Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sheep Recto-Anal Junction Samples Examined for STEC
2.2. Real-Time PCR (qPCR) and Culture
2.3. Pre-Treatment with Propidium Monoazide and Real Time PCR (qPCR-PMA)
2.4. Detection of Free Bacteriophages
2.5. Phage Induction
2.6. Plaque Assay
3. Results
3.1. Real-Time PCR Results and Comparison with PMA-qPCR
3.2. Detection of Free Bacteriophages and Inducible Prophages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Caprioli, A.; Scavia, G.; Morabito, S. Public Health Microbiology of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, M.; Chinen, I.; Miliwebsky, E.; Masana, M. Risk Factors for Shiga Toxin-Producing Escherichia coli-Associated Human Diseases. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koudelka, G.B.; Arnold, J.W.; Chakraborty, D. Evolution of STEC virulence: Insights from the antipredator activities of Shiga toxin producing E. coli. Int. J. Med. Microbiol. 2018, 308, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.I.; Islam, M.R.; Sawaguchi, A.; Asadulghani, M.; Ooka, T.; Gotoh, Y.; Kasahara, Y.; Ogura, Y.; Hayashi, T. Genes essential for the morphogenesis of the Shiga toxin 2-transducing phage from Escherichia coli O157:H7. Sci. Rep. 2016, 6, 39036. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.L.; Acheson, D.W.; Waldor, M.K. Isogenic lysogens of diverse shiga toxin 2-encoding bacteriophages produce markedly different amounts of shiga toxin. Infect. Immun. 1999, 67, 6710–6714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniesa, M.; Jofre, J.; García-Aljaro, C.; Blanch, A.R. Occurrence of Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli in the environment. Environ. Sci. Technol. 2006, 40, 7141–7149. [Google Scholar] [CrossRef]
- Rowell, S.; King, C.; Jenkins, C.; Dallman, T.J.; Decraene, V.; Lamden, K.; Howard, A.; Featherstone, C.A.; Cleary, P. An outbreak of Shiga toxin-producing Escherichia coli serogroup O157 linked to a lamb-feeding event. Epidemiol. Infect. 2016, 144, 2494–2500. [Google Scholar] [CrossRef] [Green Version]
- Sharapov, U.M.; Wendel, A.M.; Davis, J.P.; Keene, W.E.; Farrar, J.; Sodha, S.; Hyytia-Trees, E.; Leeper, M.; Gerner-Smidt, P.; Griffin, P.M.; et al. Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with Consumption of Fresh Spinach: United States, 2006. J. Food Prot. 2016, 79, 2024–2030. [Google Scholar] [CrossRef]
- Jones, G.; Lefèvre, S.; Donguy, M.P.; Nisavanh, A.; Terpant, G.; Fougère, E.; Vaissière, E.; Guinard, A.; Mailles, A.; de Valk, H.; et al. Outbreak of Shiga toxin-producing. Eur. Surveill. 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Muniesa, M.; de Simon, M.; Prats, G.; Ferrer, D.; Pañella, H.; Jofre, J. Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157:H7 strains of human origin isolated from a single outbreak. Infect. Immun. 2003, 71, 4554–4562. [Google Scholar] [CrossRef] [Green Version]
- Böhnlein, C.; Kabisch, J.; Müller-Herbst, S.; Fiedler, G.; Franz, C.M.A.P.; Pichner, R. Persistence and reduction of Shiga toxin-producing Escherichia coli serotype O26:H11 in different types of raw fermented sausages. Int. J. Food Microbiol. 