Effects of Copra Meal Inclusion Level in Growing-Finishing Pig Diets Containing β-Mannanase on Growth Performance, Apparent Total Tract Digestibility, Blood Urea Nitrogen Concentrations and Pork Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Experimental Design, Diets and Animal Management
2.3. Apparent Total Tract Digestibility
2.4. Blood Urea Nitrogen
2.5. Pork Quality and Thiobarbituric Acid Reactive Substance (TBARS) Assay
2.6. Data and Statistical Analyses
3. Results and Discussion
3.1. Growth Performance
3.2. Apparent Total Tract Aigestibility
3.3. Blood Urea Nitrogen Concentrations
3.4. Pork Quality (TBARS Value, pH, and Color of Loin)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saittagaroon, S.; Kawakishi, S.; Namiki, M. Characterrization of polysaccharides of copra meal. J. Sci. Food Agric. 1983, 34, 855–860. [Google Scholar] [CrossRef]
- Thorne, P.J.; Wiseman, J.; Cole, D.J.A.; Machin, D.H. Effects of level of inclusion of copra meal in balanced diets supplemented with synthetic amino acids on growth and fat deposition and composition in growing pigs fed ad libitum at a constant temperature of 25 °C. Anim. Feed Sci. Technol. 1992, 40, 31–40. [Google Scholar] [CrossRef]
- Thorne, P.J.; Wiseman, J.; Cole, D.J.A.; Machin, D.H. The digestible and metabolisable energy value of copra meals and their prediction from chemical composition. Anim. Prod. 1989, 49, 459–466. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Bach-Knudsen, K.E. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed. Sci. Tech. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Mee, J.M.L.; Brooks, C.C. Amino acid availability of coconut meal protein in swine. Nutr. Rep. Intl. 1973, 8, 261–269. [Google Scholar]
- Thorne, P.J.; Wiseman, J.; Cole, D.J.A.; Machin, D.H. Use of diets containing copra meal for growing/finishing pigs and their supplementation to improve animal performance. J. Trop. Agric. 1988, 65, 197–201. [Google Scholar]
- Buckeridge, M.S. Seed cell wall storage polysaccharides: Models to understand cell wall biosynthesis and degradation. Plant Physiol. 2010, 154, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainbird, A.L.; Low, A.G.; Zebrowska, T. Effect of guar gum on glucose and water absorption from isolated loops of jejunum in conscious growing pigs. Br. J. Nutr. 1984, 52, 489–498. [Google Scholar] [CrossRef]
- Nunes, C.S.; Malmlof, K. Effects of guar gum and cellulose on glucose absorption, hormonal release, and hepatic metabolism in the pig. Br. J. Nutr. 1992, 68, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Dale, N. Current Status of Feed Enzymes for Swine. Hemicell, Poultry and Swine Feed Enzyme; ChemGen Corp: Gaithersburg, MD, USA, 1997. [Google Scholar]
- McCleary, B.V. Synthesis of β-D-mannosidase and exo-β-D-mannanase. Method Enzymol. 1988, 160, 515–518. [Google Scholar] [CrossRef]
