Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Data Collection
2.2. DNA Extraction and Single Nucleotide Polymorphisms Genotyping
2.3. Statistical Analysis
2.3.1. Phenotypic and Gene Frequency Descriptive Statistics
2.3.2. EBV Calculation
2.3.3. Two Association Analysis Methods
3. Results
3.1. Phenotypic Variation of NBA and TNB within Seven Pig Populations
3.2. Genetic Polymorphism in Ten Pig Populations
3.3. Association Analysis of rs339939442 in the AHR Gene with Litter Size
3.3.1. Association Analysis of rs339939442 in the AHR Gene with NBA/TNB
3.3.2. Association Analysis between rs339939442 in the AHR Gene and EBVNBA/EBVTNB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schneider, J.F.; Rempel, L.A.; Rohrer, G.A. Genome-wide association study of swine farrowing traits. Part I: Genetic and genomic parameter estimates. J. Anim. Sci. 2012, 90, 3353–3359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, J.; Wang, L.; Li, Z.; Pang, P.; Li, F. SLA-11 mutations are associated with litter size traits in Large White and Chinese DIV pigs. Anim. Biotechnol. 2019, 30, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.Q.; Pan, H.; Huang, S.H.; Liu, C.; Niu, X.; Li, S.; Wang, J.F. Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig. J. Anim. Physiol. Anim. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- National Livestock and Genetic Resources Commission. Chinese Pig Breed Records; Shanghai Science and Technology Press: Shanghai, China, 1986. [Google Scholar]
- China National Commission of Animal Genetic Resources. Animal Genetic Resources in China Pigs; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Bidanel, J.P.; Bonneau, M.; Pointillart, A.; Gruand, J.; Mourot, J.; Demade, I. Effects of exogenous porcine somatotropin (pST) administration on growth performance, carcass traits, and pork meat quality of Meishan, Pietrain, and crossbred gilts. J. Anim. Sci. 1991, 69, 3511–3522. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Choi, C.B. Genetic structure of Korean native pig using microsatellite markers. Korean J. Genet. 2002, 24, 1–7. [Google Scholar]
- Bosse, M.; Megens, H.J.; Frantz, L.A.; Madsen, O.; Larson, G.; Paudel, Y.; Duijvesteijn, N.; Harlizius, B.; Hagemeijer, Y.; Crooijmans, R.P. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nat. Commun. 2014, 5, 4392. [Google Scholar] [CrossRef] [Green Version]
- Walisser, J.A.; Bunger, M.K.; Glover, E.; Bradfield, C.A. Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proc. Natl. Acad. Sci. USA 2004, 101, 16677–16682. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Cao, Z.; Wang, X. Role of aryl hydrocarbon receptor in cancer. Biochim. Biophys. Acta 2013, 1836, 197–210. [Google Scholar] [CrossRef]
- Baba, T.; Mimura, J.; Nakamura, N.; Harada, N.; Yamamoto, M.; Morohashi, K.; Fujii-Kuriyama, Y. Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction. Mol. Cell. Biol. 2005, 25, 10040–10051. [Google Scholar] [CrossRef] [Green Version]
