Chlamydiaceae: Diseases in Primary Hosts and Zoonosis
Abstract
:1. Introduction
1.1. Chlamydia trachomatis
1.2. Chlamydia pneumoniae
1.3. Chlamydia abortus
1.4. Chlamydia caviae
1.5. Chlamydia felis
1.6. Chlamydia muridarum
1.7. Chlamydia pecorum
1.8. Chlamydia psittaci
1.9. Chlamydia suis
1.10. Other Chlamydiaceae spp.
2. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hogan, R.J.; Mathews, S.A.; Mukhopadhyay, S.; Summersgill, J.T.; Timms, P. Chlamydial persistence: Beyond the biphasic paradigm. Infect. Immun. 2004, 72, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Bommana, S.; Polkinghorne, A. Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues. Front. Microbiol. 2019, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longbottom, D.; Livingstone, M.; Maley, S.; van der Zon, A.; Rocchi, M.; Wilson, K.; Wheelhouse, N.; Dagleish, M.; Aitchison, K.; Wattegedera, S.; et al. Intranasal Infection with Chlamydia abortus Induces Dose-Dependent Latency and Abortion in Sheep. PLoS ONE 2013, 8, e57950. [Google Scholar] [CrossRef] [PubMed]
- Walder, G.; Hotzel, H.; Brezinka, C.; Gritsch, W.; Tauber, R.; Wurzner, R.; Ploner, F. An unusual cause of sepsis during pregnancy: Recognizing infection with Chlamydophila abortus. Obstet. Gynecol. 2005, 106, 1215–1217. [Google Scholar] [CrossRef]
- Pospischil, A.; Thoma, R.; Hilbe, M.; Grest, P.; Gebbers, J.O. Abortion in woman caused by caprine Chlamydophila abortus (Chlamydia psittaci serovar 1). Swiss Med. Wkly. 2002, 132, 64–66. [Google Scholar]
- Ortega, N.; Caro, M.R.; Gallego, M.C.; Murcia-Belmonte, A.; Álvarez, D.; Del Río, L.; Cuello, F.; Buendía, A.J.; Salinas, J. Isolation of Chlamydia abortus from a laboratory worker diagnosed with atypical pneumonia. Ir. Vet. J. 2016, 69. [Google Scholar] [CrossRef]
- Walder, G.; Meusburger, H.; Hotzel, H.; Oehme, A.; Neunteufel, W.; Dierich, M.P.; Wurzner, R. Chlamydophila abortus pelvic inflammatory disease. Emerg. Infect. Dis. 2003, 9, 1642–1644. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.; Grist, N.R.; Giroud, P. Human abortion associated with infection by ovine abortion agent. Br. Med. J. 1967, 4, 37. [Google Scholar] [CrossRef]
- Essig, A.; Longbottom, D. Chlamydia abortus: New Aspects of Infectious Abortion in Sheep and Potential Risk for Pregnant Women. Curr. Clin. Microbiol. Rep. 2015, 2, 22–34. [Google Scholar] [CrossRef]
- Gasparini, J.; Erin, N.; Bertin, C.; Jacquin, L.; Vorimore, F.; Frantz, A.; Lenouvel, P.; Laroucau, K. Impact of urban environment and host phenotype on the epidemiology of Chlamydiaceae in feral pigeons (Columba livia). Environ. Microbiol. 2011, 13, 3186–3193. [Google Scholar] [CrossRef]
- Sachse, K.; Kuehlewind, S.; Ruettger, A.; Schubert, E.; Rohde, G. More than classical Chlamydia psittaci in urban pigeons. Vet. Microbiol. 2012, 157, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Sachse, K.; Laroucau, K. Two more species of Chlamydia—does it make a difference? Pathog. Dis. 2014, 73, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Sachse, K.; Laroucau, K.; Riege, K.; Wehner, S.; Dilcher, M.; Creasy, H.H.; Weidmann, M.; Myers, G.; Vorimore, F.; Vicari, N.; et al. Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst. Appl. Microbiol. 2014, 37, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Lutz-Wohlgroth, L.; Becker, A.; Brugnera, E.; Huat, Z.L.; Zimmermann, D.; Grimm, F.; Haessig, M.; Greub, G.; Kaps, S.; Spiess, B.; et al. Chlamydiales in guinea-pigs and their zoonotic potential. J. Vet. Med. Ser. A 2006, 53, 185–193. [Google Scholar] [CrossRef]
- Mount, D.T.; Bigazzi, P.E.; Barron, A.L. Experimental genital infection of male guinea pigs with the agent of guinea pig inclusion conjunctivitis and transmission to females. Infect. Immun. 1973, 8, 925–930. [Google Scholar]
- Rodolakis, A.; Yousef Mohamad, K. Zoonotic potential of Chlamydophila. Vet. Microbiol. 2010, 140, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Ramakers, B.P.; Heijne, M.; Lie, N.; Le, T.-N.; van Vliet, M.; Claessen, V.P.J.; Tolsma, P.J.P.; De Rosa, M.; Roest, H.I.J.; Vanrompay, D.; et al. Zoonotic Chlamydia caviae presenting as community-acquired pneumonia. N. Engl. J. Med. 2017, 377, 992–994. [Google Scholar] [CrossRef]
- Van Grootveld, R.; Bilsen, M.P.; Boelsums, T.L.; Heddema, E.R.; Groeneveld, G.H.; Gooskens, J.; de Boer, M.G.J. Chlamydia caviae Causing Community-Acquired Pneumonia: An Emerging Zoonosis. Vector Borne Zoonotic Dis. 2018, 18, 635–637. [Google Scholar] [CrossRef]
- Masubuchi, K.; Nosaka, H.; Iwamoto, K.; Kokubu, T.; Yamanaka, M.; Shimizu, Y. Experimental infection of cats with Chlamydophila felis. J. Vet. Med. Sci. 2002, 64, 1165–1168. [Google Scholar] [CrossRef]
- Gruffydd-Jones, T.; Addie, D.; Belak, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Hartmann, K.; Hosie, M.J.; Lloret, A.; Lutz, H.; et al. Chlamydophila felis infection. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 605–609. [Google Scholar] [CrossRef]
