In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. Broccoli Wastes Samples
2.3. Experimental Design and Samplings
2.3.1. Experiment 1: In Vitro Incubations of Broccoli Wastes
2.3.2. Experiment 2: Ruminal Fermentation and Degradability of Diets with Dried Broccoli
2.4. Chemical Analyses
2.5. Calculations and Statistical Analyses
3. Results and Discussion
3.1. Experiment 1. Characteristics of Broccoli Fractions
3.2. Experiment 2. Fermentation Parameters and Degradability of Diets with Dried Broccoli
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Production/Crops, Quantities by Country for Cauliflowers and Broccoli for 2018. Food and Agricultural Organization of the United Nations, Statistics Division (FAOSTAT). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 September 2020).
- Domínguez-Perles, R.; Martínez-Ballesta, M.C.; Carvajal, M.; García-Viguera, C.; Moreno, D.A. Broccoli-derived by-products a promising source of bioactive ingredients. J. Food Sci. 2010, 75, C383–C392. [Google Scholar] [CrossRef]
- De Evan, T.; Vintimilla, A.; Marcos, C.N.; Ranilla, M.J.; Carro, M.D. Evaluation of Brassica vegetables as potential feed for ruminants. Animals 2019, 9, 588. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Poultry World. Broccoli: Antimicrobial and Antioxidant Benefits in Broilers. Available online: https://www.poultryworld.net/Nutrition/Articles/2020/5/Broccoli-Antimicrobial-and-antioxidant-benefits-in-broilers-574999E/ (accessed on 6 September 2020).
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.-M. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [Green Version]
- Pignata, G.; Nicola, S. Profitability, marketing, and vegetable loss and waste. In Good Agricultural Practices for Greenhouse Vegetable Production in the South. East. European Countries—Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; FAO: Roma, Italy, 2017; pp. 245–267. [Google Scholar]
- Yi, X.W.; Yang, F.; Liu, J.X.; Wang, J.K. Effects of replacement of concentrate mixture by broccoli byproducts on lactating performance in dairy cows. Asian-Australas. J. Anim. Sci. 2015, 28, 1449–1453. [Google Scholar] [CrossRef]
- Mahmoud, Y.M. Using Broccoli Plant Wastes in Sheep Rations. Egypt. J. Nutr. Feeds 2016, 19, 277–287. [Google Scholar] [CrossRef]
- Panwar, V.S.; Sheoran Vinus, N.; Tewatia, B.S. Chemical composition and nutritive value of broccoli crop residue in goats. For. Res. 2017, 43, 50–53. [Google Scholar]
- Partovi, E.; Rouzbehan, Y.; Fazaeli, H.; Rezaei, J. Broccoli byproduct-wheat straw silage as a feed resource for fattening lambs. Transl. Anim. Sci. 2020, 4, txaa078. [Google Scholar] [CrossRef]
- Meneses, M.; Martínez-Marín, A.L.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ. Sci. Pollut. R. 2020, 27, 2919–2925. [Google Scholar] [CrossRef]
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling Process in Commercial Bales of Horticultural By-Products from Artichoke and Broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef]
- Megías, M.D.; Hernandez, F.; Madrid, J.; Martínez-Teruel, A. Feeding value, in vitro digestibility and in vitro gas production of different by-products for ruminant nutrition. J. Sci. Food Agric. 2002, 82, 567–572. [Google Scholar] [CrossRef]
- Marino, C.T.; Hector, B.; Rodrigues, P.M.; Borgatti, L.O.; Meyer, P.M.; Alves da Silva, E.J.; Ørskov, E.R. Characterization of vegetables and fruits potential as ruminant feed by in vitro gas production technique. Livestock Res. Rural Dev. 2010, 22, 168. Available online: http://www.lrrd.org/lrrd22/9/mari22168.htm (accessed on 25 July 2019).