2017, 261, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Hiroi, M.; Takahashi, N.; Harada, T.; Kawamori, F.; Iida, N.; Kanda, T.; Sugiyama, K.; Ohashi, N.; Hara-Kudo, Y.; Masuda, T. Serotype, Shiga toxin (Stx) type, and antimicrobial resistance of Stx-producing Escherichia coli isolated from humans in Shizuoka Prefecture, Japan (2003-2007). Jpn J. Infect. Dis. 2012, 65, 198–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buvens, G.; Possé, B.; De Schrijver, K.; De Zutter, L.; Lauwers, S.; Piérard, D. Virulence profiling and quantification of verocytotoxin-producing Escherichia coli O145:H28 and O26:H11 isolated during an ice cream-related hemolytic uremic syndrome outbreak. Foodborne Pathog. Dis. 2011, 8, 421–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Schrijver, K.; Buvens, G.; Possé, B.; Van den Branden, D.; Oosterlynck, O.; De Zutter, L.; Eilers, K.; Piérard, D.; Dierick, K.; Van Damme-Lombaerts, R.; et al. Outbreak of verocytotoxin-producing E. coli O145 and O26 infections associated with the consumption of ice cream produced at a farm, Belgium, 2007. Eur. Surveill. 2008, 13, 1854–1861. [Google Scholar] [CrossRef]
- Sekse, C.; Muniesa, M.; Wasteson, Y. Conserved Stx2 phages from Escherichia coli O103:H25 isolated from patients suffering from hemolytic uremic syndrome. Foodborne Pathog. Dis. 2008, 5, 801–810. [Google Scholar] [CrossRef]
- King, L.A.; Nogareda, F.; Weill, F.X.; Mariani-Kurkdjian, P.; Loukiadis, E.; Gault, G.; Jourdan-DaSilva, N.; Bingen, E.; Macé, M.; Thevenot, D.; et al. Outbreak of Shiga toxin-producing Escherichia coli O104:H4 associated with organic fenugreek sprouts, France, June 2011. Clin. Infect. Dis. 2012, 54, 1588–1594. [Google Scholar] [CrossRef] [Green Version]
- Trachtman, H. Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med. 2012, 366, 766–767. [Google Scholar] [CrossRef]
- Group, S.W.R. Experiences from the Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany and research needs in the field, Berlin, 28–29 November 2011. Eur. Surveill. 2012, 17. [Google Scholar] [CrossRef]
- McCarthy, S.; Macori, G.; Burgess, C.; Fanning, S.; Duffy, G. Surveillance of Shiga-toxin producing Escherichia coli in Irish sheep. Access Microbiol. 2019, 1, 821. [Google Scholar] [CrossRef]
- Noll, L.W.; Shridhar, P.B.; Dewsbury, D.M.; Shi, X.; Cernicchiaro, N.; Renter, D.G.; Nagaraja, T.G. A Comparison of Culture- and PCR-Based Methods to Detect Six Major Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Cattle Feces. PLoS ONE 2015, 10, e0135446. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, G.R.; Veneti, L.; Lange, H.; Vold, L.; Naseer, U.; Brandal, L.T. Implementation of multiplex PCR diagnostics for gastrointestinal pathogens linked to increase of notified Shiga toxin-producing Escherichia coli cases in Norway, 2007–2017. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagliani, G.; Rotundo, L.; Carloni, E.; Omiccioli, E.; Magnani, M.; Brandi, G.; Fratamico, P. Detection of Shiga toxin-producing Escherichia coli (STEC) in ground beef and bean sprouts: Evaluation of culture enrichment conditions. Food Res. Int. 2018, 103, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Umesha, S.; Manukumar, H.M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 84–104. [Google Scholar] [CrossRef]
- Duffy, G.; Whiting, R.; Sheridan, J. The effect of a competitive microflora, pH and temperature on the growth kinetics of Escherichia coli O157: H7. Food Microbiol. 1999, 16, 299–307. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, R.; Li, L.; Peters, B.M.; Li, B.; Lin, C.W.; Chuang, T.L.; Chen, D.; Zhao, X.; Xiong, Z.; et al. Viable but non-culturable state and toxin gene expression of enterohemorrhagic Escherichia coli O157 under cryopreservation. Res. Microbiol. 