A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Campylobacter
3.2. Clostridium Perfringens
3.3. Methicillin-Resistant Staphylococcus Aureus (MRSA)
3.4. Mycobacterium Avium Complex
3.5. Salmonella
4. Discussion
4.1. Salmonella
4.2. Other Pathogens
4.2.1. Campylobacter
4.2.2. C. perfringens
4.2.3. MRSA
4.2.4. Mycobacterium avium
4.2.5. Hepatitis E Virus
4.2.6. Y. enterocolitica
- Use of non-municipal water sources and having a continuous production (instead of applying an all-in/all-out strategy) [79].
4.2.7. T. gondii
4.3. Limitations of This Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA. Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA J. 2011, 9, 2351. [Google Scholar] [CrossRef] [Green Version]
- Baer, A.A.; Miller, M.J.; Dilger, A.C. Pathogens of Interest to the Pork Industry: A Review of Research on Interventions to Assure Food Safety. Compr. Rev. Food Sci. Food Saf. 2013, 12, 183–217. [Google Scholar] [CrossRef]
- Blagojevic, B.; Nesbakken, T.; Alvseike, O.; Vågsholm, I.; Antic, D.; Johler, S.; Houf, K.; Meemken, D.; Nastasijevic, I.; Pinto, M.V.; et al. Drivers, opportunities, and challenges of the European risk-based meat safety assurance system. Food Control. 2021, 124, 107870. [Google Scholar] [CrossRef]
- Pessoa, J.; Rodrigues da Costa, M.; Nesbakken, T.; Meemken, D.; RIBMINS Cost Action. Assessment of the Effectiveness of Pre-harvest Meat Safety Interventions to Control Foodborne Pathogens in Broilers: A Systematic Review. Curr. Clin. Microbiol. Rep. 2021, 8, 21–30. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA J. 2010, 8, 1637. [Google Scholar] [CrossRef]
- Bratz, K.; Gölz, G.; Janczyk, P.; Nöckler, K.; Alter, T. Analysis of in vitro and in vivo effects of probiotics against Campylobacter spp. Berl. Munch. Tierarztl. Wochenschr. 2015, 128, 155–162. [Google Scholar]
- Hasan, S.; Saha, S.; Junnikkala, S.; Orro, T.; Peltoniemi, O.; Oliviero, C. Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota. Animal 2019, 13, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Kelneric, Z.; Naglic, T.; Udovicic, I. Prevention of necrotic enteritis in piglets by vaccination of pregnant gilts with a Clostridium perfringens type C and D bacterin-toxoid. Vet. Med. 1996, 41, 335–338. [Google Scholar]
- Hammer, J.M.; Fuhrman, M.; Walz, M. Serological evaluation of a Clostridium perfringens type A toxoid in a commercial swine herd. J. Swine Health Prod. 2008, 16, 37–40. [Google Scholar]
- Oliveira, C.A.; Silva, R.O.S.; Lage, A.P.; Coura, F.M.; Ramos, C.P.; Alfieri, A.A.; Guedes, R.M.C.; Lobato, F.C.F. Non-toxigenic strain of Clostridioides difficile Z31 reduces the occurrence of C. difficile infection (CDI) in one-day-old piglets on a commercial pig farm. Vet. Microbiol. 2019, 231, 1–6. [Google Scholar] [CrossRef]
- Richard, O.K.; Grahofer, A.; Nathues, H.; Posthaus, H. Vaccination against Clostridium perfringens type C enteritis in pigs: A field study using an adapted vaccination scheme. Porc. Health Manag. 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Unterweger, C.; Kahler, A.; Gerlach, G.F.; Viehmann, M.; von Altrock, A.; Hennig-Pauka, I. Administration of non-pathogenic isolates of Escherichia coli and Clostridium perfringens type A to piglets in a herd affected with a high incidence of neonatal diarrhoea. Animal 2017, 11, 670–676. [Google Scholar] [CrossRef] [Green Version]
