Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Cell Culture
2.3. Flow Cytometric Analysis
2.4. Quantitative Polymerase Chain Reaction
2.5. Conditioned Medium Preparation
2.6. Proteomic Analysis and CM Composition
2.7. Animal Use for Semen Collection
2.8. Determination of CM Optimal Concentration
2.9. Semen Cryopreservation and Thawing
2.10. Sperm Kinetic Parameters Analysis
2.11. Eosin–Nigrosin Staining
2.12. Aniline Blue Staining
2.13. Hypo-Osmotic Swelling Test
2.14. Acrosome Assessment Test
2.15. Mitochondria Activity Assessment
2.16. Statistical Analysis
3. Results
3.1. cAMSC and cAMSC-CM Characterization
3.1.1. Confirmation of the Surface Markers
3.1.2. Confirmation of Pluripotency Genes Expression
3.1.3. cAMSC-CM Proteome
3.2. Determination of cAMSC-CM Optimal Concentration
3.3. cAMSC-CM Effects on Sperm Cryopreservation
3.3.1. Motility and Velocity Parameters
3.3.2. Live/ Dead Count and Morphology Assessment
3.3.3. Chromatin Integrity
3.3.4. Acrosome and Membrane Integrity Assessment
3.3.5. Mitochondria Activity Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bencharif, D.; Dordas-Perpinya, M. Canine semen cryoconservation: Emerging data over the last 20 years. Reprod. Domest. Anim. 2020, 55 (Suppl. 2), 61–65. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, P.; Legare, C.; Leclerc, P.; Sullivan, R. Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil. Steril. 2006, 85, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Pena, F.J.; Nunez-Martinez, I.; Moran, J.M. Semen technologies in dog breeding: An update. Reprod. Domest. Anim. 2006, 41, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Sabido, O.; Durand, P.; Levy, R. Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol. Reprod. 2004, 71, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Ezzati, M.; Shanehbandi, D.; Hamdi, K.; Rahbar, S.; Pashaiasl, M. Influence of cryopreservation on structure and function of mammalian spermatozoa: An overview. Cell Tissue Bank. 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Hammerstedt, R.H.; Parks, J.E. Changes in sperm surfaces associated with epididymal transit. J. Reprod. Fertil. Suppl. 1987, 34, 133–149. [Google Scholar] [CrossRef]
- Gonzalez-Marin, C.; Gosalvez, J.; Roy, R. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells. Int. J. Mol. Sci. 2012, 13, 14026–14052. [Google Scholar] [CrossRef] [Green Version]
- Sicherle, C.C.; de Souza, F.F.; Freitas-Dell’Aqua, C.P.; Mothe, G.B.; Padovani, C.R.; Papa, F.O.; Lopes, M.D. Effects of the cryopreservation process on dog sperm integrity. Anim. Reprod. 2020, 17, e20190081. [Google Scholar] [CrossRef] [Green Version]
- Sudo, K.; Asoh, S.; Ohsawa, I.; Ozaki, D.; Yamagata, K.; Ito, H.; Ohta, S. The anti-cell death FNK protein protects cells from death induced by freezing and thawing. Biochem. Biophys. Res. Commun. 2005, 330, 850–856. [Google Scholar] [CrossRef]
- Kanitkar, M.; Bhonde, R.R. Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci. 2008, 82, 182–189. [Google Scholar] [CrossRef]
- Storey, B.T.; Noiles, E.E.; Thompson, K.A. Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology 1998, 37, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Cummins, J.M.; Jequier, A.M.; Kan, R. Molecular biology of human male infertility: Links with aging, mitochondrial genetics, and oxidative stress? Mol. Reprod. Dev. 1994, 37, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.V.; Soares, A.T.; Batista, A.M.; Almeida, F.C.; Nunes, J.F.; Peixoto, C.A.; Guerra, M.M. Vitamin E (Trolox) addition to Tris-egg yolk extender preserves ram spermatozoon structure and kinematics after cryopreservation. Anim. Reprod. Sci. 2013, 137, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.W.; Zhang, H.; Ikemoto, I.; Anderson, D.J.; Loughlin, K.R. Reactive oxygen species generation by seminal cells during cryopreservation. Urology 1997, 49, 921–925. [Google Scholar] [CrossRef]
