Evaluation of Growth Curve Models for Body Weight in American Mink
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Resources, Data Collection, and Editing
2.2. Growth Modelling and Evaluations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abramov, A. A taxonomic review of the genus Mustela (Mammalia, Carnivora). Zoosyst. Ross. 2000, 8, 357. [Google Scholar]
- Pilbeam, T.E.; Concannon, P.W.; Travis, H.F. The annual reproductive cycle of mink (Mustela vison). J. Anim. Sci. 1979, 48, 578–584. [Google Scholar] [CrossRef]
- Karimi, K.; Sargolzaei, M.; Plastow, G.S.; Wang, Z.; Miar, Y. Genetic and phenotypic parameters for litter size, survival rate, gestation length, and litter weight traits in American mink. J. Anim. Sci. 2018, 96, 2596–2606. [Google Scholar] [CrossRef]
- Norris, D.; Ngambi, J.; Benyi, K.; Makgahlele, M.; Shimelis, H.; Nesamvuni, E. Analysis of growth curves of indigenous male Venda and Naked Neck chickens. S. Afr. J. Anim. Sci. 2007, 37, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Fitzhugh, H., Jr. Analysis of growth curves and strategies for altering their shape. J. Anim. Sci. 1976, 42, 1036–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignon-Grasteau, S. Genetic parameters of growth curve parameters in male and female chickens. Br. Poult. Sci. 1999, 40, 44–51. [Google Scholar] [CrossRef] [PubMed]
- DeNise, R.K.; Brinks, J. Genetic and environmental aspects of the growth curve parameters in beef cows. J. Anim. Sci. 1985, 61, 1431–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinckel, A.; De Lange, C. Characterization of growth parameters needed as inputs for pig growth models. J. Anim. Sci. 1996, 74, 2021–2036. [Google Scholar] [CrossRef] [PubMed]
- Wurzinger, M.; Delgado, J.; Nürnberg, M.; Zárate, A.V.; Stemmer, A.; Ugarte, G.; Sölkner, J. Growth curves and genetic parameters for growth traits in Bolivian llamas. Livest. Prod. Sci. 2005, 95, 73–81. [Google Scholar] [CrossRef]
- Kohn, F.; Sharifi, A.; Simianer, H. Modeling the growth of the Goettingen minipig. J. Anim. Sci. 2007, 85, 84–92. [Google Scholar] [CrossRef]
- Topal, M.; Ozdemir, M.; Aksakal, V.; Yildiz, N.; Dogru, U. Determination of the best nonlinear function in order to estimate growth in Morkaraman and Awassi lambs. Small Rumin. Res. 2004, 55, 229–232. [Google Scholar] [CrossRef]
- Liu, Z.-y.; Ning, F.-y.; Du, Z.-h.; Yang, C.-s.; Fu, J.; Wang, X.; Bai, X.-j. Modelling growth of five different colour types of mink. S. Afr. J. Anim. Sci. 2011, 41, 116–125. [Google Scholar]
- Sørensen, K.; Grossman, M.; Koops, W. Multiphasic growth curves in mink (Mustela vison) selected for feed efficiency. Acta Agric. Scand. A Anim. Sci. 2003, 53, 41–50. [Google Scholar] [CrossRef]
- Bassett, C.F.; Llewellyn, L.M. The molting and fur growth pattern in the adult mink. Am. Midl. Nat. 1949, 42, 751–756. [Google Scholar] [CrossRef]
- Rong, M.; Tu, J.; Xu, J.; Zhang, Z.; Xing, X. Comparative study and fitting of growth curves in three mink resource populations. Anim. Husb. Vet. Med. 2017, 49, 13–16. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest: Tests in Linear mixed effects models (Version 2.0-29). Retrieved from CRAN. R-project. org/package= lme4. 2015. Available online: http://cran.uib.no/web/packages/lmerTest/lmerTest.pdf (accessed on 20 June 2019).