- Jablonska, O.; Piasecka, J.; Ostrowska, M.; Sobocinska, N.; Wasowska, B.; Wasowka, B.; Ciereszko, R.E. The expression of the aryl hydrocarbon receptor in reproductive and neuroendocrine tissues during the estrous cycle in the pig. Anim. Reprod. Sci. 2011, 126, 221–228. [Google Scholar] [CrossRef]
- Wang, B.L.; Li, P.; Zhou, W.D.; Gao, C.; Liu, H.; Li, H.X.; Niu, P.P.; Zhang, Z.P.; Li, Q.; Zhou, J.; et al. Association of twelve candidate gene polymorphisms with the intramuscular fat content and average backfat thickness of Chinese Suhuai pigs. Animals 2019, 9, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Li, P.H.; Zhu, M.X.; He, L.C.; Sui, S.P.; Gao, S.; Su, G.S.; Ding, N.S.; Huang, Y.; Lu, Z.Q. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal 2018, 12, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Madsen, P.; Sørensen, P.; Su, G.; Damgaard, L.H.; Thomsen, H.; Labouriau, R. DMU—A Package for Analyzing Multivariate Mixed Models in quantitative Genetics and Genomics. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Minas Gerais, Brazil, 13–18 August 2006. [Google Scholar]
- Chauhan, V.P.S. Dairy sire evaluation fitting some of the herd-year-season effects as random. Livest. Prod. Sci. 1987, 16, 117–130. [Google Scholar] [CrossRef]
- Sanchez-Davila, F.; Bernal-Barragan, H.; Padilla-Rivas, G.; Del Bosque-Gonzalez, A.S.; Vazquez-Armijo, J.F.; Ledezma-Torres, R.A. Environmental factors and ram influence litter size, birth, and weaning weight in Saint Croix hair sheep under semi-arid conditions in Mexico. Trop. Anim. Health Prod. 2015, 47, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.; Su, G.; Lund, M.S.; Madsen, P. Selection for increased number of piglets at d 5 after farrowing has increased litter size and reduced piglet mortality. J. Anim. Sci. 2013, 91, 2575–2582. [Google Scholar] [CrossRef]
- Ajayi, B.; Akinokun, J. Evaluation of some litter traits and heritability estimates of Nigerian Indigenous pigs. Int. J. Appl. Agric. Apic. Res. 2013, 9, 113–119. [Google Scholar]
- Rothschild, M.F.; Messer, L.; Day, A.; Wales, R.; Short, T.; Southwood, O.; Plastow, G. Investigation of the 1retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs. Mamm. Genome 2000, 11, 75–77. [Google Scholar] [CrossRef]
- Chirulli, V.; Marvasi, L.; Zaghini, A.; Fiorio, R.; Longo, V.; Gervasi, P.G. Inducibility of AhR-regulated CYP genes by beta-naphthoflavone in the liver, lung, kidney and heart of the pig. Toxicology 2007, 240, 25–37. [Google Scholar] [CrossRef]
- Khorram, O.; Garthwaite, M.; Golos, T. Uterine and ovarian aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mRNA expression in benign and malignant gynaecological conditions. Mol. Hum. Reprod. 2002, 8, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Fischer, B. Epithelial cells in the oviduct and vagina and steroid-synthesizing cells in the rabbit ovary express AhR and ARNT. Anat. Embryol. 2003, 207, 9–18. [Google Scholar] [CrossRef]