- Durmic, Z.; Moate, P.J.; Jacobs, J.L.; Vadhanabhuti, J.; Vercoe, P.E. In vitro fermentability and methane production of some alternative forages in Australia. Anim. Prod. Sci. 2016, 56, 641–645. [Google Scholar] [CrossRef]
- García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals 2019, 9, 861. [Google Scholar] [CrossRef] [Green Version]
- De Evan, T.; Vintimilla, A.; Molina-Alcaide, E.; Ranilla, M.J.; Carro, M.D. Potential of Recycling Cauliflower and Romanesco Wastes in Ruminant Feeding: In Vitro Studies. Animals 2020, 10, 1247. [Google Scholar] [CrossRef]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). In Agricultural Handbook; Agriculture Handbook Nº 379; Agricultural Research Services: Washington, DC, USA, 1970. [Google Scholar]
- Gargallo, S.; Calsamiglia, S.; Ferret, A. Technical note: A modified three-step in vitro procedure to determine intestinal digestion of proteins. J. Anim. Sci. 2006, 84, 2163–2167. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; ISBN 0-935584-77-3. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 123–142. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 157, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Ramos, S.; Carro, M.D. The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition. Anim. Feed Sci. Technol. 2010, 158, 126–135. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® Users Guide, version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017; ISBN 1-59047-243-8. [Google Scholar]
- France, J.; Dijkstra, J.; Dhanoa, M.S.; Lopez, S.; Bannink, A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. Br. J. Nutr. 2000, 83, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranilla, M.J.; López, S.; Giráldez, F.J.; Valdés, C.; Carro, M.D. Comparative digestibility and digesta flow kinetics in two breeds of sheep. Anim. Sci. 1998, 66, 389–396. [Google Scholar] [CrossRef]
- Demeyer, D. Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA Editions: Paris, France, 1991; pp. 217–237. ISBN 2-7380-0345-1. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Madrid, J.; Megías, M.D.; Hernández, F. In vitro determination of ruminal dry matter and cell wall degradation, and production of fermentation end-products of various by-products. Anim. Res. 2002, 51, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.A.; Omer, H.A.A.; Ali, F.A.F.; El-Kady, R.I. Broccoli by-products as a partial replacement of Lucerne hay in rabbit diets containing different levels of protein. Am. Eurasian J. Agric. Environ. Sci. 2011, 11, 685–696. [Google Scholar]
- Muhammed Aziz, S.R.; Gharib, A.T.; Sadq, S.M. A comparative study between broccoli silages produced in three different locations in Sulaimani governorate. Jordan J. Agric. Sci. 2018, 14, 1–10. [Google Scholar]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H. Waste to worth: Vegetable wastes as animal feed. CAB Rev. 2016, 11, 1–26. [Google Scholar] [CrossRef]
