Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Case Study in 2017
3.2. Species Confirmation by PCR, MALDI-TOF MS and Phenotypical Characterization
3.3. Whole Genome Data
3.4. Virulence Factors Revealed by WGS
3.5. Antimicrobial Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harris, J.B.; LaRocque, R.C.; Qadri, F.; Ryan, E.T.; Calderwood, S.B. Cholera. Lancet 2012, 379, 2466–2476. [Google Scholar] [CrossRef] [Green Version]
- Schirmeister, F.; Dieckmann, R.; Bechlars, S.; Bier, N.; Faruque, S.M.; Strauch, E. Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 767–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, M.; Izhaki, I. Fish as Hosts of Vibrio cholerae. Front. Microbiol. 2017, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, H.; Gao, X.; Zhang, H.; Chen, N.; Miao, Z.; Liu, X.; Zhang, X. The pathogenicity characterization of non-O1 Vibrio cholerae and its activation on immune system in freshwater shrimp Macrobrachium nipponense. Fish Shellfish Immunol. 2019, 87, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; An, J.; Zheng, W.; He, S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J. Invertebr. Pathol. 2015, 130, 13–20. [Google Scholar] [CrossRef]
- Ogg, J.E.; Ryder, R.A.; Smith, H.L., Jr. Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah. Appl. Environ. Microbiol. 1989, 55, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.V.; Bashford, D.J.; Donovan, T.J.; Furniss, A.L.; West, P.A. The incidence of Vibrio cholerae in water, animals and birds in Kent, England. J. Appl. Bacteriol. 1982, 52, 281–291. [Google Scholar] [CrossRef]
- Cardoso, M.D.; Lemos, L.S.; Roges, E.M.; de Moura, J.F.; Tavares, D.C.; Matias, C.A.R.; Rodrigues, D.P.; Siciliano, S. A comprehensive survey of Aeromonas sp. and Vibrio sp. in seabirds from southeastern Brazil: Outcomes for public health. J. Appl. Microbiol. 2018, 124, 1283–1293. [Google Scholar] [CrossRef]
- Pretzer, C.; Druzhinina, I.S.; Amaro, C.; Benediktsdottir, E.; Hedenstrom, I.; Hervio-Heath, D.; Huhulescu, S.; Schets, F.M.; Farnleitner, A.H.; Kirschner, A.K. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ. Microbiol. 2017, 19, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, M.; Kristensen, K.K. Isolation, characterization and public health aspects of Vibrio cholerae NAG isolated from a Danish duck farm. Avian Pathol. 1975, 4, 271–276. [Google Scholar] [CrossRef]
- Bisgaard, A.T.; Sakazaki, R.; Shimada, T. Prevalence of non-cholera vibrios in cavum nasi and pharynx of ducks. Acta Path. Microb. Scand. Sect. B 1978, 86, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Schlater, L.K.; Blackburn, B.O.; Harrington, R., Jr.; Draper, D.J.; Van Wagner, J.; Davis, B.R. A non-O1 Vibrio cholerae isolated from a goose. Avian Dis. 1981, 25, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.L.; Salmon, S.A.; Yancey, R.J., Jr.; Nersessian, B.; Kounev, Z.V. Minimum inhibitory concentrations of bacteria isolated from septicemia and airsacculitis in ducks. J. Vet. Diagn. Investig. 1993, 5, 625–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akond, M.A.; Alam, S.; Hasam, S.M.R.; Uddin, S.N.; Shirin, M. Antibiotic resistance of Vibrio cholerae from poultry sources of Dhaka, Bangladesh. Adv. Biolog. Res. 2008, 2, 60–67. [Google Scholar]
- Tarr, C.L.; Patel, J.S.; Puhr, N.D.; Sowers, E.G.; Bopp, C.A.; Strockbine, N.A. Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J. Clin. Microbiol. 2007, 45, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Ghosh, K.; Raychoudhuri, A.; Chowdhury, G.; Bhattacharya, M.K.; Mukhopadhyay, A.K.; Ramamurthy, T.; Bhattacharya, S.K.; Klose, K.E.; Nandy, R.K. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, india. J. Clin. Microbiol. 2009, 47, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Shuan Ju Teh, C.; Lin Thong, K.; Tein Ngoi, S.; Ahmad, N.; Balakrish Nair, G.; Ramamurthy, T. Molecular characterization of serogrouping and virulence genes of Malaysian Vibrio cholerae isolated from different sources. J. Gen. Appl. Microbiol. 2009, 55, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, K.; Yamasaki, S.; Mukhopadhyay, A.K.; Chakraborty, S.; Basu, A.; Bhattacharya, S.K.; Nair, G.B.; Shimada, T.; Takeda, Y. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol. Med. Microbiol. 1998, 20, 201–207. [Google Scholar] [CrossRef]