- Barnett, K.R.; Tomic, D.; Gupta, R.K.; Miller, K.P.; Meachum, S.; Paulose, T.; Flaws, J.A. The aryl hydrocarbon receptor affects mouse ovarian follicle growth via mechanisms involving estradiol regulation and responsiveness. Biol. Reprod. 2007, 76, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Benedict, J.C.; Lin, T.M.; Loeffler, I.K.; Peterson, R.E.; Flaws, J.A. Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicol. Sci. 2000, 56, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.K. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology. J. Comp. Physiol. B 2005, 175, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Gregoraszczuk, E.L.; Zabielny, E.; Ochwat, D. Aryl hydrocarbon receptor (AhR)-linked inhibition of luteal cell progesterone secretion in 2,3,7,8-tetrachlorodibenzo-p-dioxin treated cells. J. Physiol. Pharmacol. 2001, 52, 303–311. [Google Scholar]
- Robles, R.; Morita, Y.; Mann, K.K.; Perez, G.I.; Yang, S.; Matikainen, T.; Sherr, D.H.; Tilly, J.L. The aryl hydrocarbon receptor, a basic helix-loop-helix transcription factor of the PAS gene family, is required for normal ovarian germ cell dynamics in the mouse. Endocrinology 2000, 141, 450–453. [Google Scholar] [CrossRef]
- He, L.C.; Li, P.H.; Ma, X.; Sui, S.P.; Gao, S.; Kim, S.W.; Gu, Y.Q.; Huang, Y.; Ding, N.S.; Huang, R.H. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim. Genet. 2016, 48, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Desautes, C.; Sarrieau, A.; Caritez, J.C.; Mormede, P. Behavior and pituitary-adrenal function in large white and Meishan pigs. Domest. Anim. Endocrinol. 1999, 16, 193–205. [Google Scholar] [CrossRef]
- Qu, L.; Li, K.Z.; Wang, X.X. Effects of polymorphisms of FSHb gene on reproductive performances in Suhuai pigs. Anim. Husb. Vet. Med. 2008, 2, 24–28. [Google Scholar]
- Jie, C. Polymorphisms of seven functional genes and their correlation to production performance in Suhuai pigs. J. Nanjing Agric. Univ. 2008, 31, 102–106. [Google Scholar]
- Fang, Y.Y.; Ma, X.; Yu, Y.; Li, Q.; Wang, W.Q.; Wang, L.W.; Ren, E.D.; Li, P.L.; Huang, R.H. Polymorphism analysis of genes ESR1 and FSHβ in Suhuai pigs and correlation analysis with reproductive traits. Anim. Husb. Vet. Med. 2017, 49, 1–5. [Google Scholar]
- Walton, J.R. Pigs: A handbook to the breeds of the world valerie porter mountfield, East Sussex Helm Information Ltd. Br. Vet. J. 1994, 150, 422. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, Y.; Feng, W.; Du, H.; Yu, J.; Kang, H.; Zheng, X.; Wang, Z.; Liu, G.E.; Ernst, C.W.; et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. GigaScience 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Shimba, S.; Watabe, Y. Crosstalk between the AHR signaling pathway and circadian rhythm. Biochem. Pharmacol. 2009, 77, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Aftabi, Y.; Hosseinzadeh Colagar, A.; Mehrnejad, F.; Seyedrezazadeh, E.; Moudi, E. Aryl hydrocarbon receptor gene transitions (c.-742C>T; c.1661G>A) and idiopathic male infertility: A case-control study with in silico and meta-analysis. Environ. Sci. Pollut. Res. Int. 2017, 24, 20599–20615. [Google Scholar] [CrossRef] [PubMed]