- Sieme, H.; Oldenhof, H.; Wolkers, W.F. Mode of action of cryoprotectants for sperm preservation. Anim. Reprod. Sci. 2016, 169, 2–5. [Google Scholar] [CrossRef]
- Miguel-Jimenez, S.; del Alamo, M.M.R.; Alvarez-Rodriguez, M.; Hidalgo, C.O.; Pena, A.I.; Muino, R.; Rodriguez-Gil, J.E.; Mogas, T. In vitro assessment of egg yolk-, soya bean lecithin- and liposome-based extenders for cryopreservation of dairy bull semen. Anim. Reprod. Sci. 2020, 215, 106315. [Google Scholar] [CrossRef]
- Ugur, M.R.; Saber Abdelrahman, A.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arifiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci. 2019, 6, 268. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Prasad, J.; Srivastava, N.; Ghosh, S.J.B. Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreserv. Biobank. 2019, 17, 603–612. [Google Scholar] [CrossRef]
- Grandhaye, J.; Partyka, A.; Ligocka, Z.; Dudek, A.; Nizanski, W.; Jeanpierre, E.; Estienne, A.; Froment, P. Metformin Improves Quality of Post-Thaw Canine Semen. Animals 2020, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Tahir, M.Z.; Khalid, A.; Sattar, A.; Ahmad, N. Effect of cholesterol-loaded cyclodextrins on cryosurvival of dog spermatozoa. Reprod. Domest. Anim. 2017, 52 (Suppl. 2), 265–268. [Google Scholar] [CrossRef] [Green Version]
- Belala, R.; Fatmi, S.; Kaidi, R.; Iguer-Ouada, M. Benefits of cholesterol and α-tocopherol loaded cyclodextrins in dog semen cryopreservation. Revue. Méd. Vét. 2016, 167, 22–27. [Google Scholar]
- Cakici, C.; Buyrukcu, B.; Duruksu, G.; Haliloglu, A.H.; Aksoy, A.; Isik, A.; Uludag, O.; Ustun, H.; Subasi, C.; Karaoz, E. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. Biomed. Res. Int. 2013, 2013, 529589. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani, D.; Hassanshahi, M.A.; Tamadon, A.; Zare, S.; Keshavarz, S.; Rahmanifar, F.; Dianatpour, M.; Khodabandeh, Z.; Jahromi, I.; Tanideh, N.; et al. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J. Hum. Reprod. Sci. 2015, 8, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.I.; Alam, S.S. Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Res. Ther. 2014, 5, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavely, R.; Nurgali, K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- DeSantiago, J.; Bare, D.J.; Banach, K. Ischemia/Reperfusion injury protection by mesenchymal stem cell derived antioxidant capacity. Stem Cells Dev. 2013, 22, 2497–2507. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.S.; Joo, H.W.; Park, I.H.; Shen, G.Y.; Lee, Y.; Shin, J.H.; Kim, H.; Kim, K.S. Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS ONE 2017, 12, e0179972. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.M.; Kalamegam, G.; Pushparaj, P.N.; Matta, C.; Memic, A.; Khademhosseini, A.; Mobasheri, R.; Poletti, F.L.; Hoyland, J.A.; Mobasheri, A. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016, 99, 69–80. [Google Scholar] [CrossRef]
- Park, S.B.; Seo, M.S.; Kim, H.S.; Kang, K.S. Isolation and characterization of canine amniotic membrane-derived multipotent stem cells. PLoS ONE 2012, 7, e44693. [Google Scholar] [CrossRef]
- Zhao, P.; Ise, H.; Hongo, M.; Ota, M.; Konishi, I.; Nikaido, T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 2005, 79, 528–535. [Google Scholar] [CrossRef]