- Kim, H.J.; Nam, S.O.; Jeong, J.H.; Fang, L.H.; Yoo, H.B.; Yoo, S.H.; Hong, J.S.; Son, S.W.; Ha, S.H.; Kim, Y.Y. Various levels of copra meal supplementation with β-Mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economical analysis in growing-finishing pigs. J. Anim. Sci. Technol. 2017, 59, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.D.; Kim, Y.Y. Short Communication: Energy values and apparent total tract digestibility coefficients of copra meal and palm kernel meal fed to growing pigs. Can. J. Anim. Sci. 2013, 93, 517–521. [Google Scholar] [CrossRef]
- Son, A.R.; Park, C.S.; Kim, B.G. Determination and prediction of digestible and metabolizable energy concentrations in byproduct feed ingredients fed to growing pigs. Asian-Australas J. Anim. Sci. 2017, 30, 546–553. [Google Scholar] [CrossRef]
- Son, A.R.; Park, C.S.; Park, K.R.; Kim, B.G. Amino acid digestibility in plant protein sources fed to growing pigs. Asian-Australas J. Anim. Sci. 2019, 32, 1745–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierick, N.A. Biotechnology aids to improve feed and feed digestion: Enzyme and fermentation. Arch. Anim. Nutr. 1989, 3, 241–261. [Google Scholar] [CrossRef]
- Hsiao, H.-Y.; Anderson, D.M.; Dale, N.M. Levels of β-mannan in soybean meal. Poult Sci. 2006, 85, 1430–1432. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Stein, H.H. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. J. Anim. Sci. 2017, 95, 727–739. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T. Distillation method for the determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Lindemann, M.D.; Kim, B.G. Technical note: A method to estimate individual feed intake of group-fed pigs. J. Anim. Sci. 2007, 85, 972–975. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, B.G. Classification of copra meal and copra expellers based on ether extract concentration and prediction of energy concentrations in copra byproducts. J. Anim. Plant Sci. 2017, 27, 34–39. [Google Scholar]
- Jo, J.K.; Ingale, S.L.; Kim, J.S.; Kim, Y.W.; Kim, K.H.; Lohakare, J.D.; Lee, J.H.; Chae, B.J. Effects of exogenous enzyme supplementation to corn-soybean based or com- plex diets on growth performance, nutrient digestibility and blood metabolites in growing pigs. J. Anim. Sci. 2012, 89, 1795–1804. [Google Scholar] [CrossRef] [Green Version]
- O’Doherty, J.V.; McKeon, M.P. The use of expeller copra meal in grower and finisher pig diets. Livest. Prod. Sci. 2000, 67, 55–65. [Google Scholar] [CrossRef]
- Bach-Knudsen, K.E.; Jensen, B.B.; Hansen, I. Digestion of polysaccharides and other major components in the small and large intestine of pigs fed diets consisting of oat fractions rich in β-D-glucan. Br. J. Nutr. 1993, 70, 537–556. [Google Scholar] [CrossRef] [PubMed]
- Kuan, K.K.; Mak, T.K.; Alimon, R.; Farrell, D.J. Chemical composition and digestible energy of some feedstuffs determined with pigs in Malaysia. Trop. Anim. Prod. 1982, 7, 315–321. [Google Scholar]
- Schulze, H.; van Leewen, P.; Verstegen, M.W.A.; Huisman, J.; Souffrant, W.B.; Ahrens, F. Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. J. Anim. Sci. 1994, 72, 2362–2368. [Google Scholar] [CrossRef]