- Jäckel, C.; Hammerl, J.A.; Arslan, H.H.; Göllner, C.; Vom Ort, N.; Taureck, K.; Strauch, E. Phenotypic and genotypic characterization of veterinary Vibrio cincinnatiensis isolates. Microorganisms 2020, 8, 739. [Google Scholar] [CrossRef]
- CLSI. Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline, 3rd Edition M45; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17. [Google Scholar] [CrossRef]
- Schwartz, K.; Hammerl, J.A.; Göllner, C.; Strauch, E. Environmental and clinical strains of Vibrio cholerae Non-O1, Non-O139 from Germany possess similar virulence gene profiles. Front. Microbiol. 2019, 10, 733. [Google Scholar] [CrossRef]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Ponten, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Octavia, S.; Salim, A.; Kurniawan, J.; Lam, C.; Leung, Q.; Ahsan, S.; Reeves, P.R.; Nair, G.B.; Lan, R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS ONE 2013, 8, e65342. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Moller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Jermyn, W.S.; Boyd, E.F. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 2002, 148, 3681–3693. [Google Scholar] [CrossRef] [Green Version]
- Dziejman, M.; Balon, E.; Boyd, D.; Fraser, C.M.; Heidelberg, J.F.; Mekalanos, J.J. Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 2002, 99, 1556–1561. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, Y.A.; Finnan, S.; Reen, F.J.; Morrissey, J.P.; O’Gara, F.; Boyd, E.F. The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology 2004, 150, 4053–4063. [Google Scholar] [CrossRef] [Green Version]
- Chaand, M.; Miller, K.A.; Sofia, M.K.; Schlesener, C.; Weaver, J.W.; Sood, V.; Dziejman, M. Type 3 secretion system island encoded proteins required for colonization by Non-O1/non-O139 serogroup Vibrio cholerae. Infect. Immun. 2015, 83, 2862–2869. [Google Scholar] [CrossRef] [Green Version]
- Dziejman, M.; Serruto, D.; Tam, V.C.; Sturtevant, D.; Diraphat, P.; Faruque, S.M.; Rahman, M.H.; Heidelberg, J.F.; Decker, J.; Li, L.; et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl. Acad. Sci. USA 2005, 102, 3465–3470. [Google Scholar] [CrossRef] [Green Version]
- Figueras, M.J.; Beaz-Hidalgo, R.; Hossain, M.J.; Liles, M.R. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc. 2014, 2, e00927-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesper, J.; Blass, J.; Fountoulakis, M.; Reidl, J. Characterization of the major control region of Vibrio cholerae bacteriophage K139: Immunity, exclusion, and integration. J. Bacteriol. 1999, 181, 2902–2913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.H.; Pham, T.D.; Higa, N.; Iwashita, H.; Takemura, T.; Ohnishi, M.; Morita, K.; Yamashiro, T. Analysis of Vibrio seventh pandemic island II and novel genomic islands in relation to attachment sequences among a wide variety of Vibrio cholerae strains. Microbiol. Immunol. 2018, 62, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, B.M.; Waldor, M.K. Filamentous phages linked to virulence of Vibrio cholerae. Curr. Opin. Microbiol. 2003, 6, 35–42. [Google Scholar] [CrossRef]
- Karaolis, D.K.R.; Johnson, J.A.; Bailey, C.C.; Boedeker, E.C.; Kaper, J.B.; Reeves, P.R. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 1998, 95, 3134–3139. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.A.; Boyd, E.F. Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J. Bacteriol. 2008, 190, 636–647. [Google Scholar] [CrossRef] [Green Version]
- Satchell, K.J.F. Multifunctional-Autoprocessing repeats-in-toxin (MARTX) Toxins of Vibrios. Microbiol. Spectr. 2015, 3, VE-0002. [Google Scholar] [CrossRef] [Green Version]