- Browning, G.F. Is Chlamydophila felis a significant zoonotic pathogen? Aust. Vet. J. 2004, 82, 695–696. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Kaltenboeck, B.; Gong, J.; Fan, W.; Wang, C. Chlamydia gallinacea, not C. psittaci, is the endemic chlamydial species in chicken (Gallus gallus). Sci. Rep. 2016, 6, 19638. [Google Scholar] [CrossRef]
- Laroucau, K.; Vorimore, F.; Aaziz, R.; Berndt, A.; Schubert, E.; Sachse, K. Isolation of a new chlamydial agent from infected domestic poultry coincided with cases of atypical pneumonia among slaughterhouse workers in France. Infect. Genet. Evol. 2009, 9, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Ekworomadu, C.O.; Eko, F.O.; MacMillan, L.; Ramey, K.; Ananaba, G.A.; Patrickson, J.W.; Nagappan, P.R.; Lyn, D.; Black, C.M.; et al. Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J. Infect. Dis. 2003, 188, 617–624. [Google Scholar] [CrossRef]
- Whary, M.T.; Baumgarth, N.; Fox, J.G.; Barthold, S.W. Chapter 3—Biology and Diseases of Mice. In Laboratory Animal Medicine, 3rd ed.; Fox, J.G., Anderson, L.C., Otto, G.M., Pritchett-Corning, K.R., Whary, M.T., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 43–149. [Google Scholar]
- Walker, E.; Moore, C.; Shearer, P.; Jelocnik, M.; Bommana, S.; Timms, P.; Polkinghorne, A. Clinical, diagnostic and pathologic features of presumptive cases of Chlamydia pecorum-associated arthritis in Australian sheep flocks. BMC Vet. Res. 2016, 12, 193. [Google Scholar] [CrossRef] [PubMed]
- Fabijan, J.; Caraguel, C.; Jelocnik, M.; Polkinghorne, A.; Boardman, W.S.J.; Nishimoto, E.; Johnsson, G.; Molsher, R.; Woolford, L.; Timms, P.; et al. Chlamydia pecorum prevalence in South Australian koala (Phascolarctos cinereus) populations: Identification and modelling of a population free from infection. Sci. Rep. 2019, 9, 6261. [Google Scholar] [CrossRef] [Green Version]
- Rekiki, A.; Bouakane, A.; Hammami, S.; El Idrissi, A.H.; Bernard, F.; Rodolakis, A. Efficacy of live Chlamydophila abortus vaccine 1B in protecting mice placentas and foetuses against strains of Chlamydophila pecorum isolated from cases of abortion. Vet. Microbiol. 2004, 99, 295–299. [Google Scholar] [CrossRef]
- Greco, G.; Corrente, M.; Buonavoglia, D.; Campanile, G.; Di Palo, R.; Martella, V.; Bellacicco, A.L.; D’Abramo, M.; Buonavoglia, C. Epizootic abortion related to infections by Chlamydophila abortus and Chlamydophila pecorum in water buffalo (Bubalus bubalis). Theriogenology 2008, 69, 1061–1069. [Google Scholar] [CrossRef]
- Giannitti, F.; Anderson, M.; Miller, M.; Rowe, J.; Sverlow, K.; Vasquez, M.; Canton, G. Chlamydia pecorum: Fetal and placental lesions in sporadic caprine abortion. J. Vet. Diagn. Invest. 2016, 28, 184–189. [Google Scholar] [CrossRef]
- Jelocnik, M.; Forshaw, D.; Cotter, J.; Roberts, D.; Timms, P.; Polkinghorne, A. Molecular and pathological insights into Chlamydia pecorum-associated sporadic bovine encephalomyelitis (SBE) in Western Australia. BMC Vet. Res. 2014, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, A.; Kubo, M.; Shimoda, H.; Ohya, K.; Iribe, T.; Ohishi, D.; Endoh, D.; Omatsu, T.; Mizutani, T.; Fukushi, H.; et al. Genetic and antigenic analysis of Chlamydia pecorum strains isolated from calves with diarrhea. J. Vet. Med. Sci. 2015, 77, 777–782. [Google Scholar] [CrossRef]
- Marrie, T.J.; Peeling, R.W.; Reid, T.; De Carolis, E.; Canadian Community-Acquired Pneumonia Investigators. Chlamydia species as a cause of community-acquired pneumonia in Canada. Eur. Respir. J. 2003, 21, 779–784. [Google Scholar] [CrossRef]
- Gaston, J.S. Immunological basis of Chlamydia induced reactive arthritis. Sex Transm. Infect. 2000, 76, 156–161. [Google Scholar] [CrossRef]
- Carter, J.D.; Hudson, A.P. Reactive arthritis: Clinical aspects and medical management. Rheum. Dis. Clin. North Am. 2009, 35, 21–44. [Google Scholar] [CrossRef] [PubMed]
- Monno, R.; de Vito, D.; Losito, G.; Sibilio, G.; Costi, A.; Fumarola, L.; D’Aprile, A.; Marcuccio, P. Chlamydia pneumoniae in community-acquired pneumonia: Seven years of experience. J. Infect. 2002, 45, 135–138. [Google Scholar] [CrossRef]
- Blasi, F.; Damato, S.; Cosentini, R.; Tarsia, P.; Raccanelli, R.; Centanni, S.; Allegra, L.; Chlamydia InterAction with COPD (CIAC) Study Group. Chlamydia pneumoniae and chronic bronchitis: Association with severity and bacterial clearance following treatment. Thorax 2002, 57, 672–676. [Google Scholar] [CrossRef]
- Falck, G.; Heyman, L.; Gnarpe, J.; Gnarpe, H. Chlamydia pneumoniae and chronic pharyngitis. Scand. J. Infect. Dis. 1995, 27, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Falck, G.; Engstrand, I.; Gad, A.; Gnarpe, J.; Gnarpe, H.; Laurila, A. Demonstration of Chlamydia pneumoniae in patients with chronic pharyngitis. Scand. J. Infect. Dis. 1997, 29, 585–589. [Google Scholar] [CrossRef]
- Karnak, D.; Beng-sun, S.; Beder, S.; Kayacan, O. Chlamydia pneumoniae infection and acute exacerbation of chronic obstructive pulmonary disease (COPD). Respir. Med. 2001, 95, 811–816. [Google Scholar] [CrossRef]