- Pletinckx, L.J.; Dewulf, J.; De Bleecker, Y.; Rasschaert, G.; Goddeeris, B.M.; De Man, I. Effect of a disinfection strategy on the methicillin-resistant Staphylococcus aureus CC398 prevalence of sows, their piglets and the barn environment. J. Appl. Microbiol. 2013, 114, 1634–1641. [Google Scholar] [CrossRef]
- Hines, M.E., 2nd; Frazier, K.S.; Baldwin, C.A.; Cole, J.R., Jr.; Sangster, L.T. Efficacy of vaccination for Mycobacterium avium with whole cell and subunit vaccines in experimentally infected swine. Vet. Microbiol. 1998, 63, 49–59. [Google Scholar] [CrossRef]
- Jones, F.T.; Langlois, B.E.; Cromwell, G.L.; Hays, V.W. Effect of feeding chlortetracycline or virginiamycin on shedding of salmonellae from experimentally-infected swine. J. Anim. Sci. 1983, 57, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.; Wingstrand, A.; Nielsen, B.; Baggesen, D.L. Elimination of Salmonella typhimurium infection by the strategic movement of pigs. Vet. Rec. 1997, 140, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Nietfeld, J.C.; Feder, I.; Kramer, T.T.; Schoneweis, D.; Chengappa, M.M. Preventing Salmonella infection in pigs with offsite weaning. Swine Health Prod. 1998, 6, 27–32. [Google Scholar]
- Rajkowski, K.T.; Eblen, S.; Laubauch, C. Efficacy of washing and sanitizing trailers used for swine transport in reduction of Salmonella and Escherichia coli. J. Food Prot. 1998, 61, 31–35. [Google Scholar] [CrossRef]
- Isaacson, R.E.; Firkins, L.D.; Weigel, R.M.; Zuckermann, F.A.; DiPietro, J.A. Effect of transportation and feed withdrawal on shedding of Salmonella Typhimurium among experimentally infected pigs. Am. J. Vet. Res. 1999, 60, 1155–1158. [Google Scholar]
- Maes, D.; Gibson, K.; Trigo, E.; Saszak, A.; Grass, J.; Carlson, A.; Blaha, T. Evaluation of cross-protection afforded by a Salmonella Choleraesuis vaccine against Salmonella infections in pigs under field conditions. Berl. Munch. Tierarztl. Wochenschr. 2001, 114, 339–341. [Google Scholar]
- Van der Wolf, P.J.; van Schie, F.W.; Elbers, A.R.; Engel, B.; van der Heijden, H.M.; Hunneman, W.A.; Tielen, M.J. Administration of acidified drinking water to finishing pigs in order to prevent Salmonella infections. Vet. Q. 2001, 23, 121–125. [Google Scholar] [CrossRef]
- Van Winsen, R.L.; Keuzenkamp, D.; Urlings, B.A.P.; Lipman, L.J.A.; Snijders, J.A.M.; Verheijden, J.H.M.; van Knapen, F. Effect of fermented feed on shedding of Enterobacteriaceae by fattening pigs. Vet. Microbiol. 2002, 87, 267–276. [Google Scholar] [CrossRef]
- Roesler, U.; Vonaltrock, A.; Heller, P.; Bremerich, S.; Arnold, T.; Lehmann, J.; Waldmann, K.H.; Truyen, U.; Hensel, A. Effects of fluorequinolone treatment acidified feed, and improved hygiene measures on the occurrence of Salmonella Typhimurium DT104 in an integrated pig breeding herd. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Roesler, U.; Heller, P.; Waldmann, K.H.; Truyen, U.; Hensel, A. Immunization of sows in an integrated pig-breeding herd using a homologous inactivated Salmonella vaccine decreases the prevalence of Salmonella typhimurium infection in the offspring. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 224–228. [Google Scholar] [CrossRef]
- Creus, E.; Perez, J.F.; Peralta, B.; Baucells, F.; Mateu, E. Effect of acidified feed on the prevalence of Salmonella in market-age pigs. Zoonoses Public Health 2007, 54, 314–319. [Google Scholar] [CrossRef]