- Campas-Baypoli, O.N.; Sánchez-Machado, D.I.; Bueno-Solano, C.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; López-Cervantes, J. Biochemical composition and physicochemical properties of broccoli flours. Int. J. Food Sci. Nutr. 2009, 60, 163–173. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Tirado-Noriega, L.G.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Cantú-Soto, E.U.; Núñez-Gastélum, J.A. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int. J. Food Sci. Technol. 2013, 48, 2267–2275. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Cone, J.W.; Van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I. In vitro cumulative gas production techniques: History, methodological consideration sand challenges. Anim. Feed Sci. Technol. 2005, 123–124, 9–30. [Google Scholar] [CrossRef]
- Wallace, R.J.; Cotta, M.A. The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Elsevier Applied Science: London, UK, 1988; ISBN 978-94-009-1453-7. [Google Scholar]
- Kamel, C.; Greathead, H.M.R.; Tejido, M.L.; Ranilla, M.J.; Carro, M.D. Effects of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Feed Sci. Technol. 2008, 145, 351–363. [Google Scholar] [CrossRef]
Sample | Dry Matter (%) | g/100 g Dry Matter | Non Structural Carbohydrates 2 | Lignin (% Neutral Detergent Fiber) | NDICP 3 (% Crude Protein) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Matter | Crude Protein | Ether Extract | Sugars | Neutral Detergent Fiber | Acid Detergent Fiber | Lignin | Hemicellulose | |||||
Broccoli stems | 9.41 | 89.3 | 23.2 | 2.91 | 33.4 | 22.3 | 15.0 | 1.46 | 7.27 | 31.3 | 6.49 | 5.77 |
Broccoli florets | 13.9 | 91.8 | 30.8 | 6.15 | 19.6 | 23.6 | 12.9 | 0.84 | 10.7 | 40.9 | 3.53 | 9.94 |
SEM 4 | 0.27 | 1.52 | 0.18 | 3.991 | 0.27 | 0.55 | 0.52 | 0.283 | 0.066 | 2.32 | 1.118 | 0.929 |
p = | 0.007 | 0.002 | 0.024 | <0.001 | 0.071 | 0.159 | 0.044 | 0.193 | <0.001 | 0.041 | 0.134 | 0.033 |
Reference feeds | ||||||||||||
Barley grains | 89.9 | 97.3 | 12.4 | 3.16 | 3.69 | 22.7 | 5.23 | 1.22 | 19.6 | 59.0 | 5.37 | 14.5 |
Wheat DDGS | 92.2 | 95.5 | 32.9 | 4.61 | 6.97 | 29.5 | 11.2 | 3.33 | 18.3 | 28.5 | 11.2 | 28.9 |
Sample | Gas Production Parameters 1 | Fermentation Parameters 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (mL/g) | c (%/h) | Lag (h) | AGPR (mL/h) | DMED (%) | Gas (mL) | pH | Total VFA (µmol) | mol/100 mol | Ac/Pr (mol/mol) | NH3-N (mg/L) | ||||
Acetate | Propionate | Butyrate | Minor VFA | |||||||||||
Broccoli stems | 246 | 5.66 | 3.05 | 8.08 | 45.3 | 37.4 | 6.60 | 1736 | 63.1 | 23.4 | 8.90 | 4.58 | 2.70 | 260 |
Broccoli florets | 228 | 4.84 | 2.98 | 6.60 | 42.2 | 34.3 | 6.70 | 1581 | 61.4 | 23.1 | 8.60 | 6.83 | 2.65 | 325 |