- Son, A.R.; Hyun, Y.; Htoo, J.K.; Kim, B.G. Amino acid digestibility in copra expellers and palm kernel meal expellers by growing pigs. Anim. Feed Sci. Technol. 2014, 187, 91–97. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Shoulders, J.; González-Vega, J.C.; Stein, H.H. Effects of using copra meal, palm kernel expellers, or palm kernel meal in diets for weanling pigs. Prof. Anim Sci. 2014, 30, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Stein, H.H.; Casas, G.A.; Abelilla, J.J.; Liu, Y.; Sulabo, R.C. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Technol. 2015, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Eggum, B.O. Blood urea measurement as a technique for assessing protein quality. Brit. J. Nutr. 1970, 24, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Whang, K.Y.; Easter, R.A. Blood urea nitrogen as an index of feed efficiency and lean growth potential in growing-finishing swine. Asian-Austr. J. Anim. Sci. 2000, 13, 811–816. [Google Scholar] [CrossRef]
- Babatunde, G.M.; Pond, W.G.; Wanker, E.F., Jr.; Chapman, P. Effects of dietary safflower oil or hydrogenated coconut oil on heart, liver, and adipose tissue fatty acid levels and physical carcass measurements of pigs fed a fat-free diet. J. Anim. Sci. 1968, 5, 1290–1295. [Google Scholar] [CrossRef]
- Kim, B.G.; Lee, J.H.; Jung, H.J.; Han, Y.K.; Park, K.M.; Han, I.K. Effect of partial replacement of soybean meal with palm kernel meal and copra meal on growth performance, nutrient digestibility and carcass characteristics of finishing pigs. Asian-Austr. J. Anim. Sci. 2001, 14, 821–830. [Google Scholar] [CrossRef]
- Jansen, M.; Nuyens, F.; Buyse, J.; Leleu, S.; Van Campenhout, L. Interaction between fat type and lysolecithin supplementation in broiler feeds. Poult. Sci. 2015, 94, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S.; McKeith, F.K. Consumer-rated quality characteristics as related to purchase intent of fresh pork. J. Food Sci. 1999, 64, 171–174. [Google Scholar] [CrossRef]
- Binder, B.S.; Ellis, M.; Brewer, M.S.; Campion, D.; Wilson, E.R.; McKeith, F.K. Effect of ultimate pH on the quality characteristics of pork. J. Muscle Foods. 2004, 15, 139–154. [Google Scholar] [CrossRef]
Item | Copra Meal |
---|---|
Dry matter | 90.3 |
Gross Energy, kcal/kg | 4088 |
Crude protein | 22.2 |
Either extract | 3.84 |
Crude fiber | 11.1 |
Ash | 5.8 |
Ingredients | Treatment 1 | ||||
---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | |
Corn, yellow dent | 69.40 | 69.18 | 64.29 | 59.42 | 54.44 |
SBM (48% CP) | 28.42 | 28.46 | 26.50 | 24.55 | 22.62 |
Copra meal | 0.00 | 0.00 | 6.00 | 12.00 | 18.00 |
Tallow | 0.10 | 0.18 | 0.88 | 1.57 | 2.25 |
L-Lysine HCl | 0.02 | 0.02 | 0.17 | 0.30 | 0.42 |
Tricalcium phosphate | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Limestone | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
Vitamin premix 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Trace mineral premix 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Polymyxin 4 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