- Funk, J.; Wittum, T.E.; LeJeune, J.T.; Rajala-Schultz, P.J.; Bowman, A.; Mack, A. Evaluation of stocking density and subtherapeutic chlortetracycline on Salmonella enterica subsp. enterica shedding in growing swine. Vet. Microbiol. 2007, 124, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Patchanee, P.; Crenshaw, T.D.; Bahnson, P.B. Oral sodium chlorate, topical disinfection, and younger weaning age reduce Salmonella enterica shedding in pigs. J. Food Prot. 2007, 70, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Mannion, C.; Egan, J.; Lynch, B.P.; Fanning, S.; Leonard, N. An investigation into the efficacy of washing trucks following the transportation of pigs—A Salmonella perspective. Foodborne Pathog. Dis. 2008, 5, 261–271. [Google Scholar] [CrossRef]
- De Busser, E.V.; Dewulf, J.; Nollet, N.; Houf, K.; Schwarzer, K.; De Sadeleer, L.; De Zutter, L.; Maes, D. Effect of organic acids in drinking water during the last 2 weeks prior to slaughter on Salmonella shedding by slaughter pigs and contamination of carcasses. Zoonoses Public Health 2009, 56, 129–136. [Google Scholar] [CrossRef]
- Rostagno, M.H.; Hurd, H.S.; McKean, J.D. Split marketing as a risk factor for Salmonella enterica infection in swine. Foodborne Pathog. Dis. 2009, 6, 865–869. [Google Scholar] [CrossRef]
- Visscher, C.F.; Winter, P.; Verspohl, J.; Stratmann-Selke, J.; Upmann, M.; Beyerbach, M.; Kamphues, J. Effects of feed particle size at dietary presence of added organic acids on caecal parameters and the prevalence of Salmonella in fattening pigs on farm and at slaughter. J. Anim. Physiol. Anim. Nutr. 2009, 93, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Farzan, A.; Friendship, R.M. A clinical field trial to evaluate the efficacy of vaccination in controlling Salmonella infection and the association of Salmonella-shedding and weight gain in pigs. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2010, 74, 258–263. [Google Scholar]
- Arguello, H.; Carvajal, A.; Costillas, S.; Rubio, P. Effect of the Addition of Organic Acids in Drinking Water or Feed During Part of the Finishing Period on the Prevalence of Salmonella in Finishing Pigs. Foodborne Pathog. Dis. 2013, 10, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Arguello, H.; Carvajal, A.; Naharro, G.; Rubio, P. Evaluation of protection conferred by a Salmonella Typhimurium inactivated vaccine in Salmonella-infected finishing pig farms. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 489–498. [Google Scholar] [CrossRef]
- De Ridder, L.; Maes, D.; Dewulf, J.; Pasmans, F.; Boyen, F.; Haesebrouck, F.; Meroc, E.; Roels, S.; Leyman, B.; Butaye, P.; et al. Effect of a DIVA vaccine with and without in-feed use of coated calcium-butyrate on transmission of Salmonella Typhimurium in pigs. BMC Vet. Res. 2013, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Foss, D.L.; Agin, T.S.; Bade, D.; Dearwester, D.A.; Jolie, R.; Keich, R.L.; Lohse, R.M.; Reed, M.; Rosey, E.L.; Schneider, P.A.; et al. Protective immunity to Salmonella enterica is partially serogroup specific. Vet. Immunol. Immunopathol. 2013, 155, 76–86. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, L.; Maes, D.; Dewulf, J.; Butaye, P.; Pasmans, F.; Boyen, F.; Haesebrouck, F.; Van der Stede, Y. Use of a live attenuated Salmonella enterica serovar Typhimurium vaccine on farrow-to-finish pig farms. Vet. J. 2014, 202, 303–308. [Google Scholar] [CrossRef]
