Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. DNA Isolation, Genome Sequencing, and Analysis
2.3. Mouse Infection Assays
2.4. In-Vitro Virulence Assays
2.5. Statistics
3. Results
3.1. Whole Genome Sequencing
3.2. Animal Behaviour, Recovery of L. monocytogenes from the Liver and LD50
3.3. Invasiveness, Intracellular Proliferation, and Spreading in Host Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ooi, S.T.; Lorber, B. Gastroenteritis due to Listeria monocytogenes. Clin. Infect. Dis. 2005, 40, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Dominguez-Bernal, G.; Goebel, W.; Gonzalez-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef] [Green Version]
- Allerberger, F.; Wagner, M. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 2010, 16, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, A.; Charlier, C.; Lecuit, M. Global burden of listeriosis: The tip of the iceberg. Lancet. Infect. Dis. 2014, 14, 1027–1028. [Google Scholar] [CrossRef]
- Madjunkov, M.; Chaudhry, S.; Ito, S. Listeriosis during pregnancy. Arch. Gynecol. Obstet. 2017, 296, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Maury, M.M.; Tsai, Y.-H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Bergholz, T.M.; Shah, M.K.; Burall, L.S.; Rakic-Martinez, M.; Datta, A.R. Genomic and phenotypic diversity of Listeria monocytogenes clonal complexes associated with human listeriosis. Appl. Microbiol. Biotechnol. 2018, 102, 3475–3485. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Chen, Y.; Gorski, L.; Ward, T.J.; Osborne, J.; Kathariou, S. Listeria monocytogenes source distribution analysis indicates regional heterogeneity and ecological niche preference among serotype 4b clones. MBio 2018, 9, e00396-18. [Google Scholar] [CrossRef] [Green Version]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Cartwright, E.J.; Jackson, K.A.; Johnson, S.D.; Graves, L.M.; Silk, B.J.; Mahon, B.E. Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1. [Google Scholar] [CrossRef]
- Painset, A.; Björkman, J.T.; Kiil, K.; Guillier, L.; Mariet, J.F.; Felix, B.; Amar, C.; Rotariu, O.; Roussel, S.; Perez-Reche, F.; et al. Liseq–Whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb. Genom. 2019. [Google Scholar] [CrossRef] [PubMed]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Camejo, A.; Carvalho, F.; Reis, O.; Leitão, E.; Sousa, S.; Cabanes, D. The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2011, 2, 379–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossart, P. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 2011, 108, 19484–19491. [Google Scholar] [CrossRef] [Green Version]
- Goulet, V.; Hebert, M.; Hedberg, C.; Laurent, E.; Vaillant, V.; De Valk, H.; Desenclos, J.C. Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. Clin. Infect. Dis. 2012, 54, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Boland, J.A.; Wagner, M.; Scortti, M. Why are some Listeria monocytogenes genotypes more likely to cause invasive (brain, placental) infection? MBio 2020, 11, e0312. [Google Scholar] [CrossRef]
- Büla, C.J.; Bille, J.; Glauser, M.P. An epidemic of food-borne listeriosis in western switzerland: Description of 57 cases involving adults. Clin. Infect. Dis. 1995, 20, 66–72. [Google Scholar] [CrossRef]
- Heitmann, M.; Gerner-Smidt, P.; Heltberg, O. Gastroenteritis caused by Listeria monocytogenes in a private day-care facility. Pediatric Infect. Dis. J. 1997, 16, 827–828. [Google Scholar] [CrossRef]
