Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Sampling, Culture Media and Bacterial Strains
2.2. Bacterial Seed Preparation
2.3. Oil Heating, Bacterial Inoculation and Incubation
2.4. Physicochemical Property Determination of Culture Solutions and Residual Oil
2.5. Microbial Isolate Qualification and Quantification in Terms of Colony Forming Unit (CFU)
2.6. DNA and RNA Extraction
2.7. Sequencing Library of Bacterial V3–V6 Variable Region of the 16S Ribosomal RNA Gene
2.8. Pyrosequencing Data Availability for the Microbial Community Profiles
2.9. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics Change and Microbial Community Succession after Heating Perturbation on Crude Oil at Different Frequencies
3.2. The Effects of Different Exogenous Bacteria on Physiochemical Characteristics Changes in the Thermally Pretreated Crude Oil
3.3. The Effects of Different Exogenous Bacteria on the Microbial Community Reconstruction in the Thermally Pretreated Crude Oil
3.4. Effects of Salinity on Detzia sp. DQ12-45-1b Induced Bioemusification and Microbial Community Reconstruction in Heated Crude Oil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hascakir, B. Introduction to thermal enhanced oil recovery (EOR) special issue. J. Pet. Sci. Eng. 2017, 154, 438–441. [Google Scholar] [CrossRef]
- Atilhan, M.; Aparicio, S. Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. J. Pet. Sci. Eng. 2021, 205, 108746. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: Current state of knowledge, technological advances and future perspectives. Front. Microbiol. 2020, 10, 2996. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Wood, D.A. A comprehensive review of formation damage during enhanced oil recovery. J. Pet. Sci. Eng. 2018, 167, 287–299. [Google Scholar] [CrossRef]
- Kovscek, A.R. Emerging challenges and potential futures for thermally enhanced oil recovery. J. Pet. Sci. Eng. 2012, 98–99, 130–143. [Google Scholar] [CrossRef]
- Vishnyakov, V.; Suleimanov, B.; Salmanov, A.; Zeynalov, E. 8-Thermal EOR. In Primer on Enhanced Oil Recovery; Vishnyakov, V., Suleimanov, B., Salmanov, A., Zeynalov, E., Eds.; Gulf Professional Publishing: Cambridge, MA, USA, 2019; pp. 65–85. [Google Scholar]
- Strelets, L.A.; Ilyin, S.O. Effect of enhanced oil recovery on the composition and rheological properties of heavy crude oil. J. Pet. Sci. Eng. 2021, 203, 108641. [Google Scholar] [CrossRef]
- Dong, X.; Liu, H.; Pang, Z. Investigation of the features about steam breakthrough in heavy oil reservoirs during steam injection. Open Pet. Eng. J. 2012, 5, 1–6. [Google Scholar]
- Zhou, X.; Wang, Y.; Zhang, L.; Zhang, K.; Jiang, Q.; Pu, H.; Wang, L.; Yuan, Q. Evaluation of enhanced oil recovery potential using gas/water flooding in a tight oil reservoir. Fuel 2020, 272, 117706. [Google Scholar] [CrossRef]
- Fan, G.; Xu, J.; Li, M.; Wei, T.; Nassabeh, S.M.M. Implications of hot chemical-thermal enhanced oil recovery techniques after water flooding in shale reservoirs. Energy Rep. 2020, 6, 3088–3093. [Google Scholar] [CrossRef]
- Ahamdi, M.; Chen, Z. Challenges and future of chemical associated heavy oil recovery processes. Adv. Colloid Interface Sci. 2020, 275, 102081. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, H.; Pang, Z.; Wu, Y.; Wang, X.; Liu, D.; Gao, M. A visual investigation of enhanced heavy oil recovery by foam flooding after hot water injection. J. Pet. Sci. Eng. 2016, 147, 361–370. [Google Scholar] [CrossRef]