- Kim, E.Y.; Lee, K.B.; Kim, M.K. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep. 2014, 47, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghesi, J.; Ferreira Lima, M.; Mario, L.C.; de Almeida da Anunciacao, A.R.; Silveira Rabelo, A.C.; Giancoli Kato Cano da Silva, M.; Assunpcao Fernandes, F.; Miglino, M.A.; Oliveira Carreira, A.C.; Oliveira Favaron, P. Canine amniotic membrane mesenchymal stromal/stem cells: Isolation, characterization and differentiation. Tissue Cell 2019, 58, 99–106. [Google Scholar] [CrossRef]
- Pall, E.; Pop, R.A.; Ciupe, S.; Cenariu, M.; Groza, I.S. Canine Amniotic Membrane Derived Mesenchymal Stem Cells-Potential Sources for Regenerative Medicine. In “Agriculture for Life, Life for Agriculture” Conference Proceedings; Sciendo: Warsaw, Poland, 2018; pp. 461–464. [Google Scholar]
- Fauza, D. Amniotic fluid and placental stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 2004, 18, 877–891. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, G.D.; Carthew, J.; Lim, R.; Frith, J.E. Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cells Dev. 2017, 26, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Park, B.S.; Kim, H.K.; Park, J.S.; Kim, K.J.; Choi, J.S.; Chung, S.J.; Kim, D.D.; Sung, J.H. Evidence supporting antioxidant action of adipose-derived stem cells: Protection of human dermal fibroblasts from oxidative stress. J. Dermatol. Sci. 2008, 49, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.l.; Zhang, Y.g.; Chen, Q. Mesenchymal Stem Cell (MSC)-Derived Extracellular Vesicles: Potential Therapeutics as MSC Trophic Mediators in Regenerative Medicine. Anat. Rec. 2020, 303, 1735–1742. [Google Scholar] [CrossRef]
- Green, E.M.; Lee, R.T. Proteins and small molecules for cellular regenerative medicine. Physiol. Rev. 2013, 93, 311–325. [Google Scholar] [CrossRef]
- Gunawardena, T.N.A.; Rahman, M.T.; Abdullah, B.J.J.; Abu Kasim, N.H. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J. Tissue Eng. Regen. Med. 2019, 13, 569–586. [Google Scholar] [CrossRef]
- R Ra, K.; Oh, H.J.; Kim, G.A.; Kang, S.K.; Ra, J.C.; Lee, B.C. High Frequency of Intravenous Injection of Human Adipose Stem Cell Conditioned Medium Improved Embryo Development of Mice in Advanced Maternal Age through Antioxidant Effects. Animals 2020, 10, 978. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zeng, Z.C.; Sun, J.; Zeng, H.Y.; Huang, Y.; Zhang, Z.Y. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J. Radiat. Res. 2015, 56, 700–708. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Shibata, R.; Yamamoto, N.; Nishikawa, M.; Hibi, H.; Tanigawa, T.; Ueda, M.; Murohara, T.; Yamamoto, A. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci. Rep. 2015, 5, 16295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Santo, S.; Yang, Z.; von Ballmoos, M.W.; Voelzmann, J.; Diehm, N.; Baumgartner, I.; Kalka, C. Novel cell-free strategy for therapeutic angiogenesis: In vitro generated conditioned medium can replace progenitor cell transplantation. PLoS ONE 2009, 4, e5643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz-Icöz, S.; Li, K.; Loganathan, S.; Ding, Q.; Ruppert, M.; Radovits, T.; Brlecic, P.; Sayour, A.A.; Karck, M.; Szabó, G. Brain-dead donor heart conservation with a preservation solution supplemented by a conditioned medium from mesenchymal stem cells improves graft contractility after transplantation. Am. J. Transplant. 2020, 20, 2847–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, F.; Spelat, R.; Shaw, G.; Duffy, N.; Islam, M.N.; O’Shea, P.M.; O’Toole, D.; Howard, L.; Murphy, J. Survival/Adaptation of Bone Marrow-Derived Mesenchymal Stem Cells after Long-Term Starvation through Selective Processes. Stem Cells 2019, 37, 813–827. [Google Scholar] [CrossRef]
