Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Strain and Medium
2.2. Culture Conditions and Light Source
2.3. Determination of Microalgal Biomass
2.4. Quantification of Lipid, Carbohydrate, and Protein Contents
2.5. Cell Cycle Analysis by Flow Cytometry
2.6. Analysis of Pigment Contents
2.7. Measurement of Quantum Yield and Electron Transport Rate (ETR)
2.8. Analysis of Total Fatty Acid (TFA)
2.9. Metabolite Extraction and Analysis
2.10. Kinetic Models of Carbon Partitioning
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effects of Light Wavelengths on Cell Growth and Photosystem under N-Repletion
3.2. Effects of Light Wavelengths on Cell Growth and Cell Cycle under N-Recovery
3.3. Photosynthetic Characteristics and Pigments of C. reinhardtii under N-Recovery
3.4. Carbon Partitioning of C. reinhardtii under Different Light Wavelengths under N-Recovery
3.5. Metabolites in Central Carbon Metabolism of C. reinhardtii under N-Recovery
3.6. Kinetic Models of Carbon Sinks and Carbon Metabolism for Biomass Production
3.7. A Novel Mixed Light Strategy to Boost Biomass Production by C. reinhardtii under N-Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shuba, E.S.; Kifle, D. Microalgae to Biofuels: ‘Promising’ Alternative and Renewable Energy, Review. Renew. Sust. Energy Rev. 2018, 81, 743–755. [Google Scholar] [CrossRef]
- Ruiz, J.; Olivieri, G.; de Vree, J.; Bosma, R.; Willems, P.; Reith, J.H.; Eppink, M.H.; Kleinegris, D.M.; Wijffels, R.H.; Barbosa, M.J. Towards Industrial Products from Microalgae. Energy Environ. Sci. 2016, 9, 3036–3043. [Google Scholar] [CrossRef] [Green Version]
- Laurens, L.M.; Markham, J.; Templeton, D.W.; Christensen, E.D.; Van Wychen, S.; Vadelius, E.W.; Chen-Glasser, M.; Dong, T.; Davis, R.; Pienkos, P.T. Development of Algae Biorefinery Concepts for Biofuels and Bioproducts; a Perspective on Process-Compatible Products and Their Impact on Cost-Reduction. Energy Environ. Sci. 2017, 10, 1716–1738. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Mao, X.; Wu, T.; Ren, Y.; Chen, F.; Liu, B. Novel Insight of Carotenoid and Lipid Biosynthesis and Their Roles in Storage Carbon Metabolism in Chlamydomonas Reinhardtii. Bioresour. Technol. 2018, 263, 450–457. [Google Scholar] [CrossRef] [PubMed]
- de Winter, L.; Klok, A.J.; Franco, M.C.; Barbosa, M.J.; Wijffels, R.H. The Synchronized Cell Cycle of Neochloris oleoabundans and Its Influence on Biomass Composition under Constant Light Conditions. Algal. Res. 2013, 2, 313–320. [Google Scholar] [CrossRef]
- Miyagishima, S. Regulation of Cell Cycle Progression by Circadian Rhythms in Cyanidioschyzon merolae; Springer: Singapore, 2018; pp. 187–194. [Google Scholar] [CrossRef]
- Kim, J.; Brown, C.M.; Kim, M.K.; Burrows, E.H.; Bach, S.; Lun, D.S.; Falkowski, P.G. Effect of Cell Cycle Arrest on Intermediate Metabolism in the Marine Diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 2017, 114, E8007–E8016. [Google Scholar] [CrossRef] [Green Version]
- Okello, R.; De Visser, P.; Heuvelink, E.; Marcelis, L.; Struik, P. Light Mediated Regulation of Cell Division, Endoreduplication and Cell Expansion. Environ. Exp. Bot. 2016, 121, 39–47. [Google Scholar] [CrossRef]
- Aguilera-Sáez, L.M.; Abreu, A.C.; Camacho-Rodríguez, J.; González-López, C.V.; del Carmen Cerón-García, M.; Fernández, I. NMR Metabolomics as an Effective Tool to Unravel the Effect of Light Intensity and Temperature on the Composition of the Marine Microalgae Isochrysis galbana. J. Agric. Food Chem. 2019, 67, 3879–3889. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Romero, I.T.; Warakanont, J.; Li-Beisson, Y. Lipid Catabolism in Microalgae. New Phytol. 2018, 218, 1340–1348. [Google Scholar] [CrossRef]