SEM 3 | 2.3 | 0.141 | 0.166 | 0.217 | 0.43 | 0.38 | 0.009 | 12.2 | 0.18 | 0.23 | 0.082 | 0.108 | 0.034 | 7.4 |
p = | <0.001 | <0.001 | 0.763 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.422 | 0.014 | <0.001 | 0.355 | <0.001 |
Reference feeds | ||||||||||||||
Barley grains | 352 | 5.04 | 2.85 | 10.5 | 43.3 | 49.9 | 6.60 | 1452 | 56.6 | 22.2 | 17.5 | 3.70 | 2.55 | 156 |
Wheat DDGS | 185 | 4.15 | 0.00 | 5.55 | 30.1 | 26.3 | 6.73 | 1311 | 53.4 | 33.3 | 6.34 | 6.96 | 1.61 | 223 |
Sample | Dry Matter Rumen Degradability (%) | Crude Protein Rumen Degradability (%) | Dry Matter Intestinal Digestibility (%) | Crude Protein Intestinal Digestibility (%) |
---|---|---|---|---|
Broccoli stems | 89.5 | 95.1 | 49.0 | 82.7 |
Broccoli florets | 89.2 | 85.3 | 67.8 | 90.1 |
SEM 2 | 0.85 | 1.09 | 0.82 | 0.92 |
p = | 0.829 | <0.001 | <0.001 | 0.001 |
Item | Diet | |||
---|---|---|---|---|
Control | BRO8 | BRO16 | BRO24 | |
Diet ingredients (g /100 g fresh matter) | ||||
Alfalfa hay | 40.0 | 40.0 | 40.0 | 40.0 |
Concentrate | 60.0 | 60.0 | 60.0 | 60.0 |
Concentrate ingredients (g /100 g fresh matter) | ||||
Broccoli | - | 8.0 | 16.0 | 24.0 |
Corn | 32.0 | 32.0 | 32.0 | 32.0 |
Barley | 30.0 | 30.0 | 30.0 | 30.0 |
Wheat | 15.0 | 12.0 | 10.0 | 7.5 |
Soybean meal 46% | 14.0 | 10.5 | 7.5 | 4.5 |
Wheat bran | 7.0 | 5.0 | 2.5 | 0.0 |
Calcium soap | 1.0 | 1.0 | 1.0 | 1.0 |
Calcium carbonate | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral/vitamin premix | 0.5 | 0.5 | 0.5 | 0.5 |
Chemical composition 1 | ||||
Dry matter | 89.7 | 91.0 | 91.0 | 91.0 |
Organic matter | 93.0 | 92.3 | 91.5 | 90.8 |
Crude protein | 16.1 | 16.1 | 16.1 | 16.1 |
Neutral detergent fiber | 31.5 | 31.6 | 31.6 | 31.7 |
Acid detergent fiber | 15.9 | 16.3 | 16.6 | 17.0 |
Ether extract | 4.18 | 4.29 | 4.37 | 4.47 |
Item | Diet | SEM 3 | p = | ||||
---|---|---|---|---|---|---|---|
Control | BRO8 | BRO16 | BRO24 | Lineal | Quadratic | ||
Gas production parameters 2 | |||||||
A (mL/g DM) | 280 a | 285 ab | 290 b | 282 a | 2.8 | 0.431 | 0.046 |
c (%/h) | 3.90 | 3.90 | 4.00 | 4.00 | 0.000 | 0.119 | 0.823 |
Lag (h) | 1.10 | 0.93 | 0.90 | 0.76 | 0.129 | 0.102 | 0.881 |
AGPR (mL/h) | 7.40 a | 7.57 ab | 7.91 b | 7.77 b | 0.107 | 0.014 | 0.195 |
DMED (%) | 39.7 | 39.3 | 39.6 | 40.6 | 0.32 | 0.061 | 0.075 |
Fermentative parameters (8-h incubation) | |||||||
Total volatile fatty acids (VFA; µmol per vial) | 1284 a | 1343 a | 1413 b | 1478 b | 20.5 | <0.001 | 0.887 |
Individual VFA (mol/ 100 mol) | |||||||
Acetate (Ac) | 61.1 a | 61.9 b | 62.7 c | 63.3 d | 0.13 | <0.001 | 0.592 |
Propionate (Pr) | 22.9 c | 22.5 bc | 22.2 b | 21.8 a | 0.12 | <0.001 | 0.730 |
Butyrate | 12.8 b | 12.6 b | 12.2 a | 12.0 a | 0.09 | <0.001 | 0.564 |
Minor VFA 4 | 3.11 b | 2.99 ab | 2.89 a | 2.91 a | 0.041 | 0.005 | 0.160 |
Ac/Pr (mol/mol) | 2.69 a | 2.78 b | 2.85 b | 2.93 c | 0.022 | <0.001 | 0.952 |