- Chiavelli, D.A.; Marsh, J.W.; Taylor, R.K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 2001, 67, 3220–3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallarino, A.; Attridge, S.R.; Manning, P.A.; Focareta, T. Cloning and characterization of a novel haemolysin in Vibrio cholerae O1 that does not directly contribute to the virulence of the organism. Microbiology 2002, 148, 2181–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, K.A.; Beyhan, S.; Correa, N.; Queen, J.; Liu, J.; Peng, F.; Satchell, K.J.; Yildiz, F.; Klose, K.E. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J. Bacteriol. 2009, 191, 6555–6570. [Google Scholar] [CrossRef] [Green Version]
- Alm, R.A.; Stroeher, U.H.; Manning, P.A. Extracellular proteins of Vibrio cholerae: Nucleotide sequence of the structural gene (hlyA) for the haemolysin of the haemolytic El Tor strain 017 and characterization of the hlyA mutation in the non-haemolytic classical strain 569B. Mol. Microbiol. 1988, 2, 481–488. [Google Scholar] [PubMed]
- Mathur, J.; Davis, B.M.; Waldor, M.K. Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol. Microbiol. 2007, 63, 848–858. [Google Scholar] [CrossRef]
- Joshi, A.; Kostiuk, B.; Rogers, A.; Teschler, J.; Pukatzki, S.; Yildiz, F.H. Rules of engagement: The type VI secretion system in Vibrio cholerae. Trends Microbiol. 2017, 25, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Higgins, D.A.; Pomianek, M.E.; Kraml, C.M.; Taylor, R.K.; Semmelhack, M.F.; Bassler, B.L. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 2007, 450, 883–886. [Google Scholar] [CrossRef]
- Halpern, M. Novel insights into haemagglutinin protease (HAP) gene regulation in Vibrio cholerae. Mol. Ecol. 2010, 19, 4108–4112. [Google Scholar] [CrossRef]
- Wu, Z.; Nybom, P.; Magnusson, K.E. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell. Microbiol. 2000, 2, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.P.; Asakura, M.; Chowdhury, N.; Neogi, S.B.; Hinenoya, A.; Golbar, H.M.; Yamate, J.; Arakawa, E.; Tada, T.; Ramamurthy, T.; et al. Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. Infect. Immun. 2013, 81, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, J.; Waldor, M.K. The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect. Immun. 2004, 72, 3577–3583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, A.; Kato, J.; Watanabe, H.; Nair, B.G.; Takeda, T. Cloning and nucleotide sequence of a heat-stable enterotoxin gene from Vibrio cholerae non-O1 isolated from a patient with traveler’s diarrhea. Infect. Immun. 1990, 58, 3325–3329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.V.; Matte, M.H.; Matte, G.R.; Jiang, S.; Sabeena, F.; Shukla, B.N.; Sanyal, S.C.; Huq, A.; Colwell, R.R. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: Clonal relationships between clinical and environmental isolates. Appl. Environ. Microbiol. 2001, 67, 910–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, I.N.G.; Chun, J.; Huq, A.; Sack, R.B.; Colwell, R.R. Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl. Environ. Microbiol. 2001, 67, 2421–2429. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, K.L.; Cordero, C.L.; Satchell, K.J. Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc. Natl. Acad. Sci. USA 2004, 101, 9798–9803. [Google Scholar] [CrossRef] [Green Version]
- Massad, G.; Oliver, J.D. New selective and differential medium for Vibrio cholerae and Vibrio vulnificus. Appl. Environ. Microbiol. 1987, 53, 2262–2264. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, T.; Barnes, H.J. Miscellaneous and sporadic bacterial infections. In Diseases of Poultry, 13th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Oxford, UK, 2016; pp. 1017–1027. [Google Scholar]
- Greig, D.R.; Schaefer, U.; Octavia, S.; Hunter, E.; Chattaway, M.A.; Dallman, T.J.; Jenkins, C. Evaluation of whole-genome sequencing for identification and typing of Vibrio cholerae. J. Clin. Microbiol. 2018, 56, e00831. [Google Scholar] [CrossRef] [Green Version]