β-mannanase 5 | 0.00 | 0.10 | 0.10 | 0.10 | 0.10 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Chemical composition 6 | |||||
ME 7, kcal/kg | 3300.54 | 3300.67 | 3300.51 | 3300.56 | 3300.47 |
Crude protein, % | 18.40 | 18.40 | 18.40 | 18.40 | 18.40 |
SID 8 lysine, % | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
SID 8 methionine, % | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Total Ca, % | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 |
STTD 8 P, % | 0.30 | 0.30 | 0.30 | 0.31 | 0.32 |
Total NSP 9, % | 11.49 | 11.48 | 13.50 | 15.51 | 17.52 |
β-mannan 9, % | 0.43 | 0.44 | 1.91 | 3.38 | 4.85 |
Ingredients | Treatment 1 | ||||
---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | |
Corn, yellow dent | 74.11 | 73.91 | 69.32 | 64.68 | 60.05 |
SBM (48% CP) | 21.09 | 21.12 | 19.13 | 17.14 | 15.16 |
Wheat bran | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Copra meal | 0.00 | 0.00 | 6.00 | 12.00 | 18.00 |
Soy oil | 0.08 | 0.15 | 0.71 | 1.29 | 1.86 |
L-Lysine HCl | 0.00 | 0.00 | 0.04 | 0.09 | 0.13 |
Tricalcium phosphate | 0.80 | 0.80 | 0.74 | 0.70 | 0.66 |
Limestone | 0.42 | 0.42 | 0.46 | 0.50 | 0.54 |
Vitamin premix 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Trace mineral premix 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
β-mannanase 4 | 0.00 | 0.10 | 0.10 | 0.10 | 0.10 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Chemical composition 5 | |||||
ME 6, kcal/kg | 3300.21 | 3300.16 | 3300.23 | 3300.25 | 3300.10 |
Crude protein, % | 14.50 | 14.50 | 14.50 | 14.50 | 14.50 |
SID 7 lysine, % | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
SID 7 methionine, % | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
Total Ca, % | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 |
STTD 7 P, % | 0.24 | 0.24 | 0.24 | 0.25 | 0.26 |
Total NSP 8, % | 11.62 | 11.61 | 13.64 | 15.67 | 17.70 |
β-mannan 8, % | 0.35 | 0.36 | 1.82 | 3.29 | 4.76 |
Ingredients | Treatment 1 | ||||
---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | |
Corn, yellow dent | 78.75 | 78.57 | 73.91 | 69.26 | 64.69 |
SBM (48% CP) | 14.51 | 14.55 | 12.58 | 10.60 | 8.59 |
Wheat bran | 5.04 | 5.04 | 5.04 | 5.04 | 5.04 |
Copra meal | 0.00 | 0.00 | 6.00 | 12.00 | 18.00 |
Soy oil | 0.10 | 0.16 | 0.74 | 1.32 | 1.88 |
L-Lysine HCl | 0.00 | 0.00 | 0.04 | 0.08 | 0.13 |
Tricalcium phosphate | 0.58 | 0.55 | 0.51 | 0.50 | 0.44 |
Limestone | 0.52 | 0.53 | 0.58 | 0.60 | 0.63 |
Vitamin premi 2 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Trace mineral premi 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
β-mannanas 4 | 0.00 | 0.10 | 0.10 | 0.10 | 0.10 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Chemical composition 5 | |||||
ME 6, kcal/kg | 3300.00 | 3300.13 | 3300.11 | 3300.12 | 3300.22 |
Crude protein, % | 12.80 | 12.80 | 12.80 | 12.80 | 12.80 |
SID 7 lysine, % | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |
SID 7 methionine, % | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Total Ca, % | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