- Kim, H.B.; Singer, R.S.; Borewicz, K.; White, B.A.; Sreevatsan, S.; Johnson, T.J.; Espejo, L.A.; Isaacson, R.E. Effects of tylosin administration on C-reactive protein concentration and carriage of Salmonella enterica in pigs. Am. J. Vet. Res. 2014, 75, 460–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanac, N.; Stevancevic, O.; Potkonjak, A.; Savic, B.; Stancic, I.; Vracar, V. The impact of space allowance on productivity performance and Salmonella spp. shedding in nursery pigs. Livestig. Sci. 2014, 164, 149–153. [Google Scholar] [CrossRef]
- Yin, F.G.; Farzan, A.; Wang, Q.; Yu, H.; Yin, Y.L.; Hou, Y.Q.; Friendship, R.; Gong, J.S. Reduction of Salmonella enterica Serovar Typhimurium DT104 Infection in Experimentally Challenged Weaned Pigs Fed a Lactobacillus-Fermented Feed. Foodborne Pathog. Dis. 2014, 11, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Artuso-Ponte, V.; Moeller, S.; Rajala-Schultz, P.; Medardus, J.J.; Munyalo, J.; Lim, K.; Gebreyes, W.A. Supplementation with Quaternary Benzo(c) phenanthridine Alkaloids Decreased Salivary Cortisol and Salmonella Shedding in Pigs After Transportation to the Slaughterhouse. Foodborne Pathog. Dis. 2015, 12, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Grilli, E.; Foresti, F.; Tugnoli, B.; Fustini, M.; Zanoni, M.G.; Pasquali, P.; Callaway, T.R.; Piva, A.; Alborali, G.L. Microencapsulated Sorbic Acid and Pure Botanicals Affect Salmonella Typhimurium Shedding in Pigs: A Close-Up Look from Weaning to Slaughter in Controlled and Field Conditions. Foodborne Pathog. Dis. 2015, 12, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Bearson, B.L.; Bearson, S.M.D.; Kich, J.D. A DIVA vaccine for cross-protection against Salmonella. Vaccine 2016, 34, 1241–1246. [Google Scholar] [CrossRef] [Green Version]
- Rasschaert, G.; Michiels, J.; Tagliabue, M.; Missotten, J.; De Smet, S.; Heyndrickx, M. Effect of Organic Acids on Salmonella Shedding and Colonization in Pigs on a Farm with High Salmonella Prevalence. J. Food Prot. 2016, 79, 51–58. [Google Scholar] [CrossRef]
- Walia, K.; Argüello, H.; Lynch, H.; Leonard, F.C.; Grant, J.; Yearsley, D.; Kelly, S.; Duffy, G.; Gardiner, G.E.; Lawlor, P.G. Effect of feeding sodium butyrate in the late finishing period on Salmonella carriage, seroprevalence, and growth of finishing pigs. Prev. Vet. Med. 2016, 131, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Higes, A.; Andres-Barranco, S.; Mainar-Jaime, R.C. Effect of the addition of protected sodium butyrate to the feed on Salmonella spp. infection dynamics in fattening pigs. Anim. Feed Sci. Technol. 2017, 231, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Eicher, S.D.; Rostagno, M.H.; Lay, D.C. Feed withdrawal and transportation effects on Salmonella enterica levels in market-weight pigs. J. Anim. Sci. 2017, 95, 2848–2858. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.; Leonard, F.C.; Walla, K.; Lawlor, P.G.; Duffy, G.; Fanning, S.; Markey, B.K.; Brady, C.; Gardiner, G.E.; Arguello, H. Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev. Vet. Med. 2017, 139, 50–57. [Google Scholar] [CrossRef]
- Martelli, F.; Lambert, M.; Butt, P.; Cheney, T.; Tatone, F.A.; Callaby, R.; Rabie, A.; Gosling, R.J.; Fordon, S.; Crocker, G.; et al. Evaluation of an enhanced cleaning and disinfection protocol in Salmonella contaminated pig holdings in the United Kingdom. PLoS ONE 2017, 12, e0178897. [Google Scholar] [CrossRef] [Green Version]