- Liu, P.; Shi, L.; Liu, P.; Li, L.; Hua, D. Experimental study of high-temperature CO2 foam flooding after hot-water injection in developing heavy oil reservoirs. J. Pet. Sci. Eng. 2020, 185, 106597. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vardhan, K.H.; Jeevanantham, S.; Karishma, S.B.; Yaashikaa, P.R.; Vellaichamy, P. A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges. J. Clean Prod. 2020, 258, 120777. [Google Scholar] [CrossRef]
- Alkan, H.; Mukherjee, S.; Kögler, F. Reservoir engineering of in-situ MEOR: Impact of microbial community. J. Pet. Sci. Eng. 2020, 195, 107928. [Google Scholar] [CrossRef]
- Geetha, S.J.; Banat, I.M.; Joshi, S.J. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol. 2018, 14, 23–32. [Google Scholar]
- Wang, X.; Li, X.; Yu, L.; Li, Y.; Huang, L.; Lin, W.; Li, D. Distinctive microbial communities imply the main mechanism in a MEOR trial in high pour-point reservoir. J. Pet. Sci. Eng. 2019, 175, 97–107. [Google Scholar] [CrossRef]
- Couto, M.R.; Gudiña, E.J.; Ferreira, D.; Teixeira, J.A.; Rodrigues, L.R. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery. New Biotechnol. 2019, 49, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Kögler, F.; Dopffel, N.; Mahler, E.; Hartmann, F.S.F.; Schulze-Makuch, D.; Visser, F.; Frommherz, B.; Herold, A.; Alkan, H. Influence of surface mineralogy on the activity of Halanaerobium sp. during microbial enhanced oil recovery (MEOR). Fuel 2021, 290, 119973. [Google Scholar] [CrossRef]
- Youssef, N.; Elshahed, M.S.; McInerney, M.J. Microbial processes in oil fields: Culprits, problems, and opportunities. Adv. Appl. Microbiol. 2009, 66, 141–251. [Google Scholar]
- Ke, C.; Lu, G.; Wei, Y.; Sun, W.; Hui, J.; Zheng, X.; Zhang, Q.; Zhang, X. Biodegradation of crude oil by Chelatococcus daeguensis HB-4 and its potential for microbial enhanced oil recovery (MEOR) in heavy oil reservoirs. Bioresour. Technol. 2019, 287, 121442. [Google Scholar] [CrossRef]
- Tao, W.; Lin, J.; Wang, W.; Huang, H.; Li, S. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotoxicol. Environ. Saf. 2020, 189, 109994. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, J.; Lai, H.; Xue, Q. Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil. Int. Biodeter. Biodegr. 2017, 122, 12–22. [Google Scholar] [CrossRef]
- Premuzic, E.T.; Lin, M.S. Induced biochemical conversions of heavy crude oils. J. Pet. Sci. Eng. 1999, 22, 171–180. [Google Scholar] [CrossRef]
- Gaytán, I.; Mejía, M.Á.; Hernández-Gama, R.; Torres, L.G.; Escalante, C.A.; Muñoz-Colunga, A. Effects of indigenous microbial consortia for enhanced oil recovery in fragmented calcite rocks system. J. Pet. Sci. Eng. 2015, 128, 65–72. [Google Scholar] [CrossRef]
- Ruan, M.; Liang, B.; Mbadinga, S.M.; Zhou, L.; Wang, L.; Liu, J.; Gu, J.; Mu, B. Molecular diversity of bacterial bamA gene involved in anaerobic degradation of aromatic hydrocarbons in mesophilic petroleum reservoirs. Int. Biodeter. Biodegr. 2016, 114, 122–128. [Google Scholar] [CrossRef]
- Shibulal, B.; Al-Bahry, S.N.; Al-Wahaibi, Y.M.; Elshafie, A.E.; Al-Bemani, A.S.; Joshi, S.J. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions. PLoS ONE 2017, 12, e0171432. [Google Scholar]
- Ghasemi, M.; Tofigh, S.; Parasa, A.; Najafi-Marghmaleki, A. Numerical simulation of impact of biopolymer production and microbial competition between species on performance of MEOR process. J. Pet. Sci. Eng. 2021, 196, 107643. [Google Scholar] [CrossRef]