2017, 168, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Grumaz, S.; Stevens, P.; Grumaz, C.; Decker, S.O.; Weigand, M.A.; Hofer, S.; Brenner, T.; von Haeseler, A.; Sohn, K. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 2016, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Quirós, P.; Martínez-Castillo, A.; Muniesa, M. Improving detection of Shiga toxin-producing Escherichia coli by molecular methods by reducing the interference of free Shiga toxin-encoding bacteriophages. Appl. Environ. Microbiol. 2015, 81, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniesa, M.; Serra-Moreno, R.; Jofre, J. Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved. Environ. Microbiol. 2004, 6, 716–725. [Google Scholar] [CrossRef]
- Martínez-Castillo, A.; Muniesa, M. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front. Cell. Infect. Microbiol. 2014, 4, 46. [Google Scholar] [CrossRef]
- Strauch, E.; Hammerl, J.A.; Konietzny, A.; Schneiker-Bekel, S.; Arnold, W.; Goesmann, A.; Pühler, A.; Beutin, L. Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in Escherichia coli O157:H7. Infect. Immun. 2008, 76, 5466–5477. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wang, Y.; An, H.; Hao, Y.; Hu, X.; Liao, X. New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2. MBio 2016, 7, e00961-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aurass, P.; Prager, R.; Flieger, A. EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ. Microbiol. 2011, 13, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Perelle, S.; Dilasser, F.; Grout, J.; Fach, P. Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases. Mol. Cell. Probes 2004, 18, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3 ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Li, B.; Liu, H.; Wang, W. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli. BMC Microbiol. 2017, 17, 215. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Klein, E.J.; Galanakis, E.; Thomas, A.A.; Stapp, J.R.; Rich, S.; Buccat, A.M.; Tarr, P.I. Real-Time PCR Assay for Detection and Differentiation of Shiga Toxin-Producing Escherichia coli from Clinical Samples. J. Clin. Microbiol. 2015, 53, 2148–2153. [Google Scholar] [CrossRef] [Green Version]
- Fratamico, P.M.; Wasilenko, J.L.; Garman, B.; Demarco, D.R.; Varkey, S.; Jensen, M.; Rhoden, K.; Tice, G. Evaluation of a multiplex real-time PCR method for detecting shiga toxin-producing Escherichia coli in beef and comparison to the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology laboratory guidebook method. J. Food Prot. 2014, 77, 180–188. [Google Scholar] [CrossRef]
- Franz, E.; Klerks, M.M.; De Vos, O.J.; Termorshuizen, A.J.; van Bruggen, A.H. Prevalence of Shiga toxin-producing Escherichia coli stx1, stx2, eaeA, and rfbE genes and survival of E. coli O157:H7 in manure from organic and low-input conventional dairy farms. Appl. Environ. Microbiol. 2007, 73, 2180–2190. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.L.; Livny, J.; Neely, M.N.; Acheson, D.W.; Friedman, D.I.; Waldor, M.K. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 2002, 44, 957–970. [Google Scholar] [CrossRef]