- Walia, K.; Arguello, H.; Lynch, H.; Leonard, F.C.; Grant, J.; Yearsley, D.; Kelly, S.; Duffy, G.; Gardiner, G.E.; Lawlor, P.G. Effect of strategic administration of an encapsulated blend of formic acid, citric acid, and essential oils on Salmonella carriage, seroprevalence, and growth of finishing pigs. Prev. Vet. Med. 2017, 137, 28–35. [Google Scholar] [CrossRef]
- Casanova-Higes, A.; Andres-Barranco, S.; Mainar-Jaime, R.C. Use of a new form of protected sodium butyrate to control Salmonella infection in fattening pigs. Span. J. Agric. Res. 2018, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Leite, F.L.L.; Singer, R.S.; Ward, T.; Gebhart, C.J.; Isaacson, R.E. Vaccination Against Lawsonia intracellularis Decreases Shedding of Salmonella enterica serovar Typhimurium in Co-Infected Pigs and Alters the Gut Microbiome. Sci Rep. 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.P.; Andres, V.; Martelli, F.; Gosling, B.; Marco-Jimenez, F.; Vaughan, K.; Tchorzewska, M.; Davies, R. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms. J. Appl. Microbiol. 2018, 124, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Bearson, B.L.; Allen, H.K.; Shippy, D.C.; Loving, C.L.; Kerr, B.J.; Bearson, S.M.D.; Brunelle, B.W. Chlortetracycline Enhances Tonsil Colonization and Fecal Shedding of Multidrug-Resistant Salmonella enterica Serovar Typhimurium DT104 without Major Alterations to the Porcine Tonsillar and Intestinal Microbiota. Appl. Environ. Microbiol. 2019, 85, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, L.; Dewulf, J.; Boyen, F.; Brossé, C.; Vandersmissen, T.; Rasschaert, G.; Heyndrickx, M.; Cargnel, M.; Pasmans, F.; Maes, D. Effects of attenuated vaccine protocols against Salmonella Typhimurium on Salmonella serology in subclinically infected pig herds. Vet. J. 2019, 249, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.D.; Kich, J.D.; Miele, M.; Mores, N.; Amaral, A.; Coldebella, A.; Cardoso, M.; Corbellini, L.G. Evaluation of two strategies for reducing the spread of Salmonella in commercial swine herds during the finishing phase and their incremental cost-effectiveness ratios. Semin. Cienc. Agrar. 2020, 41, 505–516. [Google Scholar] [CrossRef]
- Peeters, L.; Dewulf, J.; Boyen, F.; Brosse, C.; Vandersmissen, T.; Rasschaert, G.; Heyndrickx, M.; Cargnel, M.; Mattheus, W.; Pasmans, F.; et al. Bacteriological evaluation of vaccination against Salmonella Typhimurium with an attenuated vaccine in subclinically infected pig herds. Prev. Vet. Med. 2020, 182, 11. [Google Scholar] [CrossRef]
- European Food Safety Authority EFSA; European Centre for Disease Prevention and Control ECDC. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e6406. [Google Scholar] [CrossRef]
- Davies, P.R.; Scott Hurd, H.; Funk, J.A.; Fedorka-Cray, P.J.; Jones, F.T. The role of contaminated feed in the epidemiology and control of Salmonella enterica in pork production. Foodborne Pathog. Dis. 2004, 1, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Nesbakken, T.; Skjerve, E.; Lium, B. (Eds.) The succesful control of Salmonella in Norway. In Proceedings of the 13th Safepork, Berlin, Germany, 26–29 August 2019; pp. 91–92. [Google Scholar]