- Ando, Y.; Matsubara, K.; Ishikawa, J.; Fujio, M.; Shohara, R.; Hibi, H.; Ueda, M.; Yamamoto, A. Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone 2014, 61, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.Y.; Fang, X.; Kim, M.J.; Cho, J. Improved Post-Thaw Quality of Canine Semen after Treatment with Exosomes from Conditioned Medium of Adipose-Derived Mesenchymal Stem Cells. Animals 2019, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Abdillah, D.A.; Setyawan, E.M.N.; Oh, H.J.; Ra, K.; Lee, S.H.; Kim, M.J.; Lee, B.C. Iodixanol supplementation during sperm cryopreservation improves protamine level and reduces reactive oxygen species of canine sperm. J. Vet. Sci. 2019, 20, 79–86. [Google Scholar] [CrossRef]
- Setyawan, E.M.; Kim, M.J.; Oh, H.J.; Kim, G.A.; Jo, Y.K.; Lee, S.H.; Choi, Y.B.; Lee, B.C. Maintaining canine sperm function and osmolyte content with multistep freezing protocol and different cryoprotective agents. Cryobiology 2015, 71, 344–349. [Google Scholar] [CrossRef]
- Brito, L.F. Evaluation of stallion sperm morphology. Clin. Tech. Equine Pract. 2007, 6, 249–264. [Google Scholar] [CrossRef]
- Sati, L.; Huszar, G. Methodology of Aniline Blue Staining of Chromatin and the Assessment of the Associated Nuclear and Cytoplasmic Attributes in Human Sperm. In Spermatogenesis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 425–436. [Google Scholar]
- Pinto, C.R.; Kozink, D.M. Simplified hypoosmotic swelling testing (HOST) of fresh and frozen-thawed canine spermatozoa. Anim. Reprod. Sci. 2008, 104, 450–455. [Google Scholar] [CrossRef]
- Ren, F.; Fang, Q.; Feng, T.; Li, Y.; Wang, Y.; Zhu, H.; Hu, J. Lycium barbarum and Laminaria japonica polysaccharides improve Cashmere goat sperm quality and fertility rate after cryopreservation. Theriogenology 2019, 129, 29–36. [Google Scholar] [CrossRef]
- Fraser, L.; Dziekonska, A.; Strzezek, R.; Strzezek, J. Dialysis of boar semen prior to freezing-thawing: Its effects on post-thaw sperm characteristics. Theriogenology 2007, 67, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Petsche Connell, J.; Camci-Unal, G.; Khademhosseini, A.; Jacot, J.G. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng. Part B Rev. 2013, 19, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Pinheiro, A.; Lara, V.M.; Souza, A.F.; Casals, J.B.; Bressan, F.F.; Fantinato Neto, P.; Oliveira, V.C.; Martins, D.S.; Ambrosio, C.E. Characterization and Immunomodulation of Canine Amniotic Membrane Stem Cells. Stem Cells Cloning 2020, 13, 43–55. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.P.; Lin, G.; Xie, C.Q.; Nie, D.S.; Wang, Q.R.; Lu, G.X. In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines. Cell Biol. Int. 2005, 29, 654–661. [Google Scholar] [CrossRef]
- Park, K.S.; Pang, B.; Park, S.J.; Lee, Y.G.; Bae, J.Y.; Park, S.; Kim, I.; Kim, S.J. Identification and functional characterization of ion channels in CD34(+) hematopoietic stem cells from human peripheral blood. Mol. Cells 2011, 32, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Takemitsu, H.; Zhao, D.; Yamamoto, I.; Harada, Y.; Michishita, M.; Arai, T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet. Res. 2012, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, N.M.; Brandalise, V.; Zucconi, E.; Secco, M.; Strauss, B.E.; Zatz, M. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transpl. 2010, 19, 279–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trindade Hill, A.; Therrien, J.; Garcia, J.; Smith, L. Mesenchymal-like stem cells in canine ovary show high differentiation potential. Cell Proliferat. 