STTD 7 P, % | 0.21 | 0.21 | 0.21 | 0.22 | 0.23 |
Total NSP 8, % | 11.52 | 11.51 | 13.54 | 15.57 | 17.60 |
β-mannan 8, % | 0.28 | 0.28 | 1.75 | 3.22 | 4.69 |
Items | Treatment 2 | SEM 3 | p-Values 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | NC vs. PC | Lin | Quad | ||
Body weight,kg | |||||||||
Initial | 26.80 | 27.02 | 27.02 | 27.00 | 26.98 | 0.131 | 0.89 | 0.29 | 0.69 |
6 weeks | 64.30 | 64.44 | 67.07 | 66.95 | 62.90 | 3.088 | 0.54 | 0.39 | 0.02 |
12 weeks | 101.52 | 104.12 | 106.23 | 104.31 | 99.22 | 2.400 | 0.21 | 0.05 | 0.06 |
ADG, g/d | |||||||||
0–6 weeks | 893 | 891 | 954 | 951 | 856 | 37.7 | 0.66 | 0.40 | 0.02 |
7–12 weeks | 866 | 923 | 911 | 869 | 845 | 35.4 | 0.62 | 0.13 | 0.87 |
0–12 weeks | 879 | 907 | 932 | 910 | 850 | 19.1 | 0.23 | 0.04 | 0.04 |
ADFI, g/d | |||||||||
0–6 weeks | 1933 | 1861 | 1949 | 1957 | 2015 | 113.1 | 0.65 | 0.28 | 0.87 |
7–12 weeks | 2868 | 2795 | 3020 | 3070 | 2886 | 99.8 | 0.21 | 0.47 | 0.06 |
0–12 weeks | 2400 | 2328 | 2485 | 2513 | 2451 | 90.5 | 0.61 | 0.33 | 0.24 |
G:F | |||||||||
0–6 weeks | 0.462 | 0.481 | 0.492 | 0.493 | 0.430 | 0.025 | 0.10 | 0.17 | 0.14 |
7–12 weeks | 0.303 | 0.333 | 0.302 | 0.284 | 0.292 | 0.014 | 0.61 | 0.04 | 0.15 |
0–12 weeks | 0.367 | 0.392 | 0.375 | 0.363 | 0.347 | 0.010 | 0.27 | 0.01 | 0.99 |
Items | Treatment 2 | SEM 3 | p-Values 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | NC vs. PC | Lin | Quad | ||
Apparent total tract digestibility, % | |||||||||
Dry matter | 88.95 | 88.38 | 89.67 | 89.52 | 89.53 | 0.140 | 0.89 | 0.78 | 0.65 |
Crude protein | 89.82 | 93.82 | 88.92 | 90.06 | 79.73 | 3.113 | 0.78 | 0.01 | 0.28 |
Ether extract | 68.00 | 77.59 | 79.97 | 81.65 | 64.07 | 9.499 | 0.41 | 0.24 | 0.18 |
Crude fiber | 68.32 | 80.11 | 68.35 | 75.39 | 50.18 | 7.984 | 0.66 | 0.04 | 0.36 |
Ash | 76.76 | 83.26 | 76.58 | 78.10 | 55.76 | 7.495 | 0.35 | 0.05 | 0.34 |
Items | Treatment 2 | SEM 3 | p-Values 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | NC vs. PC | Lin | Quad | ||
Blood urea nitrogen, mg/dL | |||||||||
3 week | 12.14 | 13.31 | 12.20 | 11.87 | 12.09 | 0.671 | 0.82 | 0.26 | 0.39 |
6 week | 11.36 | 10.05 | 10.76 | 10.54 | 12.12 | 0.825 | 0.21 | 0.13 | 0.60 |
12 week | 11.05 | 11.35 | 11.51 | 11.53 | 13.80 | 0.687 | 0.57 | 0.03 | 0.13 |
Items | Treatment 2 | SEM 3 | p-Values 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | NC vs. PC | Lin | Quad | ||
TBARS, mg malondialdehyde/kg | |||||||||
1 d post-mortem | 0.115 | 0.110 | 0.115 | 0.109 | 0.112 | 0.0022 | 0.21 | 0.92 | 0.72 |
3 d post-mortem | 0.119 | 0.114 | 0.115 | 0.118 | 0.121 | 0.0027 | 0.44 | 0.07 | 0.75 |
7 d post-mortem | 0.153 | 0.190 | 0.200 | 0.188 | 0.177 | 0.0146 | 0.60 | 0.48 | 0.51 |
Items | Treatment 2 | SEM 3 | p-Values 4 | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC (CM0) | CM6 | CM12 | CM18 | NC vs. PC | Lin | Quad | ||
pH | |||||||||
1 h post-mortem | 5.73 | 6.09 | 5.92 | 5.76 | 5.79 | 0.090 | 0.22 | 0.04 | 0.01 |