- Aanensen, D.M.; Spratt, B.G. The multilocus sequence typing network: Mlst.net. Nucleic Acids Res. 2005, 33, W728–W733. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, D.; Chen, A.; Hasan, N.A.; Rashed, S.M.; Huq, A.; Colwell, R.R. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Appl. Environ. Microbiol. 2015, 81, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Baddam, R.; Sarker, N.; Ahmed, D.; Mazumder, R.; Abdullah, A.; Morshed, R.; Hussain, A.; Begum, S.; Shahrin, L.; Khan, A.I.; et al. Genome dynamics of Vibrio cholerae isolates linked to seasonal outbreaks of cholera in Dhaka, Bangladesh. mBio 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Bwire, G.; Sack, D.A.; Almeida, M.; Li, S.; Voeglein, J.B.; Debes, A.K.; Kagirita, A.; Buyinza, A.W.; Orach, C.G.; Stine, O.C. Molecular characterization of Vibrio cholerae responsible for cholera epidemics in Uganda by PCR, MLVA and WGS. PLoS Negl. Trop. Dis. 2018, 12, e0006492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siriphap, A.; Leekitcharoenphon, P.; Kaas, R.S.; Theethakaew, C.; Aarestrup, F.M.; Sutheinkul, O.; Hendriksen, R.S. Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand. PLoS ONE 2017, 12, e0169324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldor, M.K.; Mekalanos, J.J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996, 272, 1910–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesper, J.; Kapfhammer, D.; Klose, K.E.; Merkert, H.; Reidl, J. Characterization of Vibrio cholerae O1 antigen as the bacteriophage K139 receptor and identification of IS1004 insertions aborting O1 antigen biosynthesis. J Bacteriol. 2000, 182, 5097–5104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.H.; Biswas, K.; Hossain, M.A.; Sack, R.B.; Mekalanos, J.J.; Faruque, S.M. Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: Tracking the evolution of pathogenic strains. DNA Cell Biol. 2008, 27, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Sakib, S.N.; Reddi, G.; Almagro-Moreno, S. Environmental role of pathogenic traits in Vibrio cholerae. J. Bacteriol. 2018, 200, e00795-17. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, W.; Dong, C. Crystal structure of the outer membrane protein OmpU from Vibrio cholerae at 2.2 A resolution. Acta Cryst. D Struct. Biol. 2018, 74, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaoka, M.; Miyata, S.T.; Unterweger, D.; Pukatzki, S. Antibiotic resistance mechanisms of Vibrio cholerae. J. Med. Microbiol. 2011, 60, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Huehn, S.; Eichhorn, C.; Urmersbach, S.; Breidenbach, J.; Bechlars, S.; Bier, N.; Alter, T.; Bartelt, E.; Frank, C.; Oberheitmann, B.; et al. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int. J. Med. Microbiol. 2014, 304, 843–850. [Google Scholar] [CrossRef]
- Boer, S.I.; Heinemeyer, E.A.; Luden, K.; Erler, R.; Gerdts, G.; Janssen, F.; Brennholt, N. Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German north sea. Microb. Ecol. 2013, 65, 1052–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliem, R.; Reischer, G.; Linke, R.; Farnleitner, A.; Kirschner, A. Spatiotemporal dynamics of Vibrio cholerae in turbid alkaline lakes as determined by quantitative PCR. Appl. Environ. Microbiol. 2018, 84, e00317–e00318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Year of Isolation | Source | Origin | Information on Disease |
---|---|---|---|---|
17-VB00405 | 2017 | Duck/liver | Bavaria/Germany | Mild fibrinous-purulent hepatitis |
16-VB00145 | 2016 | Duckling/liver | Bavaria/Germany | Premature death/stunted growth/lameness |
T58 | 2011 | Duck/jejunum | Saxony/Germany | Pneumonia/peritonitis |
CH415 | 1996 | Duckling/lung | Saxony/Germany | Dyspnea/polyserositis/pneumonia/inability to stand |
Gene/Target | Primer | Sequence (5′ to 3′) | Amplicon Size (bp) | Ta (°C) | References |
---|---|---|---|---|---|
sodB | VcsodBf | AAGACCTCAACTGGCGGTA | 248 | [15] | |
VcsodBR | GAAGTGTTAGTGATCGCCAGAGT | ||||
ctxA | ctxA1 | CTCAGACGGGATTTGTTAGGCACG | 301 | [16] | |
ctxA2 | TCTATCTCTGTAGCCCCTATTACG | 59 | |||
rfb O1 cluster | O1F | GTTTCACTGAACAGATGGG | 192 | [17] | |
O1R | GGTCATCTGTAAGTACAAC | ||||
rfb O139 cluster | O139F | AGCCTCTTTATTACGGGTGG | 449 | [18] | |