- Sun, H.; Liu, B.; Lu, X.; Cheng, K.-W.; Chen, F. Staged Cultivation Enhances Biomass Accumulation in the Green Growth Phase of Haematococcus pluvialis. Bioresour. Technol. 2017, 233, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Nishihama, R.; Kohchi, T. Evolutionary Insights into Photoregulation of the Cell Cycle in the Green Lineage. Curr. Opin. Plant. Biol. 2013, 16, 630–637. [Google Scholar] [CrossRef]
- Mairet, F.; Bernard, O.; Masci, P.; Lacour, T.; Sciandra, A. Modelling Neutral Lipid Production by the Microalga Isochrysis aff. galbana under Nitrogen Limitation. Bioresour. Technol. 2011, 102, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Feng, P.; Feng, J.; Xu, J.; Wang, Z.; Xu, J.; Yuan, Z. The Roles of Starch and Lipid in Chlorella sp. during Cell Recovery from Nitrogen Starvation. Bioresour. Technol. 2018, 247, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Beel, B.; Prager, K.; Spexard, M.; Sasso, S.; Weiss, D.; Müller, N.; Heinnickel, M.; Dewez, D.; Ikoma, D.; Grossman, A.R. A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. Plant. Cell 2012, 24, 2992–3008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Waller, P.; Khawam, G.; Attalah, S.; Huesemann, M.; Ogden, K. Incorporation of Salinity, Nitrogen, and Shading Stress Factors into the Huesemann Algae Biomass Growth model. Algal. Res. 2018, 35, 462–470. [Google Scholar] [CrossRef]
- Zhuang, L.-L.; Yang, T.; Zhang, B.-Y.; Wu, Y.-H.; Hu, H.-Y. The Growth Model and Its Application for Microalgae Cultured in a Suspended-Solid Phase Photobioreactor (ssPBR) for Economical Biomass and Bioenergy Production. Algal. Res. 2019, 39, 101463. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Liu, B.; Chen, T.; Yang, B.; Chen, F. Physiological and Biochemical Changes Reveal Stress-Associated Photosynthetic Carbon Partitioning into Triacylglycerol in the Oleaginous Marine Alga Nannochloropsis oculata. Algal. Res. 2016, 16, 28–35. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Method Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Liu, J.; Han, D.; Yoon, K.; Hu, Q.; Li, Y.T. Characterization of Type 2 Diacylglycerol Acyltransferases in Chlamydomonas reinhardtii Reveals Their Distinct Substrate Specificities and Functions in Triacylglycerol Biosynthesis. Plant. J. 2016, 86, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.H.; Sung, M.G.; Kim, B.; Heo, S.; Chang, Y.K.; Lee, J.H. A Mathematical Model of Intracellular Behavior of Microalgae for Predicting Growth and Intracellular Components Syntheses under Nutrient-Replete and -Deplete Conditions. Biotechnol. Bioeng. 2018, 115, 2441–2455. [Google Scholar] [CrossRef]
- Oldenhof, H.; Zachleder, V.; Van den Ende, H. The Cell Cycle of Chlamydomonas reinhardtii: The Role of the Commitment Point. Folia. Microbiol. 2007, 52, 53. [Google Scholar] [CrossRef]
- Schulze, P.S.; Barreira, L.A.; Pereira, H.G.; Perales, J.A.; Varela, J.C. Light Emitting Diodes (LEDs) Applied to Microalgal Production. Trends Biotechnol. 2014, 32, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Jüppner, J.; Mubeen, U.; Leisse, A.; Caldana, C.; Brust, H.; Steup, M.; Herrmann, M.; Steinhauser, D.; Giavalisco, P. Dynamics of Lipids and Metabolites during the Cell Cycle of Chlamydomonas reinhardtii. Plant. J. 2017, 92, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Boyle, N.R.; Morgan, J.A. Computation of Metabolic Fluxes and Efficiencies for Biological Carbon Dioxide Fixation. Metab. Eng. 2011, 13, 150–158. [Google Scholar] [CrossRef]