2017, 50, e12391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, S.; Eichler, H.; Stoeve, J.; Kluter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24, 1294–1301. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, G.; Guan, F.; Chang, K.; Jiao, H.; Gao, W.; Xi, S.; Yang, B. Human amniotic membrane-derived mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles: The effect on neuron-like differentiation in vitro. Mol. Cell Biochem. 2011, 357, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Greenow, K.; Clarke, A.R. Controlling the stem cell compartment and regeneration in vivo: The role of pluripotency pathways. Physiol. Rev. 2012, 92, 75–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.M.; Han, S.H.; Coh, Y.R.; Jang, G.; Ra, J.C.; Kang, S.K.; Lee, H.W.; Youn, H.Y. Enhanced proliferation and differentiation of Oct4-and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp. Mol. Med. 2014, 46, e101. [Google Scholar] [CrossRef]
- Liu, T.M.; Wu, Y.N.; Guo, X.M.; Hui, J.H.; Lee, E.H.; Lim, B. Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev. 2009, 18, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.M.; Sreekumar, T.; Chandra, V.; Dubey, P.; Kumar, G.; Amarpal, S. Therapeutic potential of canine bone marrow derived mesenchymal stem cells and its conditioned media in diabetic rat wound healing. J. Stem Cell Res. Ther. 2013, 3, 2. [Google Scholar] [CrossRef]
- Iravani, K.; Sobhanmanesh, A.; Ashraf, M.J.; Hashemi, S.B.; Mehrabani, D.; Zare, S. The Healing Effect of Conditioned Media and Bone Marrow-Derived Stem Cells in Laryngotracheal Stenosis: A Comparison in Experimental Dog Model. World J. Plast. Surg. 2017, 6, 190–197. [Google Scholar]
- Nakamura, M.; Nishida, H.; Yoshizaki, K.; Akiyoshi, H.; Hatoya, S.; Sugiura, K.; Inaba, T. Canine mesenchymal stromal cell-conditioned medium promotes survival and neurite outgrowth of neural stem cells. J. Vet. Med. Sci. 2020, 82, 668–672. [Google Scholar] [CrossRef] [Green Version]
- Baharvand, H.; Heidari, M.; Ebrahimi, M.; Valadbeigi, T.; Salekdeh, G.H. Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell niche. Mol. Vis. 2007, 13, 1711–1721. [Google Scholar] [PubMed]
- Jha, K.N.; Shumilin, I.A.; Digilio, L.C.; Chertihin, O.; Zheng, H.; Schmitz, G.; Visconti, P.E.; Flickinger, C.J.; Minor, W.; Herr, J.C. Biochemical and structural characterization of apolipoprotein AI binding protein, a novel phosphoprotein with a potential role in sperm capacitation. Endocrinology 2008, 149, 2108–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, T.; Kodvawala, A.; Hui, D.Y. The receptor binding domain of apolipoprotein E is responsible for its antioxidant activity. Biochemistry 2005, 44, 7577–7582. [Google Scholar] [CrossRef]
- Arner, E.S.J.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Gasdaska, J.R.; Berggren, M.; Powis, G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995, 6, 1643–1650. [Google Scholar] [PubMed]
- Kuribayashi, Y.; Gagnon, C. Effect of catalase and thioredoxin addition to sperm incubation medium before in vitro fertilization on sperm capacity to support embryo development. Fertil. Steril. 1996, 66, 1012–1017. [Google Scholar] [CrossRef]
- Chen, Y.; Foote, R.H.; Brockett, C.C. Effect of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm. Cryobiology 1993, 30, 423–431. [Google Scholar] [CrossRef]
- Uysal, O.; Bucak, M.N. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 2007, 76, 383–390. [Google Scholar] [CrossRef]