- Drogemuller, C.; Hamann, H.; Distl, O. Candidate gene markers for litter size in different German pig lines. J. Anim. Sci. 2001, 79, 2565–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Breed | Nsow | Nparity | Range 1 | Mean ± SE | CV% |
---|---|---|---|---|---|---|
Chinese indigenous pigs | EHL | 571 | 2343 | 6–25 | 13.30 ± 0.06 | 23.05 |
MS | 395 | 1684 | 6–23 | 13.11 ± 0.07 | 20.32 | |
Chinese cultivated breed | SH | 835 | 2366 | 6–17 | 9.88 ± 0.04 | 20.75 |
Chinese lean meat pigs | TPE-L | 3023 | 9903 | 6–21 | 10.58 ± 0.03 | 23.75 |
Western lean meat pigs | CAN-Y | 1235 | 2992 | 6–26 | 14.23 ± 0.06 | 23.06 |
USA-Y | 365 | 1215 | 6–18 | 10.31 ± 0.07 | 23.25 | |
FRA-Y | 359 | 697 | 6–19 | 11.94 ± 0.10 | 21.99 |
Category | Breed | Nsow | Nparity | Range 1 | Mean ± SE | CV% |
---|---|---|---|---|---|---|
Chinese indigenous pigs | EHL | 574 | 2367 | 6–29 | 13.90 ± 0.07 | 23.81 |
MS | 396 | 1708 | 6–24 | 13.83 ± 0.07 | 21.14 | |
Chinese Cultivated breed | SH | 845 | 2465 | 6–20 | 10.76 ± 0.05 | 20.62 |
Chinese lean meat pigs | TPE-L | 3095 | 10,264 | 6–26 | 11.20 ± 0.03 | 24.26 |
Western lean meat pigs | CAN-Y | 1252 | 3101 | 6–28 | 15.76 ± 0.06 | 22.50 |
USA-Y | 365 | 1236 | 6–19 | 10.78 ± 0.07 | 23.48 | |
FRA-Y | 359 | 704 | 6–20 | 12.26 ± 0.10 | 20.60 |
Category | Breed | N | Genotype Frequency | Allele Frequency | |||
---|---|---|---|---|---|---|---|
GG (n) | GT (n) | TT (n) | G | T | |||
Chinese Jianghai pigs | EHL | 363 | 0.791 (287) | 0.198 (72) | 0.011 (4) | 0.890 | 0.110 |
MS | 273 | 0.740 (202) | 0.245 (67) | 0.015 (4) | 0.863 | 0.137 | |
BMX | 32 | 0.875 (28) | 0.125 (4) | 0 (0) | 0.938 | 0.062 | |
South China pigs | WZS | 20 | 0.950 (19) | 0.050 (1) | 0 (0) | 0.975 | 0.025 |
JXH | 62 | 0.984 (61) | 0.016 (1) | 0 (0) | 0.992 | 0.008 | |
Chinese cultivated breed | SH | 314 | 0.634 (199) | 0.334 (105) | 0.032 (10) | 0.801 | 0.199 |
Chinese lean meat pigs | TPE-L | 351 | 0.142 (50) | 0.490 (172) | 0.368 (129) | 0.387 | 0.613 |
Western lean meat pigs | CAN-Y | 425 | 0.301 (128) | 0.525 (223) | 0.174 (74) | 0.564 | 0.436 |
USA-Y | 345 | 0.751 (259) | 0.229 (79) | 0.020 (7) | 0.865 | 0.135 | |
FRA-Y | 359 | 0.418 (150) | 0.485 (174) | 0.097 (35) | 0.660 | 0.340 |
Breed | Genotype | N | NBA | TNB | ||
---|---|---|---|---|---|---|
Mean ± SE | p | Mean ± SE | p | |||
EHL | GG | 287 | 13.63 ± 0.17 | 0.359 | 14.55 ± 0.20 | 0.613 |
GT | 72 | 13.70 ± 0.24 | 14.69 ± 0.27 | |||
TT | 4 | 14.71 ± 0.76 | 15.24 ± 0.81 | |||
MS | GG | 202 | 12.78 ± 0.10 | 0.419 | 13.62 ± 0.16 | 0.308 |
GT | 67 | 13.04 ± 0.18 | 13.96 ± 0.23 | |||
TT | 4 | 13.06 ± 0.75 | 13.90 ± 0.84 | |||
SH | GG | 199 | 9.63 ± 0.17 b | 0.003 | 10.69 ± 0.20 b | 0.004 |
GT | 105 | 9.97 ± 0.20 a,b | 11.14 ± 0.22 a | |||
TT | 10 | 10.82 ± 0.42 a | 11.66 ± 0.45 a,b | |||