- Dalton, C.B.; Austin, C.C.; Sobel, J.; Hayes, P.S.; Bibb, W.F.; Graves, L.M.; Swaminathan, B.; Proctor, M.E.; Griffin, P.M. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 1997, 336, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.M.; Birol, I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009, 19, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, E.; Zaiser, A.; Leitner, R.; Quijada, N.M.; Pracser, N.; Pietzka, A.; Ruppitsch, W.; Schmitz-Esser, S.; Wagner, M.; Rychli, K. Virulence characterization and comparative genomics of Listeria monocytogenes sequence type 155 strains. BMC Genom. 2020, 21, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple methodof estimating fifthy percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Goetz, M.; Bubert, A.; Wang, G.; Chico-Calero, I.; Vazquez-Boland, J.A.; Beck, M.; Slaghuis, J.; Szalay, A.A.; Goebel, W. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl. Acad. Sci. USA 2001, 98, 12221–12226. [Google Scholar] [CrossRef] [Green Version]
- Weinmaier, T.; Riesing, M.; Rattei, T.; Bille, J.; Arguedas-Villa, C.; Stephan, R.; Tasara, T. Complete genome sequence of Listeria monocytogenes LL195, a serotype 4b strain from the 1983-1987 listeriosis epidemic in Switzerland. Genome Announc. 2013, 1, e00152-12. [Google Scholar] [CrossRef] [Green Version]
- Balandyté, L.; Brodard, I.; Frey, J.; Oevermann, A.; Abril, C. Ruminant rhombencephalitis-associated Listeria monocytogenes alleles linked to a multilocus variable-number tandem-repeat analysis complex. Appl. Environ. Microbiol. 2011, 77, 8325–8335. [Google Scholar] [CrossRef] [Green Version]
- Cabanes, D.; Dussurget, O.; Dehoux, P.; Cossart, P. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 2004, 51, 1601–1614. [Google Scholar] [CrossRef]
- Wang, L.; Lin, M. A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: Genetic and proteomic analysis. Microbiology 2008, 154, 1900–1913. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Sashinami, H.; Osanai, A.; Asano, Y.; Nakane, A. Autolysin amidase of Listeria monocytogenes promotes efficient colonization of mouse hepatocytes and enhances host immune response. Int. J. Med. Microbiol. 2011, 301, 480–487. [Google Scholar] [CrossRef]
- Milohanic, E.; Jonquières, R.; Cossart, P.; Berche, P.; Gaillard, J.L. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 2001, 39, 1212–1224. [Google Scholar] [CrossRef]
- Maury, M.M.; Bracq-Dieye, H.; Huang, L.; Vales, G.; Lavina, M.; Thouvenot, P.; Disson, O.; Leclercq, A.; Brisse, S.; Lecuit, M. Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bergholz, T.M.; Bowen, B.; Wiedmann, M.; Boor, K.J. Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl. Environ. Microbiol. 2012, 78, 2602–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travier, L.; Lecuit, M. Listeria monocytogenes ActA: A new function for a “classic” virulence factor. Curr. Opin. Microbiol. 2014, 17, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.J.; Wiedmann, M. Allelic exchange and site-directed mutagenesis probe the contribution of ActA amino-acid variability to phosphorylation and virulence-associated phenotypes among Listeria monocytogenes strains. FEMS Microbiol. Lett. 2006, 254, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamer, E.G. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 2004, 4, 812–823. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, S.E.F. Innate and adaptive immune responses during Listeria monocytogenes infection. Microbiol. Spectr. 2019, 7, 12. [Google Scholar] [CrossRef]
- Vázquez-Boland, J.; Ferrer, D.; Rocourt, J. Heterogeneity of strains of Listeria monocytogenes isolated during an outbreak of listeriosis among adults in Valencia in 1989. Enferm. Infecc. Microbiol. Clin. 1991, 9, 442–444. [Google Scholar]