- Sarıözkan, S.; Türk, G.; Cantürk, F.; Yay, A.; Eken, A.; Akçay, A. The effect of bovine serum albumin and fetal calf serum on sperm quality, DNA fragmentation and lipid peroxidation of the liquid stored rabbit semen. Cryobiology 2013, 67, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, C.H.; Anapolski, M.; Setiawan, I.; Lang, F.; Cooper, T.G. Effects of putative epididymal osmolytes on sperm volume regulation of fertile and infertile c-ros transgenic Mice. J. Androl. 2004, 25, 216–223. [Google Scholar] [CrossRef]
- Raad, G.; Lteif, L.; Lahoud, R.; Azoury, J.; Azoury, J.; Tanios, J.; Hazzouri, M.; Azoury, J. Cryopreservation media differentially affect sperm motility, morphology and DNA integrity. Andrology 2018, 6, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Ball, B.A. Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 2008, 107, 257–267. [Google Scholar] [CrossRef]
- Martins, A.D.; Agarwal, A.; Henkel, R. Sperm Cryopreservation. In In Vitro Fertilization; Springer: Berlin/Heidelberg, Germany, 2019; pp. 625–642. [Google Scholar]
- Koderle, M.; Aurich, C.; Schafer-Somi, S. The influence of cryopreservation and seminal plasma on the chromatin structure of dog spermatozoa. Theriogenology 2009, 72, 1215–1220. [Google Scholar] [CrossRef]
- Woolley, D.M.; Richardson, D.W. Ultrastructural injury to human spermatozoa after freezing and thawing. J. Reprod. Fertil. 1978, 53, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Ozkavukcu, S.; Erdemli, E.; Isik, A.; Oztuna, D.; Karahuseyinoglu, S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet. 2008, 25, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardini, A.; Hozbor, F.; Sanchez, E.; Fornes, M.W.; Alberio, R.H.; Cesari, A. Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage. Theriogenology 2011, 76, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Milardi, D.; Grande, G.; Vincenzoni, F.; Messana, I.; Pontecorvi, A.; De Marinis, L.; Castagnola, M.; Marana, R. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil. Steril. 2012, 97, 67–73.e1. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Cadavid, V.; Martins, J.A.M.; Moreno, F.B.; Andrade, T.S.; Santos, A.C.L.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Moura, A.A. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 2014, 82, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Druart, X.; Rickard, J.P.; Mactier, S.; Kohnke, P.L.; Kershaw-Young, C.M.; Bathgate, R.; Gibb, Z.; Crossett, B.; Tsikis, G.; Labas, V.; et al. Proteomic characterization and cross species comparison of mammalian seminal plasma. J. Proteom. 2013, 91, 13–22. [Google Scholar] [CrossRef]
- Durairajanayagam, D.; Singh, D.; Agarwal, A.; Henkel, R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia 2020, e13666. [Google Scholar] [CrossRef]
- Pena, A.I.; Barrio, F.; Quintela, L.A.; Herradon, P.G. Effect of different glycerol treatments on frozen-thawed dog sperm longevity and acrosomal integrity. Theriogenology 1998, 50, 163–174. [Google Scholar] [CrossRef]
- Gungor, S.; Ata, A.; Inanc, M.E.; Kastelic, J.P. Effect of various antioxidants and their combinations on bull semen cryopreservation. Turk. J. Vet. Anim. Sci. 2019, 43, 590–595. [Google Scholar] [CrossRef]
- Chai, R.R.; Chen, G.W.; Shi, H.J.; Wai-Sum, O.; Martin-DeLeon, P.A.; Chen, H. Prohibitin involvement in the generation of mitochondrial superoxide at complex I in human sperm. J. Cell Mol. Med. 2017, 21, 121–129. [Google Scholar] [CrossRef]