- Von Hertzen, L.; Alakarppa, H.; Koskinen, R.; Liippo, K.; Surcel, H.M.; Leinonen, M.; Saikku, P. Chlamydia pneumoniae infection in patients with chronic obstructive pulmonary disease. Epidemiol. Infect. 1997, 118, 155–164. [Google Scholar] [CrossRef]
- Lieberman, D.; Ben-Yaakov, M.; Lazarovich, Z.; Ohana, B.; Boldur, I. Chlamydia pneumoniae infection in acute exacerbations of chronic obstructive pulmonary disease: Analysis of 250 hospitalizations. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Cook, P.J.; Davies, P.; Tunnicliffe, W.; Ayres, J.G.; Honeybourne, D.; Wise, R. Chlamydia pneumoniae and asthma. Thorax 1998, 53, 254–259. [Google Scholar] [CrossRef]
- Zhan, P.; Suo, L.J.; Qian, Q.; Shen, X.K.; Qiu, L.X.; Yu, L.K.; Song, Y. Chlamydia pneumoniae infection and lung cancer risk: A meta-analysis. Eur. J. Cancer 2011, 47, 742–747. [Google Scholar] [CrossRef]
- Koutsoumpas, A.L.; Kriese, S.; Rigopoulou, E.I. Popular and unpopular infectious agents linked to primary biliary cirrhosis. Auto Immun. Highlights 2012, 3, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.; Filardo, S.; de Santis, F.; Sessa, R. Chlamydia pneumoniae infection in atherosclerotic lesion development through oxidative stress: A brief overview. Int. J. Mol. Sci. 2013, 14, 15105–15120. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Khandelwal, B.; Joshi, D.; Gupta, O.P. Chlamydophila pneumoniae infection and cardiovascular disease. N. Am. J. Med. Sci. 2013, 5, 169–181. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; de Santis, F.; Mastromarino, P.; Sessa, R. Chlamydia pneumoniae and oxidative stress in cardiovascular disease: State of the art and prevention strategies. Int. J. Mol. Sci. 2014, 16, 724–735. [Google Scholar] [CrossRef]
- Hahn, D.L.; Schure, A.; Patel, K.; Childs, T.; Drizik, E.; Webley, W. Chlamydia pneumoniae-specific IgE is prevalent in asthma and is associated with disease severity. PLoS ONE 2012, 7, e35945. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.M.; Mathews, S.A.; Theodoropoulos, C.; Timms, P. In vitro characterisation of koala Chlamydia pneumoniae: Morphology, inclusion development and doubling time. Vet. Microbiol. 2009, 136, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Kutlin, A.; Roblin, P.M.; Kumar, S.; Kohlhoff, S.; Bodetti, T.; Timms, P.; Hammerschlag, M.R. Molecular characterization of Chlamydophila pneumoniae isolates from Western barred bandicoots. J. Med. Microbiol. 2007, 56, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.; Walker, P.; Gibbs, H.; Timms, P. Multiple genotypes of Chlamydia pneumoniae identified in human carotid plaque. Microbiology 2005, 151, 2285–2290. [Google Scholar] [CrossRef] [PubMed]
- Harkinezhad, T.; Geens, T.; Vanrompay, D. Chlamydophila psittaci infections in birds: A review with emphasis on zoonotic consequences. Vet. Microbiol. 2009, 135, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.A. Comparison of pharyngeal, fecal, and cloacal samples for the isolation of Chlamydia psittaci from experimentally infected cockatiels and turkeys. J. Vet. Diagn. Investig. 1996, 8, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Beeckman, D.S.A.; Vanrompay, D.C.G. Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin. Microbiol. Infect. 2009, 15, 11–17. [Google Scholar] [CrossRef]
- Brunham, R.C.; Rey-Ladino, J. Immunology of Chlamydia infection: Implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol. 2005, 5, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Furuya, R.; Takahashi, S.; Furuya, S.; Takeyama, K.; Masumori, N.; Tsukamoto, T. Chlamydial seminal vesiculitis without symptomatic urethritis and epididymitis. Int. J. Urol. 2006, 13, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Furuya, R.; Takahashi, S.; Furuya, S.; Takeyama, K.; Tsukamoto, T. A patient with seminal vesiculitis prior to acute chlamydial epididymitis. J. Infect. Chemother. 2005, 11, 250–252. [Google Scholar] [CrossRef]
- Mackern-Oberti, J.P.; Motrich, R.D.; Breser, M.L.; Sanchez, L.R.; Cuffini, C.; Rivero, V.E. Chlamydia trachomatis infection of the male genital tract: An update. J. Reprod. Immunol. 2013, 100, 37–53. [Google Scholar] [CrossRef]
- Moss, N.J.; Ahrens, K.; Kent, C.K.; Klausner, J.D. The decline in clinical sequelae of genital Chlamydia trachomatis infection supports current control strategies. J. Infect. Dis. 2006, 193, 1336–1338. [Google Scholar] [CrossRef]