Strain | PF49 | F80594 | G6006 |
---|---|---|---|
Source | Cheese | Stool | Milk |
Servoar | 4b | 4b | 1/2b |
CC (ST) | 1 (1) | 2 (2) | 3 (3) |
Origin | Canton of Vaud, Switzerland | Næstved area, Denmark | Illinois, USA |
Isolation Year | 1986 | 1995 | 1994 |
No. of Cases | 122 | 3 | 45 |
Epidemiologic Clone Identified (%) | 75 | 100 | 92.9 |
Pregnancy-Associated Cases (%) a | 53.3 | 0 | 2.2 |
Non-Pregnant Cases (%) | 46.7 | 100 | 97.8 |
Bacteremia (%) | 21 | 33 | 6.7 b |
Central Nerval Symptoms Developed (%) | 79 c | 0 | 2.2 b |
Diarrhoea (%) | 3 | 100 | 79 |
Underlying Diseases (%) | 42 d | 0 | 3.3 |
Infective Dose Estimated (logCFU) | 6 | Unknown | 11 |
Median of Incubation (days) | Unknown | 1 | <1 |
Reference | [17] | [18] | [19] |
Strain | PF49 | LL195 * | F80594 | G6006 | FSL-R2-503 * (G6054) | FSL-R2-502 * |
---|---|---|---|---|---|---|
Outbreak | Switzserland | Switzserland | Denmark | Denmark | Illinois, USA | Illinois, USA |
Source | cheese | human | fecal | milk | human | food |
Year | 1986 | 1987 | 1995 | 1994 | 1994 | 1994 |
GenBank Accession No. | JADXDN000000000 | HF558398 | JADXDP000000000 | JADXDO000000000 | AARR00000000 | CP006594; CP006595 |
Genome Assembly Size | 2.918 MKbp | 2.904 Mbp | 2.991 Mbp | 2.988 Mbp | 2.991 Mbp | 3.034 Mbp |
No. Contigs | 26 | 1 | 24 | 28 | 55 | 2 |
Plasmid Presence (size) | no | no | no | no | no | yes (57,557 bp) |
Protein (Locus_tag) | PF49 | LL195 * | F80594 | G6006 | FSL-R2-503 (G6054) * | FSL-R2-502 * |
---|---|---|---|---|---|---|
ActA (Lmp0204) | ActA3 (604 AA) | ActA3 (604 AA) | ActA4 (639 AA) | ActA4 (639 AA) | ActA4 (639 AA) | ActA4 (639 AA) |
Autolysin amidase Ami, (Lmo2558) | shorter (605 AA) 75% AA identity | shorter (770 AA) 72% AA identity | shorter (770 AA) 72% AA identity | present (917 AA) | absent | present (917 AA) |
Autolysin Auto (Lmo1076) | absent | absent | absent | present | present | present |
Autolysin IspC (LMOf2365_1093) | present | present | present | absent | absent | absent |
Bacteriocin (Lmo2776) | present | present | present | present | present | present |
InlJ (Lmo2821) | InlJ1 variant (916 AA) | Putative pseudogene | InlJ1 variant (916 AA) | InlJ1 variant (916 AA) | InlJ1 variant (916 AA) | InlJ1 variant (916 AA) |
Listerolysin S locus (LIPI-3) | present | present | absent | present | present | present |
Vip (Lmo0320) | truncated (335 AA) | present (418 AA) | present (418 AA) | present (418 AA) | present (418 AA) | present (418 AA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.; Slaghuis, J.; Göbel, W.; Vázquez-Boland, J.A.; Rychli, K.; Schmitz-Esser, S. Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories. Microorganisms 2021, 9, 1745. https://doi.org/10.3390/microorganisms9081745
Wagner M, Slaghuis J, Göbel W, Vázquez-Boland JA, Rychli K, Schmitz-Esser S. Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories. Microorganisms. 2021; 9(8):1745. https://doi.org/10.3390/microorganisms9081745
Chicago/Turabian StyleWagner, Martin, Jörg Slaghuis, Werner Göbel, José Antonio Vázquez-Boland, Kathrin Rychli, and Stephan Schmitz-Esser. 2021. "Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories" Microorganisms 9, no. 8: 1745. https://doi.org/10.3390/microorganisms9081745
APA StyleWagner, M., Slaghuis, J., Göbel, W., Vázquez-Boland, J. A., Rychli, K., & Schmitz-Esser, S. (2021). Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories. Microorganisms, 9(8), 1745. https://doi.org/10.3390/microorganisms9081745