- Fang, Y.; Mercer, R.G.; McMullen, L.M.; Gänzle, M.G. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- McCabe, E.; Burgess, C.M.; Lawal, D.; Whyte, P.; Duffy, G. An investigation of shedding and super-shedding of Shiga toxigenic Escherichia coli O157 and E. coli O26 in cattle presented for slaughter in the Republic of Ireland. Zoonoses Public Health 2019, 66, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Shi, Y.; Cao, D.; Meng, X.; Xia, L.; Sun, J. Prevalence of Stx phages in environments of a pig farm and lysogenic infection of the field E. coli O157 isolates with a recombinant converting Phage. Curr. Microbiol. 2011, 62, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Nabi, A.; Asadulghani, M.; Faruque, S.M.; Islam, M.A. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol. 2018, 18, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grau-Leal, F.; Quirós, P.; Martínez-Castillo, A.; Muniesa, M. Free Shiga toxin 1-encoding bacteriophages are less prevalent than Shiga toxin 2 phages in extraintestinal environments. Environ. Microbiol. 2015, 17, 4790–4801. [Google Scholar] [CrossRef] [PubMed]
- Vimont, A.; Vernozy-Rozand, C.; Montet, M.P.; Bavai, C.; Fremaux, B.; Delignette-Muller, M.L. Growth of Shiga-toxin producing Escherichia coli (STEC) and bovine feces background microflora in various enrichment protocols. Vet. Microbiol. 2007, 123, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Newland, J.W.; Strockbine, N.A.; Neill, R.J. Cloning of genes for production of Escherichia coli Shiga-like toxin type II. Infect. Immun. 1987, 55, 2675–2680. [Google Scholar] [CrossRef] [Green Version]
- Newland, J.W.; Strockbine, N.A.; Miller, S.F.; O’Brien, A.D.; Holmes, R.K. Cloning of Shiga-like toxin structural genes from a toxin converting phage of Escherichia coli. Science 1985, 230, 179–181. [Google Scholar] [CrossRef]
- Zhang, L.X.; Simpson, D.J.; McMullen, L.M.; Gänzle, M.G. Comparative Genomics and Characterization of the Late Promoter. Viruses 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Senthakumaran, T.; Brandal, L.T.; Lindstedt, B.A.; Jørgensen, S.B.; Charnock, C.; Tunsjø, H.S. Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2361–2370. [Google Scholar] [CrossRef] [Green Version]
- Howard-Varona, C.; Hargreaves, K.R.; Abedon, S.T.; Sullivan, M.B. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. ISME J. 2017, 11, 1511–1520. [Google Scholar] [CrossRef] [Green Version]
- Imamovic, L.; Muniesa, M. Quantification and evaluation of infectivity of shiga toxin-encoding bacteriophages in beef and salad. Appl. Environ. Microbiol. 2011, 77, 3536–3540. [Google Scholar] [CrossRef] [Green Version]
- Vimont, A.; Vernozy-Rozand, C.; Delignette-Muller, M.L. Isolation of E. coli O157:H7 and non-O157 STEC in different matrices: Review of the most commonly used enrichment protocols. Lett. Appl. Microbiol. 2006, 42, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Lawal, D.; Burgess, C.; McCabe, E.; Whyte, P.; Duffy, G. Development of a quantitative real time PCR assay to detect and enumerate Escherichia coli O157 and O26 serogroups in bovine recto-anal swabs. J. Microbiol. Methods 2015, 114, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Macori, G.; McCarthy, S.C.; Burgess, C.M.; Fanning, S.; Duffy, G. A quantitative real time PCR assay to detect and enumerate Escherichia coli O157 and O26 serogroups in sheep recto-anal swabs. J. Microbiol. Methods 2019, 165, 105703. [Google Scholar] [CrossRef] [PubMed]
- Varcasia, B.M.; Tomassetti, F.; De Santis, L.; Di Giamberardino, F.; Lovari, S.; Bilei, S.; De Santis, P. Presence of Shiga Toxin-Producing. Microorganisms 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Tan, X.; Xiao, J.; Wang, H.; Liu, Z.; Zhou, M.; Bi, W.; Miyamoto, T. Molecular screening and characterization of Shiga toxin-producing Escherichia coli in retail foods. Food Control 2016, 60, 180–188. [Google Scholar] [CrossRef]