- Sen, R. Biotechnology in petroleum recovery: The microbial EOR. Prog. Energy Combust. Sci. 2008, 34, 714–724. [Google Scholar] [CrossRef]
- Safdel, M.; Anbaz, M.A.; Daryasafar, A.; Jamialahmadi, M. Microbial enhanced oil recovery, a critical review on worldwide implemented field trails in different countries. Renew. Sust. Energy Rev. 2017, 74, 159–172. [Google Scholar] [CrossRef]
- Riah-Anglet, W.; Trinsoutrot-Gattin, I.; Martin-Laurent, F.; Laroche-Ajzenberg, E.; Norini, M.; Latour, X.; Laval, K. Soil microbial community structure and function relationships: A heat stress experiment. Appl. Soil Ecol. 2015, 86, 121–130. [Google Scholar] [CrossRef]
- Lombao, A.; Barreiro, A.; Fontúrbel, M.T.; Martúrbel, M.T.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Key factors controlling microbial community responses after a fire: Importance of severity and recurrence. Sci. Total Environ. 2020, 741, 140363. [Google Scholar] [CrossRef]
- Pannekens, M.; Kroll, L.; Müller, H.; Mbow, F.T.; Meckenstock, R.U. Oil reservoirs, an exceptional habitat for microorganisms. New Biotechnol. 2019, 49, 1–9. [Google Scholar] [CrossRef]
- Nian, Y.L.; Cheng, W.L. Insights into heat transport for thermal oil recovery. J. Pet. Sci. Eng. 2017, 151, 507–521. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, B.; Dolfing, J.; Li, Y.; Tang, Y.; Jiang, Y.; Chi, C.; Xing, J.; Nie, Y.; Wu, X. Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs. Sci. Total Environ. 2021, 781, 146506. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mbadinga, S.M.; Liu, J.; Zhou, L.; Yang, S.; Gu, J.; Mu, B. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. Int. Biodeterior. Biodegrad. 2017, 120, 170–185. [Google Scholar] [CrossRef]
- Rathi, R.; Lavania, M.; Kukreti, V.; Lal, B. Evaluating the potential of indigenous methanogenic consortium for enhanced oil and gas recovery from high temperature depleted oil reservoir. J. Biotechnol. 2018, 283, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Ranade, D.R.; Dhakephalkar, P.K. Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91–96 °C. Bioresour. Technol. 2014, 165, 274–278. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, C.; Cai, M.; Lou, Z.; Tang, Y.; Zhi, X.; Li, W.; Wu, X.; Du, X. Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int. J. Syst. Evol. Microbiol. 2010, 60, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Y.; Fang, H.; Li, Y.; Chi, C.; Tang, Y.; Wu, X. The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1(T) reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment. PLoS ONE 2013, 8, e70986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Chi, C.; Nie, Y.; Tang, Y.; Tan, Y.; Wu, G.; Wu, X. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour. Technol. 2011, 102, 7755–7761. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Nie, Y.; Tang, Y.; Wu, G.; Wu, X. n-alkane chain length alters Dietzia sp. strain DQ12-45-1b biosurfactant production and cell surface activity. Appl. Env. Microbiol. 2013, 79, 400–402. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Wang, M.; Geng, S.; Wen, L.; Wu, M.; Nie, Y.; Tang, Y.; Wu, X. Metabolic exchange with non-alkane-consuming Pseudomonas stutzeri SLG510A3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. strain DQ12-45-1b. Appl. Env. Microbiol. 2020, 86, e02931-19. [Google Scholar] [CrossRef]
- Wang, M.; Nie, Y.; Wu, X. Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a gram-positive bacterium. ISME J. 2021, 15, 605–617. [Google Scholar] [CrossRef]