- Sellami, H.; Znazen, A.; Sellami, A.; Mnif, H.; Louati, N.; Ben Zarrouk, S.; Keskes, L.; Rebai, T.; Gdoura, R.; Hammami, A. Molecular detection of Chlamydia trachomatis and other sexually transmitted bacteria in semen of male partners of infertile couples in Tunisia: The effect on semen parameters and spermatozoa apoptosis markers. PLoS ONE 2014, 9, e98903. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, G.; Ramos, B.; Santiso, R.; Goyanes, V.; Gosalvez, J.; Fernandez, J.L. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycoplasma. Fertil. Steril. 2008, 90, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Moazenchi, M.; Totonchi, M.; Salman Yazdi, R.; Hratian, K.; Mohseni Meybodi, M.A.; Ahmadi Panah, M.; Chehrazi, M.; Mohseni Meybodi, A. The impact of Chlamydia trachomatis infection on sperm parameters and male fertility: A comprehensive study. Int. J. STD AIDS 2018, 29, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Dehghan Marvast, L.; Aflatoonian, A.; Talebi, A.R.; Ghasemzadeh, J.; Pacey, A.A. Semen inflammatory markers and Chlamydia trachomatis infection in male partners of infertile couples. Andrologia 2016, 48, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Hurtado, M.; Velazco-Fernandez, M.; Pedraza-Sanchez, M.J.E.; Flores-Salazar, V.R.; Villagrana Zesati, R.; Guerra-Infante, F.M. Molecular detection of Chlamydia trachomatis and semen quality of sexual partners of infertile women. Andrologia 2018, 50. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Edusei, K., Jr.; Bohm, M.K.; Chesson, H.W.; Kent, C.K. Chlamydia screening and pelvic inflammatory disease: Insights from exploratory time-series analyses. Am. J. Prev. Med. 2010, 38, 652–657. [Google Scholar] [CrossRef]
- Ahmadi, A.; Khodabandehloo, M.; Ramazanzadeh, R.; Farhadifar, F.; Roshani, D.; Ghaderi, E.; Farhangi, N. The Relationship between Chlamydia trachomatis Genital Infection and Spontaneous Abortion. J. Reprod. Infertil. 2016, 17, 110–116. [Google Scholar]
- Baud, D.; Goy, G.; Jaton, K.; Osterheld, M.C.; Blumer, S.; Borel, N.; Vial, Y.; Hohlfeld, P.; Pospischil, A.; Greub, G. Role of Chlamydia trachomatis in miscarriage. Emerg. Infect. Dis. 2011, 17, 1630–1635. [Google Scholar] [CrossRef]
- Blas, M.M.; Canchihuaman, F.A.; Alva, I.E.; Hawes, S.E. Pregnancy outcomes in women infected with Chlamydia trachomatis: A population-based cohort study in Washington State. Sex Transm. Infect. 2007, 83, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Rours, G.I.; Duijts, L.; Moll, H.A.; Arends, L.R.; de Groot, R.; Jaddoe, V.W.; Hofman, A.; Steegers, E.A.; Mackenbach, J.P.; Ott, A.; et al. Chlamydia trachomatis infection during pregnancy associated with preterm delivery: A population-based prospective cohort study. Eur. J. Epidemiol. 2011, 26, 493–502. [Google Scholar] [CrossRef]
- Davies, B.; Turner, K.M.; Frolund, M.; Ward, H.; May, M.T.; Rasmussen, S.; Benfield, T.; Westh, H.; Danish Chlamydia Study Group. Risk of reproductive complications following chlamydia testing: A population-based retrospective cohort study in Denmark. Lancet Infect. Dis. 2016, 16, 1057–1064. [Google Scholar] [CrossRef]
- Darville, T.; Hiltke, T.J. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J. Infect. Dis. 2010, 201, S114–S125. [Google Scholar] [CrossRef]
- Zikic, A.; Schunemann, H.; Wi, T.; Lincetto, O.; Broutet, N.; Santesso, N. Treatment of Neonatal Chlamydial Conjunctivitis: A Systematic Review and Meta-analysis. J. Pediatric Infect. Dis. Soc. 2018, 7, e107–e115. [Google Scholar] [CrossRef]
- Mishra, K.N.; Bhardwaj, P.; Mishra, A.; Kaushik, A. Acute Chlamydia trachomatis respiratory infection in infants. J. Glob. Infect. Dis. 2011, 3, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Eschenbach, D.A.; Holmes, K.K.; Wager, G.; Grayston, J.T. Chlamydia trachomatis infection in Fitz-Hugh-Curtis syndrome. Am. J. Obstet. Gynecol. 1980, 138, 1034–1038. [Google Scholar] [CrossRef]
- Katzman, D.K.; Friedman, I.M.; McDonald, C.A.; Litt, I.F. Chlamydia trachomatis Fitz-Hugh-Curtis syndrome without salpingitis in female adolescents. Am. J. Dis. Child. 1988, 142, 996–998. [Google Scholar] [CrossRef]
- Ekabe, C.J.; Kehbila, J.; Njim, T.; Kadia, B.M.; Tendonge, C.N.; Monekosso, G.L. Chlamydia trachomatis-induced Fitz-Hugh-Curtis syndrome: A case report. BMC Res. Notes 2017, 10, 10. [Google Scholar] [CrossRef]
- Zhu, H.; Shen, Z.; Luo, H.; Zhang, W.; Zhu, X. Chlamydia Trachomatis Infection-Associated Risk of Cervical Cancer: A Meta-Analysis. Medicine 2016, 95, e3077. [Google Scholar] [CrossRef] [PubMed]
- Trabert, B.; Waterboer, T.; Idahl, A.; Brenner, N.; Brinton, L.A.; Butt, J.; Coburn, S.B.; Hartge, P.; Hufnagel, K.; Inturrisi, F.; et al. Antibodies Against Chlamydia trachomatis and Ovarian Cancer Risk in Two Independent Populations. J. Natl. Cancer Inst. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.; Taylor, H.R.; Ravilla, T.D.; West, S.; Lietman, T.M.; Keenan, J.D.; Chiang, M.F.; Robin, A.L.; Mills, R.P.; Council of the American Ophthalmological Society. Challenges of ophthalmic care in the developing world. JAMA Ophthalmol. 2014, 132, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Mabey, D.C.; Solomon, A.W.; Foster, A. Trachoma. Lancet 2003, 362, 223–229. [Google Scholar] [CrossRef]
- Caldwell, H.D.; Wood, H.; Crane, D.; Bailey, R.; Jones, R.B.; Mabey, D.; Maclean, I.; Mohammed, Z.; Peeling, R.; Roshick, C.; et al. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Invest. 2003, 111, 1757–1769. [Google Scholar] [CrossRef]
- White, J.A. Lymphogranuloma venereum (LGV). Medicine 2014, 38, 267–269. [Google Scholar] [CrossRef]