- Dallman, T.J.; Byrne, L.; Launders, N.; Glen, K.; Grant, K.A.; Jenkins, C. The utility and public health implications of PCR and whole genome sequencing for the detection and investigation of an outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11. Epidemiol. Infect. 2015, 143, 1672–1680. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.M.; Cobban, E.; McNamara, E.B. Evaluation of molecular and culture methods to determine the optimum testing strategy for verotoxigenic Escherichia coli in faecal specimens. Diagn. Microbiol. Infect. Dis. 2016, 85, 1–5. [Google Scholar] [CrossRef]
Gene | Description | Primer Name | Amplicon Size (bp) | References |
---|---|---|---|---|
stx1 | Forward | TTTGTYACTGTSACAGCWGAAGCYTTACG | 131 | [33] |
Reverse | CCCCAGTTCARWGTRAGRTCMACRTC | |||
Probe | FAM-CTGGATGATCTCAGTGGGCGTTCTTATGTAA-BHQ1 | |||
stx2 | Forward | TTTGTYACTGTSACAGCWGAAGCYTTACG | 128 | [33] |
Reverse | CCCCAGTTCARWGTRAGRTCMACRTC | |||
Probe | Hex- TCGTCAGGCACTGTCTGAAACTGCTCC-BHQ2 |
Sample n | qPCR/Culture Result | Detection of Free Bacteriophages | MMC Treatment | ||||
---|---|---|---|---|---|---|---|
Stx1 | Stx2 | Plaque | Stx1 | Stx2 | Plaque | ||
12 | pos/neg | + | − | + | − | − | + |
31 | pos/neg | − | − | + | − | − | + |
32 | pos/neg | − | − | − | − | − | + |
51 | pos/neg | − | + | + | + | + | + |
52 | pos/neg | − | − | + | − | − | + |
53 | pos/neg | − | − | + | − | + | + |
54 | pos/neg | − | − | + | + | + | + |
55 | pos/neg | − | + | + | − | + | + |
57 | pos/neg | − | − | + | − | − | + |
60 | pos/neg | − | − | − | − | − | + |
62 | pos/neg | − | − | + | − | − | + |
63 | pos/neg | − | − | − | + | + | + |
74 | pos/neg | − | + | − | − | + | + |
75 | pos/neg | − | + | − | + | + | + |
76 | pos/neg | − | − | + | − | + | + |
77 | pos/neg | − | − | − | − | + | + |
88 | pos/neg | − | − | + | − | − | + |
92 | pos/neg | − | − | − | − | − | + |
93 | pos/neg | − | − | + | + | + | + |
94 | pos/neg | − | − | + | + | + | + |
97 | pos/neg | − | − | − | − | − | + |
99 | pos/neg | − | + | + | + | + | + |
109 | pos/neg | − | + | − | − | − | + |
125 | pos/neg | − | − | + | − | − | + |
151 | pos/neg | − | − | + | − | − | + |
152 | pos/neg | − | − | + | − | + | + |
Sample n | Enriched Samples | Detection of Free Bacteriophages | MMC Treatment | |||||
---|---|---|---|---|---|---|---|---|
Stx1 | Stx2 | Stx1 | Stx2 | Plaque | Stx1 | Stx2 | Plaque | |
12 | + | + | + | − | + | − | − | − |
51 | + | + | − | + | + | + | + | + |
55 | + | + | − | + | + | − | + | + |
99 | + | − | − | + | + | + | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macori, G.; McCarthy, S.C.; Burgess, C.M.; Fanning, S.; Duffy, G. Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples. Microorganisms 2020, 8, 587. https://doi.org/10.3390/microorganisms8040587
Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G. Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples. Microorganisms. 2020; 8(4):587. https://doi.org/10.3390/microorganisms8040587
Chicago/Turabian StyleMacori, Guerrino, Siobhán C. McCarthy, Catherine M. Burgess, Séamus Fanning, and Geraldine Duffy. 2020. "Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples" Microorganisms 8, no. 4: 587. https://doi.org/10.3390/microorganisms8040587
APA StyleMacori, G., McCarthy, S. C., Burgess, C. M., Fanning, S., & Duffy, G. (2020). Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples. Microorganisms, 8(4), 587. https://doi.org/10.3390/microorganisms8040587