- Shelton, J.L.; Akob, D.M.; Mclntosh, J.C.; Fierer, N.; Spear, J.R.; Warwick, P.D.; McCray, J.E. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient. Front. Microbiol. 2016, 7, 1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wu, J.; Lin, J.; Zhao, J.; Xu, T.; Yang, Q.; Zhao, J.; Zhao, Z.; Song, X. Changes in the microbial community diversity of oil exploitation. Genes 2019, 10, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Liu, Z.; Guo, P.; Chi, C.; Chen, J.; Wang, X.; Tang, Y.; Wu, X.; Liu, C. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria. PLoS ONE 2012, 7, e40842. [Google Scholar]
- Tang, Y.; Li, Y.; Zhao, J.; Chi, C.; Huang, L.; Dong, H.; Wu, X. Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperature in the Huabei Oilfield, China. PLoS ONE 2012, 7, e33535. [Google Scholar]
- Nithya, C.; Pandian, S.K. Evaluation of bacterial diversity in Palk Bay sediments using terminal-restriction fragment length polymorphisms (T-RFLP). Appl. Biochem. Biotechnol. 2012, 167, 1763–1777. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, W.; Li, B.; Wu, L.; Fang, C.; Zhang, Z. Terminal restriction fragment length polymorphism analysis of soil bacterial communities under different vegetation types in subtropical area. PLoS ONE 2015, 10, e0129397. [Google Scholar] [CrossRef] [PubMed]
- Ronaghi, M.; Uhlen, M.; Nyren, P. A sequencing method based on real-time pyrophosphate. Science 1998, 281, 363–365. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Hall, B.G.; Notes, A. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Li, G.; Tian, H.; Wang, Y.; Sun, H.; Ma, T. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs. Biogeosciences 2015, 12, 3403–3414. [Google Scholar] [CrossRef] [Green Version]
- Nazina, T.N.; Shestakova, N.M.; Semenova, E.M.; Korshunova, A.V.; Kostrukova, N.K.; Tourova, T.P.; Min, L.; Feng, Q.; Poltaraus, A.B. Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir. Front. Microbiol. 2017, 8, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Env. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Magot, M.; Ollivier, B.; Patel, B.K.C. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 2000, 77, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Nie, Y.; Chi, C.; Tang, Y.; Wang, X.; Liu, Z.; Yang, Y.; Zhao, J.; Wu, X. Crude oil as a microbial seed bank with unexpected functional potentials. Sci. Rep. 2015, 5, 16057. [Google Scholar] [CrossRef] [PubMed]
- Mouser, P.J.; Borton, M.; Darrah, T.H.; Hartsock, A.; Wrighton, K.C. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiol. Ecol. 2016, 92, fiw166. [Google Scholar] [CrossRef]
- Liu, Y.; Galzerani, D.D.; Mbadinga, S.M.; Zaramela, L.S.; Gu, J.; Mu, B.; Zengler, K. Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meckenstock, R.U.; von Netzer, F.; Stumpp, C.; Lueders, T.; Himmelberg, A.M.; Hertkorn, N.; Schmitt-Kopplin, P.; Harir, M.; Hosein, R.; Haque, S.; et al. Water droplets in oil are microhabitats for microbial life. Science 2014, 345, 673–676. [Google Scholar] [CrossRef]
- Vigneron, A.; Alsop, E.B.; Lomans, B.P.; Kyrpides, N.C.; Head, I.M.; Tsesmetzis, N. Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME J. 2017, 11, 2141–2154. [Google Scholar] [CrossRef] [Green Version]