TPE-L | GG | 50 | 11.15 ± 0.32 | 0.968 | 11.51 ± 0.33 | 0.726 |
GT | 172 | 11.15 ± 0.24 | 11.72 ± 0.25 | |||
TT | 129 | 11.10 ± 0.26 | 11.75 ± 0.26 | |||
CAN-Y | GG | 128 | 14.68 ± 0.27 | 0.558 | 16.62 ± 0.31 | 0.654 |
GT | 223 | 14.91 ± 0.23 | 16.86 ± 0.26 | |||
TT | 74 | 14.98 ± 0.31 | 16.82 ± 0.34 | |||
USA-Y | GG | 259 | 10.23 ± 0.10 | 0.595 | 10.69 ± 0.14 | 0.501 |
GT | 79 | 10.37 ± 0.16 | 10.90 ± 0.20 | |||
TT | 7 | 9.90 ± 0.53 | 10.36 ± 0.60 | |||
FRA-Y | GG | 150 | 11.66 ± 0.29 | 0.076 | 12.03 ± 0.24 | 0.073 |
GT | 174 | 12.13 ± 0.29 | 12.49 ± 0.23 | |||
TT | 35 | 12.14 ± 0.42 | 12.49 ± 0.37 |
Breed | Genotype | N | NBA | TNB | ||
---|---|---|---|---|---|---|
Mean ± SE | p | Mean ± SE | p | |||
JX-EHL | GG | 122 | −0.337 ± 0.060 | 0.176 | −0.327 ± 0.057 | 0.222 |
GT | 47 | −0.124 ± 0.092 | −0.134 ± 0.091 | |||
TT | 3 | −0.084 ± 1.068 | −0.221 ± 0.912 | |||
KS-MS | GG | 99 | 0.021 ± 0.028 | 0.398 | 0.019 ± 0.037 | 0.189 |
GT | 51 | 0.069 ± 0.047 | 0.132 ± 0.065 | |||
TT | 3 | 0.205 ± 0.169 | 0.246 ± 0.190 | |||
SH | GG | 199 | −0.014 ± 0.031 B,b | 0.001 | −0.012 ± 0.017 b | 0.004 |
GT | 105 | 0.097 ± 0.047 A,B,a | 0.062 ± 0.029 a,b | |||
TT | 10 | 0.492 ± 0.218 A,a | 0.212 ± 0.108 a | |||
TPE-L | GG | 50 | 0.318 ± 0.077 | 0.533 | 0.169 ± 0.085 | 0.860 |
GT | 172 | 0.320 ± 0.044 | 0.213 ± 0.046 | |||
TT | 129 | 0.247 ± 0.05 | 0.181 ± 0.057 | |||
CAN-Y | GG | 128 | 0.348 ± 0.046 | 0.311 | 0.405 ± 0.045 | 0.188 |
GT | 223 | 0.388 ± 0.040 | 0.431 ± 0.040 | |||
TT | 74 | 0.476 ± 0.072 | 0.555 ± 0.077 | |||
USA-Y | GG | 259 | −0.072 ± 0.020 | 0.650 | −0.052 ± 0.021 | 0.527 |
GT | 79 | −0.035 ± 0.034 | −0.005 ± 0.036 | |||
TT | 7 | −0.027 ± 0.179 | −0.008 ± 0.184 | |||
FRA-Y | GG | 150 | −0.008 ± 0.004 B,b | 0.003 | −0.021 ± 0.013 B,b | 0.006 |
GT | 174 | 0.008 ± 0.003 A,a | 0.030 ± 0.011 A,a | |||
TT | 35 | 0.007 ± 0.007 A,B,a,b | 0.032 ± 0.022 A,B,a,b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Huang, R.; Ma, X.; Jiang, N.; Zhou, W.; Gao, C.; Zhao, M.; Niu, P.; Zhang, Z.; Li, Q.; et al. Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs. Animals 2020, 10, 11. https://doi.org/10.3390/ani10010011
Zhang Q, Huang R, Ma X, Jiang N, Zhou W, Gao C, Zhao M, Niu P, Zhang Z, Li Q, et al. Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs. Animals. 2020; 10(1):11. https://doi.org/10.3390/ani10010011
Chicago/Turabian StyleZhang, Qian, Ruihua Huang, Xiang Ma, Nengjing Jiang, Wuduo Zhou, Chen Gao, Moran Zhao, Peipei Niu, Zongping Zhang, Qiang Li, and et al. 2020. "Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs" Animals 10, no. 1: 11. https://doi.org/10.3390/ani10010011
APA StyleZhang, Q., Huang, R., Ma, X., Jiang, N., Zhou, W., Gao, C., Zhao, M., Niu, P., Zhang, Z., Li, Q., Zhou, J., & Li, P. (2020). Association of Rs339939442 in the AHR Gene with Litter Size are Inconsistent among Chinese Indigenous Pigs and Western Commercial Pigs. Animals, 10(1), 11. https://doi.org/10.3390/ani10010011