- Reinhold, P.; Kirschvink, N.; Theegarten, D.; Berndt, A. An experimentally induced Chlamydia suis infection in pigs results in severe lung function disorders and pulmonary inflammation. Vet. Res. 2008, 39, 35. [Google Scholar] [CrossRef]
- Chahota, R.; Ogawa, H.; Ohya, K.; Yamaguchi, T.; Everett, K.D.E.; Fukushi, H. Involvement of multiple Chlamydia suis genotypes in porcine conjunctivitis. Transbound. Emerg. Dis. 2018, 65, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.G.; Andersen, A.A. Intestinal lesions caused by two swine Chlamydial isolates in gnotobiotic pigs. J. Vet. Diagn. Investig. 1996, 8, 433–440. [Google Scholar] [CrossRef]
- De Puysseleyr, L.; De Puysseleyr, K.; Braeckman, L.; Morré, S.A.; Cox, E.; Vanrompay, D. Assessment of Chlamydia suis Infection in Pig Farmers. Transbound. Emerg. Dis. 2017, 64, 826–833. [Google Scholar] [CrossRef]
- Evelien, K.; Laura, V.d.B.; Mathias, V.G.; Servaas, M.; Daisy, V. Co-occurrence of Chlamydia suis DNA and Chlamydia suis-specific antibodies in the human eye. Vector Borne Zoonotic Dis. 2018. [Google Scholar] [CrossRef]
- De Puysseleyr, K.; De Puysseleyr, L.; Dhondt, H.; Geens, T.; Braeckman, L.; Morré, S.A.; Cox, E.; Vanrompay, D. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse. BMC Infect. Dis. 2014, 14, 560. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.; Rowley, J.; Vander Hoorn, S.; Wijesooriya, N.S.; Unemo, M.; Low, N.; Stevens, G.; Gottlieb, S.; Kiarie, J.; Temmerman, M. Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS ONE 2015, 10, e0143304. [Google Scholar] [CrossRef]
- Caldwell, H.D.; Kromhout, J.; Schachter, J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 1981, 31, 1161–1176. [Google Scholar]
- Bebear, C.; de Barbeyrac, B. Genital Chlamydia trachomatis infections. Clin. Microbiol. Infect. 2009, 15, 4–10. [Google Scholar] [CrossRef]
- Ceovic, R.; Gulin, S.J. Lymphogranuloma venereum: Diagnostic and treatment challenges. Infect. Drug Resist. 2015, 8, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Mabey, D.C.; Hu, V.; Bailey, R.L.; Burton, M.J.; Holland, M.J. Towards a safe and effective chlamydial vaccine: Lessons from the eye. Vaccine 2014, 32, 1572–1578. [Google Scholar] [CrossRef] [Green Version]
- Stark, D.; van Hal, S.; Hillman, R.; Harkness, J.; Marriott, D. Lymphogranuloma venereum in Australia: Anorectal Chlamydia trachomatis serovar L2b in men who have sex with men. J. Clin. Microbiol. 2007, 45, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Simms, I.; Ward, H.; Martin, I.; Alexander, S.; Ison, C. Lymphogranuloma venereum in Australia. Sex Health 2006, 3, 131–133. [Google Scholar] [CrossRef] [PubMed]
- McLean, C.A.; Stoner, B.P.; Workowski, K.A. Treatment of Lymphogranuloma venereum. Clin. Infect. Dis. 2007, 44, S147–S152. [Google Scholar] [CrossRef]
- Nieuwenhuis, R.F.; Ossewaarde, J.M.; Gotz, H.M.; Dees, J.; Thio, H.B.; Thomeer, M.G.; den Hollander, J.C.; Neumann, M.H.; van der Meijden, W.I. Resurgence of lymphogranuloma venereum in Western Europe: An outbreak of Chlamydia trachomatis serovar l2 proctitis in The Netherlands among men who have sex with men. Clin. Infect. Dis. 2004, 39, 996–1003. [Google Scholar] [CrossRef]
- Hughes, G.; Alexander, S.; Simms, I.; Conti, S.; Ward, H.; Powers, C.; Ison, C.; Group, L.G.V.I. Lymphogranuloma venereum diagnoses among men who have sex with men in the U.K.: Interpreting a cross-sectional study using an epidemic phase-specific framework. Sex Transm. Infect. 2013, 89, 542–547. [Google Scholar] [CrossRef]
- Saxon, C.; Hughes, G.; Ison, C.; Group, U.L.C.-F. Asymptomatic Lymphogranuloma Venereum in Men who Have Sex with Men, United Kingdom. Emerg. Infect. Dis. 2016, 22, 112–116. [Google Scholar] [CrossRef]
- De Vrieze, N.H.; de Vries, H.J. Lymphogranuloma venereum among men who have sex with men. An epidemiological and clinical review. Expert Rev. Antiinfect. Ther. 2014, 12, 697–704. [Google Scholar] [CrossRef]
- Lanjouw, E.; Ouburg, S.; de Vries, H.J.; Stary, A.R.; Radcliffe, K.; Unemo, M. 2015 European guideline on the management of Chlamydia trachomatis infections. Int. J. STD AIDS 2015, 27, 333–348. [Google Scholar] [CrossRef]
- Lau, C.Y.; Qureshi, A.K. Azithromycin versus doxycycline for genital chlamydial infections: A meta-analysis of randomized clinical trials. Sex Transm. Dis. 2002, 29, 497–502. [Google Scholar] [CrossRef]
- Miller, K.E. Diagnosis and treatment of Chlamydia trachomatis infection. Am. Fam. Physician. 2006, 73, 1411–1416. [Google Scholar]
- Walker, J.; Tabrizi, S.N.; Fairley, C.K.; Chen, M.Y.; Bradshaw, C.S.; Twin, J.; Taylor, N.; Donovan, B.; Kaldor, J.M.; McNamee, K.; et al. Chlamydia trachomatis incidence and re-infection among young women—Behavioural and microbiological characteristics. PLoS ONE 2012, 7, e37778. [Google Scholar] [CrossRef]
- Forward, K.R. Risk of coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in Nova Scotia. Can. J. Infect. Dis. Med. Microbiol. 2010, 21, e84–e86. [Google Scholar] [CrossRef]