- Pearl, R. The Biology of Population Growth; Ayer: North Stratford, NH, USA, 1977. [Google Scholar]
- Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In A Letter to Francis Baily; Royal Society: London, UK, 1825; Volume 115, pp. 513–583. [Google Scholar]
- Von Bertalanffy, L. Quantitative laws in metabolism and growth. Q. Rev. Biol. 1957, 32, 217–231. [Google Scholar] [CrossRef]
- Brody, S.; Lardy, H.A. Bioenergetics and growth. J. Phys. Chem. 1946, 50, 168–169. [Google Scholar] [CrossRef]
- Murthy, D.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 505, pp. 1–17. [Google Scholar]
- Richards, O.; Kavanagh, A. The analysis of growing form. In Essays on Growth and Form; Clarendon Press: Oxford, UK, 1945; p. 188. [Google Scholar]
- Bridges, T.; Turner, L.; Stahly, T.; Usry, J.; Loewer, O. Modeling the physiological growth of swine part I: Model logic and growth concepts. Trans. ASAE 1992, 35, 1019–1028. [Google Scholar] [CrossRef]
- Wellock, I.; Emmans, G.; Kyriazakis. Describing and predicting potential growth in the pig. J. Anim. Sci. 2004, 78, 379–388. [Google Scholar] [CrossRef]
- Sariyel, V.; Aygun, A.; Keskin, I. Comparison of growth curve models in partridge. Poult. Sci. 2017, 96, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available online: https://www.R-project.org/ (accessed on 20 June 2019).
- Layton, H.N.; Rouvinen-Watt, K.I.; Iverson, S.J. Body composition in mink (Mustela vison) kits during 21–42 days postpartum using estimates of hydrogen isotope dilution and direct carcass analysis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2000, 126, 295–303. [Google Scholar] [CrossRef]
- Shirali, M.; Nielsen, V.H.; Moller, S.H.; Jensen, J. Longitudinal analysis of residual feed intake and BW in mink using random regression with heterogeneous residual variance. Animal 2015, 9, 1597–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Liu, L.; Song, X.; Cong, B.; Yang, F. Heritability and genetic trends for growth and fur quality traits in silver blue mink. Ital. J. Anim. Sci. 2017, 16, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Thirstrup, J.; Jensen, J.; Lund, M.S. Genetic parameters for fur quality graded on live animals and dried pelts of American mink (Neovison vison). J Anim. Breed. Genet. 2017, 134, 322–331. [Google Scholar] [CrossRef]
- Nielsen, V.H.; Møller, S.H.; Hansen, B.K.; Berg, P. Genetic parameters and effect of selection for body weight in lines of mink (Neovison vison) on ad libitum and restricted feeding. Acta Agric. Scand. A Anim. Sci. 2012, 62, 24–28. [Google Scholar] [CrossRef]
- Boudreau, L.; Benkel, B.; Astatkie, T.; Rouvinen-Watt, K. Ideal body condition improves reproductive performance and influences genetic health in female mink. Anim. Reprod. Sci. 2014, 145, 86–98. [Google Scholar] [CrossRef]
- Wang, X.-S.; Wu, J.; Yang, Y. Richards model revisited: Validation by and application to infection dynamics. J. Theor. Biol. 2012, 313, 12–19. [Google Scholar] [CrossRef]
- Zwietering, M.; Jongenburger, I.; Rombouts, F.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar]
- Zach, R.; Liner, Y.; Rigby, G.L.; Mayoh, K.R. Growth curve analysis of birds: The Richards model and procedural problems. Can. J. Zool. 1984, 62, 2429–2435. [Google Scholar] [CrossRef]