- De la Cruz, M.L.; Conrado, I.; Nault, A.; Perez, A.; Dominguez, L.; Alvarez, J. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Res. Vet. Sci. 2017, 114, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, B.; Rajić, A.; Parker, S.; Waddell, L.; Sanchez, J.; Fazil, A.; Wilkins, W.; McEwen, S.A. Assessment of the efficacy and quality of evidence for five on-farm interventions for Salmonella reduction in grow-finish swine: A systematic review and meta-analysis. Prev. Vet. Med. 2012, 107, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, B.J.; Young, I.; Cahill, S.; Nakagawa, R.; Desmarchelier, P.; Rajić, A. Rapid systematic review and meta-analysis of the evidence for effectiveness of primary production interventions to control Salmonella in beef and pork. Prev. Vet. Med. 2017, 147, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Weijtens, M.J.; van der Plas, J.; Bijker, P.G.; Urlings, H.A.; Koster, D.; van Logtestijn, J.G.; Huis in’t Veld, J.H. The transmission of campylobacter in piggeries; an epidemiological study. J. Appl. Microbiol. 1997, 83, 693–698. [Google Scholar] [CrossRef]
- Young, C.R.; Harvey, R.; Anderson, R.; Nisbet, D.; Stanker, L.H. Enteric colonisation following natural exposure to Campylobacter in pigs. Res. Vet. Sci. 2000, 68, 75–78. [Google Scholar] [CrossRef]
- Humphrey, T.; O’Brien, S.; Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 2007, 117, 237–257. [Google Scholar] [CrossRef]
- Nesbakken, T.; Eckner, K.; Rotterud, O.J. The effect of blast chilling on occurrence of human pathogenic Yersinia enterocolitica compared to Campylobacter spp. and numbers of hygienic indicators on pig carcasses. Int. J. Food Microbiol. 2008, 123, 130–133. [Google Scholar] [CrossRef]
- Chang, V.P.; Mills, E.W.; Cutter, C.N. Reduction of bacteria on pork carcasses associated with chilling method. J. Food Prot. 2003, 66, 1019–1024. [Google Scholar] [CrossRef]
- Kapperud, G.; Skjerve, E.; Bean, N.H.; Ostroff, S.M.; Lassen, J. Risk factors for sporadic Campylobacter infections: Results of a case-control study in southeastern Norway. J. Clin. Microbiol. 1992, 30, 3117–3121. [Google Scholar] [CrossRef] [Green Version]
- Kapperud, G.; Espeland, G.; Wahl, E.; Walde, A.; Herikstad, H.; Gustavsen, S.; Tveit, I.; Natas, O.; Bevanger, L.; Digranes, A. Factors associated with increased and decreased risk of Campylobacter infection: A prospective case-control study in Norway. Am. J. Epidemiol. 2003, 158, 234–242. [Google Scholar] [CrossRef]
- Roux, F.; Sproston, E.; Rotariu, O.; Macrae, M.; Sheppard, S.K.; Bessell, P.; Smith-Palmer, A.; Cowden, J.; Maiden, M.C.; Forbes, K.J.; et al. Elucidating the aetiology of human Campylobacter coli infections. PLoS ONE 2013, 8, e64504. [Google Scholar] [CrossRef] [Green Version]
- Elstrom, P.; Grontvedt, C.A.; Gabrielsen, C.; Stegger, M.; Angen, O.; Amdal, S.; Enger, H.; Urdahl, A.M.; Jore, S.; Steinbakk, M.; et al. Livestock-Associated MRSA CC1 in Norway; Introduction to Pig Farms, Zoonotic Transmission, and Eradication. Front. Microbiol. 2019, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Urdahl, A.M.; Norström, M.; Welde, H.; Bergsjø, B.; Grøntvedt, C.A. The Surveillance Programme for Methicillin Resistant Staphylococcus aureus in Pigs in Norway 2019; Norwegian Veterinary Institute: Ås, Norway, 2020. Available online: https://www.vetinst.no/overvaking/mrsa-svin (accessed on 15 April 2021).
