390/ani10112138