- Vielot, N.; Hudgens, M.G.; Mugo, N.; Chitwa, M.; Kimani, J.; Smith, J. The Role of Chlamydia trachomatis in High-Risk Human Papillomavirus Persistence Among Female Sex Workers in Nairobi, Kenya. Sex Transm. Dis. 2015, 42, 305–311. [Google Scholar] [CrossRef]
- Guy, R.; Ward, J.; Wand, H.; Rumbold, A.; Garton, L.; Hengel, B.; Silver, B.; Taylor-Thomson, D.; Knox, J.; McGregor, S.; et al. Coinfection with Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis: A cross-sectional analysis of positivity and risk factors in remote Australian Aboriginal communities. Sex Transm. Infect. 2015, 91, 201–206. [Google Scholar] [CrossRef]
- Vonck, R.A.; Darville, T.; O’Connell, C.M.; Jerse, A.E. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect. Immun. 2011, 79, 1566–1577. [Google Scholar] [CrossRef]
- Fleming, D.T.; Wasserheit, J.N. From epidemiological synergy to public health policy and practice: The contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm. Infect. 1999, 75, 3–17. [Google Scholar] [CrossRef]
- Cheong, H.C.; Lee, C.Y.Q.; Cheok, Y.Y.; Shankar, E.M.; Sabet, N.S.; Tan, G.M.Y.; Movahed, E.; Yeow, T.C.; Sulaiman, S.; Wong, W.F.; et al. CPAF, HSP60 and MOMP antigens elicit pro-inflammatory cytokines production in the peripheral blood mononuclear cells from genital Chlamydia trachomatis-infected patients. Immunobiology 2019, 224, 34–41. [Google Scholar] [CrossRef]
- Fenner, A. Chlamydia paralyses neutrophils via CPAF. Nat. Rev. Urol. 2018, 15, 526–527. [Google Scholar] [CrossRef]
- Rockey, D.D. Unraveling the basic biology and clinical significance of the chlamydial plasmid. J. Exp. Med. 2011, 208, 2159–2162. [Google Scholar] [CrossRef] [Green Version]
- Yeow, T.C.; Wong, W.F.; Sabet, N.S.; Sulaiman, S.; Shahhosseini, F.; Tan, G.M.; Movahed, E.; Looi, C.Y.; Shankar, E.M.; Gupta, R.; et al. Prevalence of plasmid-bearing and plasmid-free Chlamydia trachomatis infection among women who visited obstetrics and gynecology clinics in Malaysia. BMC Microbiol. 2016, 16, 45. [Google Scholar] [CrossRef]
- Olive, A.J.; Haff, M.G.; Emanuele, M.J.; Sack, L.M.; Barker, J.R.; Elledge, S.J.; Starnbach, M.N. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microbe 2014, 15, 113–124. [Google Scholar] [CrossRef]
- Tan, G.M.; Lim, H.J.; Yeow, T.C.; Movahed, E.; Looi, C.Y.; Gupta, R.; Arulanandam, B.P.; Abu Bakar, S.; Sabet, N.S.; Chang, L.Y.; et al. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells. Proteomics 2016, 16, 1347–1360. [Google Scholar] [CrossRef]
- De Clercq, E.; Kalmar, I.; Vanrompay, D. Animal models for studying female genital tract infection with Chlamydia trachomatis. Infect. Immun. 2013, 81, 3060–3067. [Google Scholar] [CrossRef]
- Witkin, S.S.; Minis, E.; Athanasiou, A.; Leizer, J.; Linhares, I.M. Chlamydia trachomatis: The Persistent Pathogen. Clin. Vaccine Immunol. 2017, 24. [Google Scholar] [CrossRef]
- Longbottom, D.; Coulter, L.J. Animal chlamydioses and zoonotic implications. J. Comp. Pathol. 2003, 128, 217–244. [Google Scholar] [CrossRef]
- Kuo, C.C.; Jackson, L.A.; Campbell, L.A.; Grayston, J.T. Chlamydia pneumoniae (TWAR). Clin. Microbiol. Rev. 1995, 8, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Verkooyen, R.P.; Harreveld, S.; Joulandan, S.A.M.; Diepersloot, R.J.; Verbrugh, H.A. Survival of Chlamydia pneumoniae following contact with various surfaces. Clin. Microbiol. Infect. 1995, 1, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Contini, C.; Seraceni, S.; Cultrera, R.; Castellazzi, M.; Granieri, E.; Fainardi, E. Chlamydophila pneumoniae Infection and Its Role in Neurological Disorders. Interdiscip. Perspect. Infect. Dis. 2010, 2010, 273573. [Google Scholar] [CrossRef]
- Grayston, J.T. Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J. Infect. Dis. 2000, 181, S402–S410. [Google Scholar] [CrossRef]
- Coles, K.A.; Timms, P.; Smith, D.W. Koala biovar of Chlamydia pneumoniae infects human and koala monocytes and induces increased uptake of lipids in vitro. Infect. Immun. 2001, 69, 7894–7897. [Google Scholar] [CrossRef] [PubMed]
- Bodetti, T.J.; Jacobson, E.; Wan, C.; Hafner, L.; Pospischil, A.; Rose, K.; Timms, P. Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst. Appl. Microbiol. 2002, 25, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Shima, K.; Wanker, M.; Skilton, R.J.; Cutcliffe, L.T.; Schnee, C.; Kohl, T.A.; Niemann, S.; Geijo, J.; Klinger, M.; Timms, P.; et al. The Genetic Transformation of Chlamydia pneumoniae. mSphere 2018, 3. [Google Scholar] [CrossRef]
- Myers, G.S.; Mathews, S.A.; Eppinger, M.; Mitchell, C.; O’Brien, K.K.; White, O.R.; Benahmed, F.; Brunham, R.C.; Read, T.D.; Ravel, J.; et al. Evidence that human Chlamydia pneumoniae was zoonotically acquired. J. Bacteriol. 2009, 191, 7225–7233. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, P.; Cao, X.; Lou, Z.; Zaręba-Marchewka, K.; Szymańska-Czerwińska, M.; Niemczuk, K.; Hu, B.; Bai, X.; Zhou, J. First Report of Chlamydia abortus in Farmed Fur Animals. BioMed. Res. Int. 2018, 2018, 4289648. [Google Scholar] [CrossRef]