- Meester, M.; Tobias, T.J.; Bouwknegt, M.; Kusters, N.E.; Stegeman, J.A.; van der Poel, W.H.M. Infection dynamics and persistence of hepatitis E virus on pig farms—A review. Porc. Health Manag. 2021, 7, 16. [Google Scholar] [CrossRef]
- Krog, J.S.; Larsen, L.E.; Breum, S.Ø. Tracing Hepatitis E Virus in Pigs From Birth to Slaughter. Front. Vet. Sci. 2019, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Skjerve, E.; Lium, B.; Nielsen, B.; Nesbakken, T. Control of Yersinia enterocolitica in pigs at herd level. Int. J. Food Microbiol. 1998, 45, 195–203. [Google Scholar] [CrossRef]
- Virtanen, S.; Salonen, L.; Laukkanen-Ninios, R.; Fredriksson-Ahomaa, M.; Korkeala, H. Piglets are a source of pathogenic Yersinia enterocolitica on fattening-pig farms. Appl. Env. Microbiol. 2012, 78, 3000–3003. [Google Scholar] [CrossRef] [Green Version]
- Vilar, M.J.; Virtanen, S.; Heinonen, M.; Korkeala, H. Management practices associated with the carriage of Yersinia enterocolitica in pigs at farm level. Foodborne Pathog. Dis. 2013, 10, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, S.; Nikunen, S.; Korkeala, H. Introduction of infected animals to herds is an important route for the spread of Yersinia enterocolitica infection between pig farms. J. Food Prot. 2014, 77, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Nesbakken, T.; Iversen, T.; Lium, B. Pig herds free from human pathogenic Yersinia enterocolitica. Emerg. Infect. Dis 2007, 13, 1860–1864. [Google Scholar] [CrossRef] [PubMed]
- Kolstoe, E.M.; Iversen, T.; Ostensvik, O.; Abdelghani, A.; Secic, I.; Nesbakken, T. Specific pathogen-free pig herds also free from Campylobacter? Zoonoses Public Health 2015, 62, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Nesbakken, T. 2—Update on Yersinia as a foodborne pathogen: Analysis and control. In Advances in Microbial Food Safety; Sofos, J., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 33–58. [Google Scholar] [CrossRef]
- Laukkanen-Ninios, R.; Fredriksson-Ahomaa, M.; Korkeala, H. Enteropathogenic Yersinia in the Pork Production Chain: Challenges for Control. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1165–1191. [Google Scholar] [CrossRef]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [Green Version]
- Skjerve, E.; Tharaldsen, J.; Waldeland, H.; Kapperud, G.; Nesbakken, T. Antibodies to Toxoplasma gondii in Norwegian slaughtered sheep, pigs and cattle. Bull. Scand. Soc. Parasitol. 1996, 6, 11–17. [Google Scholar]
- Gebreyes, W.A.; Bahnson, P.B.; Funk, J.A.; McKean, J.; Patchanee, P. Seroprevalence of Trichinella, Toxoplasma, and Salmonella in antimicrobial-free and conventional swine production systems. Foodborne Pathog. Dis. 2008, 5, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateus-Pinilla, N.E.; Dubey, J.P.; Choromanski, L.; Weigel, R.M. A field trial of the effectiveness of a feline Toxoplasma gondii vaccine in reducing T-gondii exposure for swine. J. Parasitol. 1999, 85, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Pacheco, A.; Acosta-Viana, K.Y.; Guzman-Marin, E.; Uitzil-Alvarez, B.; Rodriguez-Buenfil, J.C.; Jimenez-Coello, M. Infection dynamic of Toxoplasma gondii in two fattening pig farms exposed to high and low cat density in an endemic region. Vet. Parasitol. 2011, 175, 367–371. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Keyword and/or String Searched | Records Identified | Records after Duplicates’ Removal | Records Retained after Abstract Screening | Records Retained after Full Text Screening |
---|---|---|---|---|---|
Clostridium botulinum | clostridium botulinum OR botulism | 3 | 3 | 0 | 0 |