- Kaplan, S.; Gürcan, E.K. Comparison of growth curves using non-linear regression function in Japanese quail. J. Appl. Anim. Res. 2018, 46, 112–117. [Google Scholar] [CrossRef] [Green Version]
- García-Muñiz, J.; Ramírez-Valverde, R.; Núñez-Domínguez, R.; Hidalgo-Moreno, J. Dataset on growth curves of Boer goats fitted by ten non-linear functions. Data Brief 2019, 23, 103672. [Google Scholar] [CrossRef] [PubMed]
- Berg, P. Variation between and within populations of Mink: I. Weight and skin length. Acta Agric. Scand. A Anim. Sci. 1993, 43, 151–157. [Google Scholar] [CrossRef]
- Karimi, K.; Sargolzaei, M.; Plastow, G.S.; Wang, Z.; Miar, Y. Opportunities for genomic selection in American mink: A simulation study. PLoS ONE 2019, 14, e0213873. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Petersen, B.; Sahana, G.; Madsen, L.B.; Larsen, K.; Thomsen, B.; Bendixen, C.; Lund, M.S.; Guldbrandtsen, B.; Panitz, F. The first draft reference genome of the American mink (Neovison vison). Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Villumsen, T.M.; Asp, T.; Guldbrandtsen, B.; Sahana, G.; Lund, M.S. SNP markers associated with body size and pelt length in American mink (Neovison vison). BMC Genet. 2018, 19, 103. [Google Scholar] [CrossRef]
Diets | May 6– May 20 | May 21– Jun 5 | Jun 6– Jun 30 | July 1– Aug 13 | Aug 14– Sep 10 | Sep 11– Oct 31 | Nov 1– Dec 10 |
---|---|---|---|---|---|---|---|
Chemical compositions | |||||||
Dry matter (%) | 38.62 | 37.42 | 40.23 | 41.9 | 50.13 | 55.01 | 54.81 |
Fat (%) | 20.1 | 23.82 | 26.68 | 29.3 | 23.39 | 20.84 | 24.68 |
Protein (%) | 42.78 | 42.03 | 41.28 | 37.27 | 40.58 | 42.09 | 37.5 |
Ash (%) | 10.22 | 9.73 | 8.90 | 7.44 | 7.58 | 7.68 | 7.26 |
Metabolic energy * | |||||||
Gross Energy (Kcal/100g) | 413 | 434 | 453 | 470 | 432 | 419 | 437 |
%ME/DP | 39.6 | 37 | 34.9 | 30.3 | 35.9 | 38.4 | 32.8 |
%ME/DF | 41.6 | 46.9 | 50.4 | 53.4 | 46.3 | 42.6 | 48.3 |
%ME/DCHO | 18.8 | 16.1 | 14.7 | 16.3 | 17.8 | 19 | 18.9 |
Total (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Names | Equation | Numbers of Growth Curve Parameters | References |
---|---|---|---|
Logistic | 3 | [17] | |
Gompertz | 3 | [18] | |
von Bertalanffy | 3 | 3 | [19,25] |
Brody | 3 | [20] | |
Richards | 4 | [22] | |
Weibull | 4 | [21] | |
Bridges | 4 | [23] | |
Janoscheck | 4 | [24] | |
Third degree polynomial | BWt = d0 + d1 × t + d2 × t2 + d3 × t3 | - | - |
Fourth degree polynomial | BWt = d0 + d1 × t + d2 × t2 + d3 × t3 + d4 × t4 | - | - |
Week | Males | Females | Correlation with Harvest Body Length ** | ||||
---|---|---|---|---|---|---|---|
N | BW * (±SE) | Range | N | BW (±SE) | Range | ||
3 | 359 | 0.15 ± 0.02 | 0.10–0.20 | 354 | 0.13 ± 0.01 | 0.10–0.18 | 0.51 ± 0.03 |
7 | 359 | 0.56 ± 0.10 | 0.28–0.93 | 354 | 0.47 ± 0.08 | 0.23–0.73 | 0.44 ± 0.03 |
11 | 358 | 1.72 ± 0.15 | 1.08–2.33 | 352 | 1.15 ± 0.12 | 0.86–1.81 | 0.86 ± 0.02 |
15 | 358 | 2.67 ± 0.26 | 1.37–3.33 | 351 | 1.53 ± 0.19 | 1.11–2.78 | 0.88 ± 0.02 |
19 | 359 | 2.92 ± 0.33 | 1.37–3.63 | 352 | 1.63 ± 0.20 | 1.06–2.65 | 0.88 ± 0.02 |
23 | 358 | 2.89 ± 0.36 | 1.25–3.98 | 348 | 1.61 ± 0.21 | 1.09–2.71 | 0.88 ± 0.02 |
27 | 352 | 3.01 ± 0.35 | 1.74–3.95 | 341 | 1.62 ± 0.19 | 1.02–2.23 | 0.86 ± 0.02 |