AFOM (%) 5 | 114 a | 119 a | 12 5b | 131 b | 1.8 | <0.001 | 0.905 |
CH4 (ml) | 6.90 | 6.69 | 6.98 | 7.27 | 0.201 | 0.157 | 0.255 |
CH4/VFA (mL/mmol) | 5.40 | 5.00 | 4.94 | 4.90 | 0.203 | 0.112 | 0.375 |
NH3-N (mg/L) | 143 a | 149 b | 157 bc | 163 c | 3.2 | 0.001 | 0.903 |
Fermentative parameters (24-h incubation) | |||||||
pH | 6.79 | 6.79 | 6.80 | 6.79 | 0.010 | 0.702 | 0.924 |
Total VFA (µmol per vial) | 2446 a | 2489 a | 2537 b | 2572 b | 13.4 | <0.001 | 0.787 |
Individual VFA (mol/ 100 mol) | |||||||
Acetate (Ac) | 61.5 a | 62.0 ab | 62.4 b | 62.5 b | 0.18 | <0.001 | 0.300 |
Propionate (Pr) | 18.7 b | 18.6 b | 18.5 ab | 18.2 a | 0.10 | 0.004 | 0.338 |
Butyrate | 15.5 b | 15.2 a | 15.0 a | 15.0 a | 0.15 | 0.026 | 0.287 |
Minor VFA 4 | 4.27 | 4.15 | 4.13 | 4.27 | 0.043 | 0.996 | 0.028 |
Ac/Pr (mol/mol) | 3.31 a | 3.36 ab | 3.41 bc | 3.46 c | 0.025 | <0.001 | 0.777 |
AFOM (%) 5 | 220 a | 224 ab | 228 bc | 231 c | 1.3 | <0.001 | 0.847 |
CH4 (mL) | 14.9 | 15.0 | 15.6 | 14.9 | 0.31 | 0.742 | 0.238 |
CH4/VFA (mL/mmol) | 6.10 | 6.05 | 6.14 | 5.79 | 0.141 | 0.222 | 0.306 |
NH3-N (mg/L) | 189 a | 195 b | 199 bc | 204 c | 2.6 | 0.002 | 0.865 |
Item 2 | Diet | SEM 3 | p = | ||||
---|---|---|---|---|---|---|---|
Control | BRO8 | BRO16 | BRO24 | Lineal | Quadratic | ||
Dry matter | |||||||
a (%) | 33.6 a | 43.8 b | 40.1 b | 44.1 b | 0.72 | 0.003 | 0.046 |
b (%) | 45.6 b | 40.4 a | 41.4 a | 39.0 a | 0.63 | 0.009 | 0.249 |
a + b (%) | 79..2 | 84.2 | 81.5 | 83.1 | 0.61 | 0.102 | 0.152 |
c (h−1) | 0.262 b | 0.114 a | 0.160 a | 0.121a | 0.0118 | 0.006 | 0.037 |
ED (%) | 72.7 | 73.0 | 72.8 | 72.9 | 0.77 | 0.939 | 0.897 |
Crude protein | |||||||
a (%) | 35.7 a | 46.0 c | 43.2 b | 52.5 d | 0.27 | < 0.001 | 0.326 |
b (%) | 55.9 c | 45.9 b | 46.0 b | 39.5 a | 0.60 | < 0.001 | 0.136 |
a + b (%) | 91.6 | 91.8 | 89.1 | 95.0 | 0.45 | 0.643 | 0.142 |
c (h−1) | 0.167 | 0.138 | 0.160 | 0.152 | 0.0055 | 0.626 | 0.295 |
ED (%) | 80.2 | 81.1 | 79.6 | 83.4 | 0.89 | 0.093 | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Evan, T.; Marcos, C.N.; Ranilla, M.J.; Carro, M.D. In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants. Animals 2020, 10, 1989. https://doi.org/10.3390/ani10111989
de Evan T, Marcos CN, Ranilla MJ, Carro MD. In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants. Animals. 2020; 10(11):1989. https://doi.org/10.3390/ani10111989
Chicago/Turabian Stylede Evan, Trinidad, Carlos N. Marcos, María José Ranilla, and María Dolores Carro. 2020. "In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants" Animals 10, no. 11: 1989. https://doi.org/10.3390/ani10111989
APA Stylede Evan, T., Marcos, C. N., Ranilla, M. J., & Carro, M. D. (2020). In Vitro and In Situ Evaluation of Broccoli Wastes as Potential Feed for Ruminants. Animals, 10(11), 1989. https://doi.org/10.3390/ani10111989