Clostridioides difficile | clostridium difficile OR c. difficile OR clostridioides difficile | 8 | 7 | 0 | 0 |
Clostridium perfringens | clostridium perfringens OR c. perfringens OR clostridial diarrh * | 43 | 33 | 9 | 5 |
Campylobacter spp. | Campylobacter * OR “Campylobacter jejuni” OR “campylobacter coli” | 156 | 115 | 3 | 2 |
Herpes virus type E | hepatitis E OR hepE | 101 | 77 | 0 | 0 |
Listeria monocytogenes | listeria monocytogenes OR listeriosis | 12 | 11 | 0 | 0 |
MRSA | methicillin resistant staphylococcus aureus OR MRSA OR resistant s.aureus | 194 | 139 | 9 | 1 |
Mycobacterium avium complex | mycobacterium OR tuberculosis | 27 | 23 | 3 | 1 |
Salmonella spp. | Salmone * | 785 | 555 | 57 | 43 |
Sarcocystis spp. | sarcocystis | 9 | 7 | 0 | 0 |
Taenia solium | taenia solium cysticercus OR cysticercosis OR taeniasis | 12 | 12 | 0 | 0 |
Toxoplasma gondii | toxoplasma gondii OR toxoplasmosis | 101 | 77 | 2 | 0 |
Trichinella spiralis | Trichin * | 63 | 50 | 2 | 0 |
VTEC | VTEC OR verotoxigenic E. coli OR verotoxigenic escherichia coli OR verocytotoxigenic E. coli OR shiga toxin-producing E. coli | 5 | 5 | 1 | 0 |
Yersinia enterocolitica | Yersini * | 87 | 66 | 1 | 0 |
TOTAL | 1606 | 1180 | 87 | 52 |
PICO 1 | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Animal species being evaluated: must include (but not limited to) pigs | Does not include actual or theoretical <pathogen> infection/contamination in pigs |
Unit of study [animal, herd, house, barn, farm] and [surfaces, food, water, environment, drinkers, feeder, other animals] | Others | |
Intervention | Interventions to control/reduce/eradicate <pathogen> in pigs | Studies not mentioning control/reduce/eradicate interventions for < pathogen> in pigs |
Interventions on-farm or during transport (pre-harvest) | Interventions on lairage, at slaughter and post-harvest | |
Field/experimental studies | Lab/bench studies | |
Comparison | Control group present [group subjected to no intervention] | Control group absent |
Outcomes | Provides some measure of the efficacy of the intervention | Efficacy of the intervention not measured |
Others | Language: English | Other languages |
Peer-reviews | Grey literature |
Variable | Category | Salmonella Studies and Trials |
---|---|---|
43 studies, n (%) | ||
Location of intervention | On-farm Transport | 41 (95.3) 4 (9.3) 1 |
Study setting | Commercial farm Research farm | 34 (79.1) 10 (23.2) 2 |
86 trials, n (%) | ||
Type of intervention 3 | Cleaning & disinfection Combination of measures Feed and/or water treatments
Vaccination Other 4 | 7 (8.1); positive results *: n = 6 19 (22.1); positive results *: n = 15 32 (37.2); positive results *: n = 23 4 (12.5) 21 (65.6) 9 (28.1) 8 (9.3); positive results *: n = 1 24 (27.9); positive results *: n = 21 19 (22.1); positive results *: n = 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues da Costa, M.; Pessoa, J.; Meemken, D.; Nesbakken, T. A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens. Microorganisms 2021, 9, 1825. https://doi.org/10.3390/microorganisms9091825
Rodrigues da Costa M, Pessoa J, Meemken D, Nesbakken T. A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens. Microorganisms. 2021; 9(9):1825. https://doi.org/10.3390/microorganisms9091825
Chicago/Turabian StyleRodrigues da Costa, Maria, Joana Pessoa, Diana Meemken, and Truls Nesbakken. 2021. "A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens" Microorganisms 9, no. 9: 1825. https://doi.org/10.3390/microorganisms9091825
APA StyleRodrigues da Costa, M., Pessoa, J., Meemken, D., & Nesbakken, T. (2021). A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens. Microorganisms, 9(9), 1825. https://doi.org/10.3390/microorganisms9091825