O139R | GTCAAACCCGATCGTAAAGG |
Isolate | MALDI-TOF MS | Average Nucleotide Identity ** | |
---|---|---|---|
Score * | Interpretation | ||
CH415 | 2.38 | Highly probable identification to species level | 98.26% |
T58 | 2.28 | Probable identification to species level | 98.06% |
16-VB00145 | 2.33 | Highly probable identification to species level | 98.06% |
17-VB00405 | 2.30 | Highly probable identification to species level | 98.25% |
Virulence Factors/Function. | Related Genes | CH415 | T58 | 16-VB00145 | 17-VB00405 | Reference |
---|---|---|---|---|---|---|
CTX prophage/cholera toxin | ctxAB, zot, ace, rstA, rstB, rstR | n.d. | n.d. | n.d. | n.d. | [38] |
Vibrio pathogenicity island 1 (VPI-1)/toxin-coregulated pilus accessory colonization factor | tcp cluster, acf cluster | n.d. | n.d. | n.d. | n.d. | [39] |
Vibrio pathogenicity island 2 (VPI-2)/sialic acid (SA) metabolism | VC1776-VC1783 (SA transport, SA catabolism) VC1784 (nanH, neuraminidase) | n.d. | n.d. | VC1776-VC1784 | n.d. | [40] |
Type three secretion system * core region, 5′ and 3′ flanking region | vsc/vsp cluster, vop effectors, acfA, acfD, trh | n.d. | present | n.d. | n.d. | [33] |
Vibrio seventh pandemic island 1 (VSP-1)/increased fitness | VC0175-VC0185 | n.d. | n.d. | n.d. | n.d. | [40] |
Vibrio seventh pandemic island 2 (VSP-2)/increased fitness | VC0490-VC0516 | n.d. | VC0504-VC0510, VC0516 | n.d. | VC0490-VC0516 | [37] |
Repeats-in-toxin (RTX) toxins/cytotoxin | rtxA (similar to VC1451), rtxB, rtxC, rtxD | present | present | present | present | [41] |
Mannose-sensitive hemagglutinin pilus (MSHA pilus)/adhesion | mshA | present | n.d. | n.d. | n.d. | [42] |
Hemolysin genes/cytotoxins | hlyA, tlh, dth | present | present | present | present | [43,44,45] |
Outer membrane protein/defense | ompU | present | present | present | present | [46] |
Type VI secretion system (T6SS) core genes, effectors/interaction | vipAB, vasA-vasK, vgrG-2, VCA0109, VCA0122 | present | present | present | present | [47] |
Quorum sensing/autoinducer | luxS, cqsA | present | present | present | present | [48] |
Hemagglutination/protease | hap | present | present | present | present | [49,50] |
Cholix toxin*/ADP-ribosylating toxin | chxA | n.d. | n.d. | n.d. | present | [51] |
Virulence gene expression/transcriptional activator | toxR | present | present | present | present | [52] |
Heat-stable enterotoxin * | stn | n.d. | n.d. | n.d. | n.d. | [53] |
Isolate | AMP | CHL | CIP | COL | FOX | GEN | NAL * | SMX | TAZCLA | TEMOCI * | TET | TMP | AMR Genes ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH415 | 4 | ≤8 | 0.03 | >16 | 8 | 2 | 16 | 512 | ≤0.12 | 4 | ≤2 | >32 | aadA1, catB9, sul1, dfr1, gyrA (p.D87G) * |
T58 | 4 | ≤8 | ≤0.015 | >16 | 8 | ≤0.5 | ≤4 | ≤8 | ≤0.12 | 2 | ≤2 | 0.5 | - |
16-VB00145 | 2 | ≤8 | ≤0.015 | >16 | 4 | 1 | ≤4 | ≤8 | ≤5 | 2 | ≤2 | 0.5 | - |
17-VB00405 | 2 | ≤8 | ≤0.015 | >16 | 8 | ≤0.5 | ≤4 | ≤8 | ≤0.12 | 2 | ≤2 | 0.5 | catB9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirsch, N.; Kappe, E.; Gangl, A.; Schwartz, K.; Mayer-Scholl, A.; Hammerl, J.A.; Strauch, E. Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany. Microorganisms 2020, 8, 1104. https://doi.org/10.3390/microorganisms8081104
Hirsch N, Kappe E, Gangl A, Schwartz K, Mayer-Scholl A, Hammerl JA, Strauch E. Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany. Microorganisms. 2020; 8(8):1104. https://doi.org/10.3390/microorganisms8081104
Chicago/Turabian StyleHirsch, Nicola, Eva Kappe, Armin Gangl, Keike Schwartz, Anne Mayer-Scholl, Jens Andre Hammerl, and Eckhard Strauch. 2020. "Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany" Microorganisms 8, no. 8: 1104. https://doi.org/10.3390/microorganisms8081104
APA StyleHirsch, N., Kappe, E., Gangl, A., Schwartz, K., Mayer-Scholl, A., Hammerl, J. A., & Strauch, E. (2020). Phenotypic and Genotypic Properties of Vibrio cholerae non-O1, non-O139 Isolates Recovered from Domestic Ducks in Germany. Microorganisms, 8(8), 1104. https://doi.org/10.3390/microorganisms8081104