- Suri, N.; Gassara, F.; Stanislav, P.; Voordouw, G. Microbially enhanced oil recovery by alkylbenzene-oxidizing nitrate-reducing bacteria. Front. Microbiol. 2019, 10, 1243. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, K.; Tao, W.; Wang, D.; Li, S. Geobacillus strains have potential value in microbial enhanced oil recovery. Appl. Microbiol. Biotechnol. 2019, 103, 8339–8350. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lai, R.; Jin, Y.; Fang, X.; Cui, K.; Sun, S.; Gong, Y.; Li, H.; Zhang, Z.; Zhang, G.; et al. Directional culture of petroleum hydrocarbon degrading bacteria for enhancing crude oil recovery. J. Hazard. Mater. 2020, 390, 122160. [Google Scholar] [CrossRef]
- Khalil, C.A.; Prince, V.L.; Prince, R.C.; Greer, C.W.; Lee, K.; Zhang, B.; Boufadel, M. Occurrence and biodegradation of hydrocarbons at high salinities. Sci. Total Environ. 2021, 762, 143165. [Google Scholar] [CrossRef]
- Larter, S.; Wilhelms, A.; Head, I.; Koopmans, M.; Apline, A.; Di Primio, R.; Zwach, C.; Erdmann, M.; Telnaes, N. The controls on the composition of biodegraded oils in the deep subsurface—Part 1: Biodegradation rates in petroleum reservoirs. Org. Geochem. 2003, 34, 610–613. [Google Scholar] [CrossRef]
- Fang, H.; Qin, X.; Zhang, K.; Nie, Y.; Wu, X. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b. Appl. Microbiol. Biotechnol. 2018, 102, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bohn, K.; Pavlick, R.; Reu, B.; Kleidon, A. The strengths of r- and K-selection shape diversity-disturbance relationships. PLoS ONE 2014, 9, e95659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pianka, E.R. On r-and K-selection. Am. Nat. 1970, 104, 592–597. [Google Scholar] [CrossRef]
- Reznick, D.; Bryant, M.J.; Bashey, F. r-and K-selection revisited: The role of population regulation in life-history evolution. Ecology 2002, 83, 1509–1520. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
Treatment Label | Culture Thermal Pretreatment | NaCl in I-MSM (g/L) | Exogenous Bacteria |
---|---|---|---|
N5a | Autoclaving at 121 °C for 20 min | 5 | - |
N5b | Twice autoclaving at 121 °C for 20 min with a three-day interval | 5 | - |
N5c | - | 5 | - |
A5a | Autoclaving at 121 °C for 20 min | 5 | A. subflavus DQS3-9A1T |
A5b | Twice autoclaving at 121 °C for 20 min with a three-day interval | 5 | A. subflavus DQS3-9A1T |
A5c | - | 5 | A. subflavus DQS3-9A1T |
B5a | Autoclaving at 121 °C for 20 min | 5 | Dietzia sp. DQ12-45-1b |
B5b | Twice autoclaving at 121 °C for 20 min with a three-day interval | 5 | Dietzia sp. DQ12-45-1b |
B5c | - | 5 | Dietzia sp. DQ12-45-1b |
B50a | Autoclaving at 121 °C for 20 min | 50 | Dietzia sp. DQ12-45-1b |
B50b | Twice autoclaving at 121 °C for 20 min with a three-day interval | 50 | Dietzia sp. DQ12-45-1b |
B50c | - | 50 | Dietzia sp. DQ12-45-1b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Zhao, J.-Y.; Nie, Y.; Qin, X.-Y.; Zhang, K.-D.; Xing, J.-M.; Wu, X.-L. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021, 9, 2054. https://doi.org/10.3390/microorganisms9102054
Hu B, Zhao J-Y, Nie Y, Qin X-Y, Zhang K-D, Xing J-M, Wu X-L. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms. 2021; 9(10):2054. https://doi.org/10.3390/microorganisms9102054
Chicago/Turabian StyleHu, Bing, Jie-Yu Zhao, Yong Nie, Xiao-Yu Qin, Kai-Duan Zhang, Jian-Min Xing, and Xiao-Lei Wu. 2021. "Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil" Microorganisms 9, no. 10: 2054. https://doi.org/10.3390/microorganisms9102054
APA StyleHu, B., Zhao, J.-Y., Nie, Y., Qin, X.-Y., Zhang, K.-D., Xing, J.-M., & Wu, X.-L. (2021). Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms, 9(10), 2054. https://doi.org/10.3390/microorganisms9102054