- Chen, B.; Wan, C.; Mehmood, M.A.; Chang, J.-S.; Bai, F.; Zhao, X. Manipulating Environmental Stresses and Stress Tolerance of Microalgae for Enhanced Production of Lipids and Value-Added Products–A Review. Bioresour. Technol. 2017, 244, 1198–1206. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, H.; Li, X.; Qi, W.; Cheng, D.; Tang, T.; Zhao, Q.; Wei, W.; Sun, Y. Enhancing Carbohydrate Productivity of Chlorella sp. AE10 in Semi-Continuous Cultivation and Unraveling the Mechanism by Flow Cytometry. Appl. Biochem. Biotech. 2018, 185, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Kong, Q.; Geng, Z.; Duan, L.; Yang, M.; Guan, B. Enhancement of Cell Biomass and Cell Activity of Astaxanthin-Rich Haematococcus pluvialis. Bioresour. Technol. 2015, 186, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.P.; Williams, E.; Wang, D.Z.; Xie, Z.X.; Hsia, R.C.; Jenck, A.; Halden, R.; Li, J.; Chen, F.; Place, A.R. Responses of Nannochloropsis Oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery. Plant. Physiol. 2013, 162, 1110–1126. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, B.; Teixeira, J.; Dragone, G.; Vicente, A.A.; Kawano, S.; Bisova, K.; Pribyl, P.; Zachleder, V.; Vitova, M. Relationship between Starch and Lipid Accumulation Induced by Nutrient Depletion and Replenishment in the Microalga Parachlorella Kessleri. Bioresour. Technol. 2013, 144, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulders, K.J.; Lamers, P.P.; Wijffels, R.H.; Martens, D.E. Dynamics of Biomass Composition and Growth during Recovery of Nitrogen-Starved Chromochloris Zofingiensis. Appl. Microbiol. Biotechnol. 2015, 99, 1873–1884. [Google Scholar] [CrossRef]
Metabolite | Metabolite Content (μg/g) | ||
---|---|---|---|
White Light | Blue Light | Red Light | |
Glycolysis and CBB cycle intermediates | |||
Glucose-6-phosphate | 17.98 ± 0.67 b | 16.73 ± 1.62 b | 13.22 ± 0.47 a |
Fructose-6-phosphate | 5.11 ± 0.53 b | 4.84 ± 0.34 b | 3.98 ± 0.19 a |
Glyceraldehyde-3-phosphate | 25.98 ± 2.08 a | 33.59 ± 1.59 b | 38.45 ± 1.47 c |
Pyruvate | 4.61 ± 0.38 a | 4.39 ± 0.21 a | 4.42 ± 0.62 a |
3-phosphoglycerate | 27.59 ± 0.95 a | 28.13 ± 2.42 a | 24.75 ± 4.77 a |
Acetyl-CoA | 32.15 ± 1.78 a | 39.48 ± 1.56 b | 30.72 ± 1.77 a |
TCA cycle intermediates | |||
Oxaloacetate | 21.22 ± 1.29 a | 30.58 ± 0.86 b | 20.73 ± 1.12 a |
Malate | 30.66 ± 1.16 a | 27.39 ± 2.89 a | 27.07 ± 1.78 a |
Fumarate | 183.17 ± 7.58 a | 166.30 ± 5.49 a | 175.41 ± 11.53 a |
Succinate | 0.58 ± 0.02 a | 0.48 ± 0.22 a | 0.49 ± 0.23 a |
2-oxoglutarate | 22.14 ± 1.35 a | 33.09 ± 2.21 b | 23.05 ± 1.84 a |
Citrate | 1.91 ± 0.17 a | 3.82 ± 0.10 c | 3.16 ± 0.27 b |
Coefficient | White Light | Blue Light | Red Light |
---|---|---|---|
YPX, max (g g−1) | 0.1608 ± 0.0145 | 0.2323 ± 0.0073 | 0.2013 ± 0.0074 |
DP (×10−2 h−1) | −0.0003 ± 0.0001 | 0.0001 ± 0.0000 | −2.133 × 10−7 ± 0.0000 |
YCX, max (g g−1) | −0.9289 ± 0.0401 | −0.6269 ± 0.0430 | −0.9013 ± 0.0593 |
αC (h−1) | 0.0009 ± 0.0001 | 0.0071 ± 0.0011 | 0.0000 ± 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Sun, H.; Deng, J.; Zhang, Y.; Li, Y.; Huang, J.; Chen, F. Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery. Microorganisms 2021, 9, 2480. https://doi.org/10.3390/microorganisms9122480
Ren Y, Sun H, Deng J, Zhang Y, Li Y, Huang J, Chen F. Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery. Microorganisms. 2021; 9(12):2480. https://doi.org/10.3390/microorganisms9122480
Chicago/Turabian StyleRen, Yuanyuan, Han Sun, Jinquan Deng, Yue Zhang, Yuelian Li, Junchao Huang, and Feng Chen. 2021. "Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery" Microorganisms 9, no. 12: 2480. https://doi.org/10.3390/microorganisms9122480
APA StyleRen, Y., Sun, H., Deng, J., Zhang, Y., Li, Y., Huang, J., & Chen, F. (2021). Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery. Microorganisms, 9(12), 2480. https://doi.org/10.3390/microorganisms9122480