31 | 347 | 3.10 ± 0.36 | 1.57–4.10 | 335 | 1.62 ± 0.19 | 1.02–2.26 | 0.89 ± 0.02 |
Model | Males | Females | ||
---|---|---|---|---|
AIC * | BIC ** | AIC | BIC | |
Logistic | 756.21 | 780.03 | −1576.61 | −1552.86 |
Gompertz | 872.47 | 896.29 | −1417.92 | −1394.18 |
von Bertalanffy | 947.17 | 970.1 | −1351.65 | −1327.90 |
Brody | 2358.16 | 2381.98 | −561.43 | −537.68 |
Richards | 758.15 | 787.93 | −1587.20 | −1557.52 |
Weibull | 782.68 | 812.45 | −1587.19 | −1557.51 |
Bridges | 782.68 | 812.45 | −1587.19 | −1557.51 |
Janoscheck | 782.68 | 812.45 | −1587.19 | −1557.51 |
Third degree polynomial | 1952.43 | 1982.21 | −931.44 | −901.76 |
Fourth degree polynomial | 990.04 | 1025.77 | −1399.12 | −1363.51 |
Model | Parameters * | Males | Females | ||
---|---|---|---|---|---|
Estimate (±SE) | 95% CI | Estimate (±SE) | 95% CI | ||
Logistic | α | 3.00 ± 0.01 | 2.99–3.02 | 1.64 ± 0 | 1.63–1.65 |
β | 10.33 ± 0.04 | 10.25–10.40 | 9.03 ± 0.05 | 8.93–9.12 | |
k | 2.31 ± 0.04 | 2.24–2.39 | 2.28 ± 0.04 | 2.20–2.37 | |
Gompertz | α | 3.05 ± 0.01 | 3.03–3.06 | 1.65 ± 0.01 | 1.64–1.66 |
β | 13.19 ± 0.56 | 12.07–14.45 | 10.55 ± 0.56 | 9.34–12.01 | |
k | 0.75 ± 0 | 0.74–0.75 | 0.73 ± 0 | 0.72–0.74 | |
von Bertalanffy | α | 3.07 ± 0.01 | 3.05–3.09 | 1.65 ± 0.01 | 1.64–1.66 |
β | 2.36 ± 0.7 | 2.21–2.51 | 2.61 ± 0.14 | 2.44–2.76 | |
k | 0.24 ± 0 | 0.24–0.25 | 0.29 ± 0.01 | 0.28–0.30 | |
Brody | α | 3.49 ± 0.03 | 3.44–3.54 | 1.77 ± 0.01 | 1.75–1.79 |
β | 1.35 ± 0.01 | 1.32–1.37 | 1.41 ± 0.02 | 1.38–1.45 | |
k | 0.09 ± 0 | 0.09–0.10 | 0.12 ± 0 | 0.12–0.13 | |
Richards | α | 3.00 ± 0.01 | 2.99–3.02 | 1.63 ± 0.01 | 1.62–1.64 |
β | 94.19 ± 31.66 | 47.82–192.14 | 247.62 ± 129.58 | 99.25–747.99 | |
k | 0.44 ± 0.02 | 0.40–0.48 | 0.53 ± 0.03 | 0.47–0.60 | |
m | 1.03 ± 0.11 | 0.82–1.26 | 1.58 ± 0.20 | 1.24–1.99 | |
Weibull | α | 2.98 ± 0.01 | 2.97–3.01 | 1.63 ± 0 | 1.62–1.64 |
β | 2.88 ± 0.02 | 2.84–2.92 | 1.53 ± 0.01 | 1.50–1.55 | |
k | −8.08 ± 0.16 | −8.42–7.75 | −7.32 ± 0.20 | −7.72–6.94 | |
m | 3.28 ± 0.07 | 3.15–3.42 | 3.11 ± 0.08 | 2.95–3.27 | |
Bridges | BW0 | 0.10 ± 0.02 | 0.07–0.14 | 0.10 ± 0.01 | 0.08–0.12 |
α | 2.88 ± 0.02 | 2.84–2.92 | 1.53 ± 0.01 | 1.50–1.55 | |
k | 7 × 10−5 ± 13 × 10−5 | 4 × 10−5–9 × 10−5 | 3 x 10−5 ± 5 × 10−5 | 2× 10−5–4 × 10−5 | |
m | 3.28 ± 0.07 | 3.15–3.42 | 3.11 ± 0.08 | 2.95–3.27 | |
Janoscheck | BW0 | 0.10 ± 0.02 | 0.07–0.14 | 0.10 ± 0.01 | 0.08–0.12 |
α | 2.98 ± 0.01 | 2.97–3.0 | 1.63 ± 0 | 1.62–1.64 | |
k | 3 × 10−5 ± 5 × 10−5 | 2 × 10−5–4 × 10−5 | 7 × 10−5 ± 13 × 10−5 | 4 × 10−5–10 × 10−5 | |
m | 3.28 ± 0.07 | 3.15–3.42 | 3.11 ± 0.08 | 2.95–3.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, D.N.; Miar, Y. Evaluation of Growth Curve Models for Body Weight in American Mink. Animals 2020, 10, 22. https://doi.org/10.3390/ani10010022
Do DN, Miar Y. Evaluation of Growth Curve Models for Body Weight in American Mink. Animals. 2020; 10(1):22. https://doi.org/10.3390/ani10010022
Chicago/Turabian StyleDo, Duy Ngoc, and Younes Miar. 2020. "Evaluation of Growth Curve Models for Body Weight in American Mink" Animals 10, no. 1: 22. https://doi.org/10.3390/ani10010022
APA StyleDo, D. N., & Miar, Y. (2020). Evaluation of Growth Curve Models for Body Weight in American Mink. Animals, 10(1), 22. https://doi.org/10.3390/ani10010022