2 h post-mortem | 5.98 | 6.11 | 5.78 | 5.94 | 5.89 | 0.110 | 0.72 | 0.24 | 0.16 |
5 h post-mortem | 5.87 | 5.90 | 5.91 | 5.78 | 5.81 | 0.071 | 0.73 | 0.19 | 0.84 |
12 h post-mortem | 5.72 | 5.78 | 5.73 | 5.70 | 5.81 | 0.066 | 0.27 | 0.80 | 0.17 |
24 h post-mortem | 5.69 | 5.69 | 5.69 | 5.72 | 5.76 | 0.052 | 0.60 | 0.32 | 0.72 |
Hunter L 5 | |||||||||
1 h post-mortem | 48.46 | 49.64 | 49.49 | 49.52 | 48.51 | 0.869 | 0.41 | 0.31 | 0.55 |
2 h post-mortem | 48.00 | 49.54 | 48.64 | 49.45 | 49.21 | 0.941 | 0.85 | 0.95 | 0.56 |
5 h post-mortem | 47.62 | 48.16 | 49.47 | 48.49 | 48.06 | 1.198 | 0.79 | 0.73 | 0.32 |
12 h post-mortem | 46.07 | 48.57 | 49.22 | 47.29 | 47.76 | 1.279 | 0.80 | 0.45 | 0.94 |
24 h post-mortem | 45.93 | 48.87 | 50.00 | 48.21 | 47.83 | 1.455 | 0.86 | 0.50 | 0.64 |
Hunter a 5 | |||||||||
1 h post-mortem | 2.26 | 2.35 | 2.36 | 2.29 | 2.50 | 0.549 | 0.79 | 0.88 | 0.86 |
2 h post-mortem | 3.23 | 2.88 | 2.93 | 2.45 | 2.69 | 0.510 | 0.73 | 0.66 | 0.86 |
5 h post-mortem | 3.00 | 3.33 | 3.33 | 3.00 | 2.67 | 0.516 | 0.61 | 0.30 | 0.73 |
12 h post-mortem | 4.29 | 3.66 | 3.71 | 3.67 | 3.15 | 0.571 | 0.53 | 0.57 | 0.65 |
24 h post-mortem | 4.33 | 4.00 | 4.33 | 3.67 | 4.00 | 0.577 | 0.69 | 0.82 | 0.99 |
Hunter b 5 | |||||||||
1 h post-mortem | 6.35 | 6.01 | 5.97 | 5.69 | 5.74 | 0.342 | 0.90 | 0.50 | 0.89 |
2 h post-mortem | 6.66 | 6.18 | 5.92 | 5.92 | 5.83 | 0.382 | 0.86 | 0.54 | 0.82 |
5 h post-mortem | 6.83 | 6.36 | 6.26 | 6.22 | 6.26 | 0.386 | 0.95 | 0.85 | 0.87 |
12 h post-mortem | 7.06 | 6.67 | 6.58 | 6.58 | 6.43 | 0.329 | 0.75 | 0.65 | 0.94 |
24 h post-mortem | 7.34 | 6.88 | 6.80 | 6.64 | 6.72 | 0.272 | 0.83 | 0.63 | 0.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.-C.; Kim, D.H.; Hong, J.S.; Jang, Y.D.; Kim, Y.Y. Effects of Copra Meal Inclusion Level in Growing-Finishing Pig Diets Containing β-Mannanase on Growth Performance, Apparent Total Tract Digestibility, Blood Urea Nitrogen Concentrations and Pork Quality. Animals 2020, 10, 1840. https://doi.org/10.3390/ani10101840
Jang J-C, Kim DH, Hong JS, Jang YD, Kim YY. Effects of Copra Meal Inclusion Level in Growing-Finishing Pig Diets Containing β-Mannanase on Growth Performance, Apparent Total Tract Digestibility, Blood Urea Nitrogen Concentrations and Pork Quality. Animals. 2020; 10(10):1840. https://doi.org/10.3390/ani10101840
Chicago/Turabian StyleJang, Jae-Cheol, Dong Hyuk Kim, Jin Su Hong, Young Dal Jang, and Yoo Yong Kim. 2020. "Effects of Copra Meal Inclusion Level in Growing-Finishing Pig Diets Containing β-Mannanase on Growth Performance, Apparent Total Tract Digestibility, Blood Urea Nitrogen Concentrations and Pork Quality" Animals 10, no. 10: 1840. https://doi.org/10.3390/ani10101840
APA StyleJang, J.-C., Kim, D. H., Hong, J. S., Jang, Y. D., & Kim, Y. Y. (2020). Effects of Copra Meal Inclusion Level in Growing-Finishing Pig Diets Containing β-Mannanase on Growth Performance, Apparent Total Tract Digestibility, Blood Urea Nitrogen Concentrations and Pork Quality. Animals, 10(10), 1840. https://doi.org/10.3390/ani10101840