- Campos-Hernandez, E.; Vazquez-Chagoyan, J.C.; Salem, A.Z.; Saltijeral-Oaxaca, J.A.; Escalante-Ochoa, C.; Lopez-Heydeck, S.M.; de Oca-Jimenez, R.M. Prevalence and molecular identification of Chlamydia abortus in commercial dairy goat farms in a hot region in Mexico. Trop. Anim. Health Prod. 2014, 46, 919–924. [Google Scholar] [CrossRef]
- Szeredi, L.; Jánosi, S.; Tenk, M.; Tekes, L.; Bozsó, M.; Deim, Z.; Molnár, T. Epidemiological and pathological study on the causes of abortion in sheep and goats in Hungary (1998–2005). Acta Vet. Hung. 2006, 54, 503–515. [Google Scholar] [CrossRef]
- Salinas, J.; Ortega, N.; Borge, C.; Rangel, M.J.; Carbonero, A.; Perea, A.; Caro, M.R. Abortion associated with Chlamydia abortus in extensively reared Iberian sows. Vet. J. 2012, 194, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Szymańska-Czerwińska, M.; Mitura, A.; Zaręba, K.; Schnee, C.; Koncicki, A.; Niemczuk, K. Poultry in Poland as Chlamydiaceae carrier. J. Vet. Res. 2017, 61, 411. [Google Scholar] [CrossRef]
- Li, Z.; Cao, X.; Fu, B.; Chao, Y.; Cai, J.; Zhou, J. Identification and characterization of Chlamydia abortus isolates from yaks in Qinghai, China. BioMed. Res. Int. 2015, 2015, 658519. [Google Scholar]
- Di Paolo, L.A.; Alvarado Pinedo, M.F.; Origlia, J.; Fernández, G.; Uzal, F.A.; Travería, G.E. First report of caprine abortions due to Chlamydia abortus in Argentina. Vet. Med. Sci. 2019. [Google Scholar] [CrossRef]
- Gaede, W.; Reckling, K.F.; Schliephake, A.; Missal, D.; Hotzel, H.; Sachse, K. Detection of Chlamydophila caviae and Streptococcus equi subsp. zooepidemicus in horses with signs of rhinitis and conjunctivitis. Vet. Microbiol. 2010, 142, 440–444. [Google Scholar] [CrossRef]
- Pantchev, A.; Sting, R.; Bauerfeind, R.; Tyczka, J.; Sachse, K. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Huang, S.Y.; Xu, M.J.; Zhou, D.H.; Song, H.Q.; Zhu, X.Q. Chlamydia felis exposure in companion dogs and cats in Lanzhou, China: A public health concern. BMC Vet. Res. 2013, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Halanova, M.; Sulinova, Z.; Cislakova, L.; Trbolova, A.; Palenik, L.; Weissova, T.; Halan, M.; Kalinova, Z.; Holickova, M. Chlamydophila felis in cats—Are the stray cats dangerous source of infection? Zoonoses Public Health 2011, 58, 519–522. [Google Scholar] [CrossRef]
- Di Francesco, A.; Piva, S.; Baldelli, R. Prevalence of Chlamydophila felis by PCR among healthy pet cats in Italy. New Microbiol. 2004, 27, 199–201. [Google Scholar]
- Azuma, Y.; Hirakawa, H.; Yamashita, A.; Cai, Y.; Rahman, M.A.; Suzuki, H.; Mitaku, S.; Toh, H.; Goto, S.; Murakami, T.; et al. Genome sequence of the cat pathogen, Chlamydophila felis. DNA Res. 2006, 13, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Fukushi, H.; Matsudate, H.; Ishihara, K.; Yasuda, K.; Kitagawa, H.; Yamaguchi, T.; Hirai, K. Seroepidemiological investigation of feline chlamydiosis in cats and humans in Japan. Microbiol. Immunol. 2000, 44, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hartley, J.C.; Stevenson, S.; Robinson, A.J.; Littlewood, J.D.; Carder, C.; Cartledge, J.; Clark, C.; Ridgway, G.L. Conjunctivitis Due to Chlamydophila felis (Chlamydia psittaci Feline Pneumonitis Agent) Acquired From a Cat: Case Report with Molecular Characterization of Isolates from the Patient and Cat. J. Infect. 2001, 43, 7–11. [Google Scholar] [CrossRef]
- Wons, J.; Meiller, R.; Bergua, A.; Bogdan, C.; Geißdörfer, W. Follicular Conjunctivitis due to Chlamydia felis—Case Report, Review of the Literature and Improved Molecular Diagnostics. Front. Med. 2017, 4. [Google Scholar] [CrossRef]
- Ramsey, K.H.; Sigar, I.M.; Schripsema, J.H.; Denman, C.J.; Bowlin, A.K.; Myers, G.A.S.; Rank, R.G. Strain and Virulence Diversity in the Mouse Pathogen Chlamydia muridarum. Infect. Immun. 2009, 77, 3284–3293. [Google Scholar] [CrossRef]
- Cochrane, M.; Armitage, C.W.; O’Meara, C.P.; Beagley, K.W. Towards a Chlamydia trachomatis vaccine: How close are we? Future Microbiol. 2010, 5, 1833–1856. [Google Scholar] [CrossRef] [PubMed]
- Kaushic, C.; Jerse, A.E.; Beagley, K.W. Chapter 107—Animal Models of Immunity to Female Genital Tract Infections and Vaccine Development, 4th ed.; Mestecky, J., Strober, W., Russell, M.W., Kelsall, B.L., Cheroutre, H., Lambrecht, B.N., Eds.; In Mucosal Immunology, Academic Press: Cambridge, MA, USA, USA 2015; pp. 2059–2096. [Google Scholar]
- Puerta Suarez, J.; Sanchez, L.R.; Salazar, F.C.; Saka, H.A.; Molina, R.; Tissera, A.; Rivero, V.E.; Cardona Maya, W.D.; Motrich, R.D. Chlamydia trachomatis neither exerts deleterious effects on spermatozoa nor impairs male fertility. Sci. Rep. 2017, 7, 1126. [Google Scholar] [CrossRef]
- Phillips, S.; Robbins, A.; Loader, J.; Hanger, J.; Booth, R.; Jelocnik, M.; Polkinghorne, A.; Timms, P. Chlamydia pecorum gastrointestinal tract infection associations with urogenital tract infections in the koala (Phascolarctos cinereus). PLoS ONE 2018, 13, e0206471. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Loader, J.; Hanger, J.; Beagley, K.; Timms, P.; Polkinghorne, A. Using quantitative polymerase chain reaction to correlate Chlamydia pecorum infectious load with ocular, urinary and reproductive tract disease in the koala (Phascolarctos cinereus). Aust. Vet. J. 2011, 89, 409–412. [Google Scholar] [CrossRef]