- Lenzi, A.; Picardo, M.; Gandini, L.; Dondero, F. Lipids of the sperm plasma membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum. Reprod. Update 1996, 2, 246–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.S.; Johannisson, A.; Wallgren, M.; Nagy, S.; Siqueira, A.P.; Rodriguez-Martinez, H. Flow cytometry for the assessment of animal sperm integrity and functionality: State of the art. Asian J. Androl. 2011, 13, 406–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leahy, T.; Gadella, B.M. New insights into the regulation of cholesterol efflux from the sperm membrane. Asian J. Androl. 2015, 17, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Saez, F.; Ouvrier, A.; Drevet, J.R. Epididymis cholesterol homeostasis and sperm fertilizing ability. Asian J. Androl. 2011, 13, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argraves, W.S.; Morales, C.R. Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct. Mol. Reprod. Dev. 2004, 69, 419–427. [Google Scholar] [CrossRef]
- Bitterman, P.B.; Rennard, S.I.; Adelberg, S.; Crystal, R.G. Role of Fibronectin as a Growth-Factor for Fibroblasts. J. Cell Biol. 1983, 97, 1925–1932. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Fang, X.; Kim, M.J.; Cho, J. Improved viability and fertility of frozen-thawed dog sperm using adipose-derived mesenchymal stem cells. Sci. Rep. UK 2020, 10, 1–10. [Google Scholar] [CrossRef]
Type of Proteins | Total Mole Percentage by Type of Proteins (%) |
---|---|
Intermediate filaments | 26 |
Cell metabolism | 21 |
Growth factors | 18 |
Extra-cellular matrix components | 15 |
Anti-oxidants | 13 |
Enzymes | 7 |
Concentration of CM (%) | Motility (%) | Viability (%) | 1 VCL (µm/s) | VSL (µm/s) | VAP (µm/s) | LIN (%) | STR (%) | ALH (µm) |
---|---|---|---|---|---|---|---|---|
0 | 67.3 ± 2.5 b | 80.8 ± 2.0 b | 74.2 ± 4.4 b | 21.4 ± 1.3 | 45.8 ± 2.0 | 29.0 ± 1.3 | 47.4 ± 1.7 | 4.1 ± 0.1 b |
5 | 72.4 ± 2.5 b | 83.9 ± 2.8 ab | 75.4 ± 6.7 ab | 20.4 ± 1.0 | 46.8 ± 3.1 | 29.0 ± 1.5 | 44.1 ± 1.4 | 4.2 ± 0.3 b |
10 | 79.2 ± 2.6 a | 90.1 ± 2.8 a | 87.2 ± 8.1 a | 23.8 ± 1.8 | 54.0 ± 4.0 | 31.2 ± 1.6 | 44.5 ± 1.2 | 4.8 ± 0.3 a |
15 | 72.1 ± 3.9 b | 86.8 ± 3.5 ab | 75.4 ± 6.7 ab | 24.6 ± 3.7 | 46.7 ± 4.0 | 31.6 ± 2.1 | 46.4 ± 2.3 | 4.1 ± 0.3 b |
Concentration of CM (%) | Motility (%) | Progressive Motility (%) | 1 VCL (µm/s) | VSL (µm/s) | VAP (µm/s) | LIN (%) | STR (%) | ALH (µm) |
---|---|---|---|---|---|---|---|---|
0 | 42.1 ± 2.1 b | 22.8 ± 3.4 | 81.5 ± 6.4 | 49.4 ± 5.6 | 57.2 ± 5.6 | 47.0 ± 3.4 b | 68.1 ± 2.4 | 3.1 ± 0.3 |
10 | 54.3 ± 1.9 a | 26.2 ± 4.2 | 74.5 ± 7.8 | 46.3 ± 7.1 | 53.3 ± 7.2 | 50.3 ± 3.1 a | 70.0 ± 2.2 | 2.8 ± 0.2 |
Concentration of CM (%) | Live Sperm Cells (%) | Coiled Tail (%) | Bent Tail (%) |
---|---|---|---|
0 | 43.9 ± 4.3 a | 3.0 ± 1.2 | 3.1 ± 0.7 a |
10 | 55.2 ± 3.0 b | 3.0 ± 1.8 | 1.8 ± 0.6 b |
Concentration of CM (%). | Aniline Blue Positive Spermatozoa (%) |
---|---|
0 | 34.0 ± 2.9 |
10 | 31.0 ± 3.1 |
Concentration of CM (%) | Intact Acrosome (%) | Intact Membrane (%) |
---|---|---|
0 | 74.0 ± 4.3 | 54.5 ± 2.9 b |
10 | 76.6 ± 4.0 | 66.5 ± 2.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahiddine, F.Y.; Kim, J.W.; Qamar, A.Y.; Ra, J.C.; Kim, S.H.; Jung, E.J.; Kim, M.J. Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals 2020, 10, 1899. https://doi.org/10.3390/ani10101899
Mahiddine FY, Kim JW, Qamar AY, Ra JC, Kim SH, Jung EJ, Kim MJ. Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals. 2020; 10(10):1899. https://doi.org/10.3390/ani10101899
Chicago/Turabian StyleMahiddine, Feriel Yasmine, Jin Wook Kim, Ahmad Yar Qamar, Jeong Chan Ra, Soo Hyun Kim, Eun Joong Jung, and Min Jung Kim. 2020. "Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters" Animals 10, no. 10: 1899. https://doi.org/10.3390/ani10101899
APA StyleMahiddine, F. Y., Kim, J. W., Qamar, A. Y., Ra, J. C., Kim, S. H., Jung, E. J., & Kim, M. J. (2020). Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals, 10(10), 1899. https://doi.org/10.3390/ani10101899