- Sanchez Romano, J.; Leijon, M.; Hagstrom, A.; Jinnerot, T.; Rockstrom, U.K.; Tryland, M. Chlamydia pecorum Associated With an Outbreak of Infectious Keratoconjunctivitis in Semi-domesticated Reindeer in Sweden. Front. Vet. Sci. 2019, 6, 14. [Google Scholar] [CrossRef]
- Mohamad, K.Y.; Rodolakis, A. Recent advances in the understanding of Chlamydophila pecorum infections, sixteen years after it was named as the fourth species of the Chlamydiaceae family. Vet. Res. 2010, 41, 27. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.A. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J. Clin. Microbiol. 1991, 29, 707–711. [Google Scholar]
- Vanrompay, D.; Andersen, A.A.; Ducatelle, R.; Haesebrouck, F. Serotyping of European isolates of Chlamydia psittaci from poultry and other birds. J. Clin. Microbiol. 1993, 31, 134–137. [Google Scholar] [PubMed]
- Madani, S.A.; Peighambari, S.M. PCR-based diagnosis, molecular characterization and detection of atypical strains of avian Chlamydia psittaci in companion and wild birds. Avian Pathol. 2013, 42, 38–44. [Google Scholar] [CrossRef]
- Stenzel, T.; Pestka, D.; Choszcz, D. The prevalence and genetic characterization of Chlamydia psittaci from domestic and feral pigeons in Poland and the correlation between infection rate and incidence of pigeon circovirus. Poult. Sci. 2014, 93, 3009–3016. [Google Scholar] [CrossRef] [PubMed]
- Rotz, L.D.; Khan, A.S.; Lillibridge, S.R.; Ostroff, S.M.; Hughes, J.M. Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis. 2002, 8, 225–230. [Google Scholar] [CrossRef]
- Schachter, J.; Dawson, C.R. Human chlamydial infections; PSG Publishing Company: Littleton, MA, USA, 1978; pp. 63–96. [Google Scholar]
- Laroucau, K.; Aaziz, R.; Meurice, L.; Servas, V.; Chossat, I.; Royer, H.; de Barbeyrac, B.; Vaillant, V.; Moyen, J.L.; Meziani, F.; et al. Outbreak of psittacosis in a group of women exposed to Chlamydia psittaci-infected chickens. Eurosurveillance 2015, 20, 21155. [Google Scholar] [CrossRef] [PubMed]
- Schautteet, K.; Beeckman, D.S.A.; Delava, P.; Vanrompay, D. Possible pathogenic interplay between Chlamydia suis, Chlamydophila abortus and PCV-2 on a pig production farm. Vet. Rec. 2010, 166, 329–333. [Google Scholar] [CrossRef]
- Joseph, S.J.; Marti, H.; Didelot, X.; Read, T.D.; Dean, D. Tetracycline selective pressure and homologous recombination shape the evolution of Chlamydia suis: A recently identified zoonotic pathogen. Genome Biol. Evol. 2016, 8, 2613–2623. [Google Scholar] [CrossRef]
- Andersen, A.; Rogers, D. Resistance to tetracycline and sulfadiazine in swine C. trachomatis isolates. In Proceedings of the Ninth International Symposium on Human Chlamydial Infection, San Francisco, CA, USA, 1998; pp. 313–316. [Google Scholar]
- Di Francesco, A.; Donati, M.; Rossi, M.; Pignanelli, S.; Shurdhi, A.; Baldelli, R.; Cevenini, R. Tetracycline-resistant Chlamydia suis isolates in Italy. Vet. Rec. 2008, 163, 251–252. [Google Scholar] [CrossRef]
- Schautteet, K.; de Clercq, E.; Miry, C.; van Groenweghe, F.; Delava, P.; Kalmar, I.; Vanrompay, D. Tetracycline-resistant Chlamydia suis in cases of reproductive failure on Belgian, Cypriote and Israeli pig production farms. J. Med. Microbiol. 2013, 62, 331–334. [Google Scholar] [CrossRef]
- Wanninger, S.; Donati, M.; Di Francesco, A.; Hässig, M.; Hoffmann, K.; Seth-Smith, H.M.B.; Marti, H.; Borel, N. Selective pressure promotes tetracycline resistance of Chlamydia suis in fattening pigs. PLoS ONE 2016, 11, e0166917. [Google Scholar] [CrossRef]
- Clarke, I.N. Evolution of Chlamydia trachomatis. Ann. N. Y. Acad. Sci. 2011, 1230, E11–E18. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Roring, R.E.; Heijne, M. Chlamydia psittaci and C. avium in feral pigeon (Columba livia domestica) droppings in two cities in the Netherlands. Vet. Q. 2018, 38, 63–66. [Google Scholar] [CrossRef]
- Donati, M.; Laroucau, K.; Guerrini, A.; Balboni, A.; Salvatore, D.; Catelli, E.; Lupini, C.; Levi, A.; di Francesco, A. Chlamydiosis in Backyard Chickens (Gallus gallus) in Italy. Vector Borne Zoonotic Dis. 2018, 18, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Heijne, M.; van der Goot, J.A.; Fijten, H.; van der Giessen, J.W.; Kuijt, E.; Maassen, C.B.M.; van Roon, A.; Wit, B.; Koets, A.P.; Roest, H.I.J. A cross sectional study on Dutch layer farms to investigate the prevalence and potential risk factors for different Chlamydia species. PLoS ONE 2018, 13, e0190774. [Google Scholar] [CrossRef] [PubMed]
- Pisanu, B.; Laroucau, K.; Aaziz, R.; Vorimore, F.; Le Gros, A.; Chapuis, J.-L.; Clergeau, P. Chlamydia avium detection from a ring-necked parakeet (Psittacula krameri) in France. J. Exot. Pet Med. 2018, 27, 68–74. [Google Scholar] [CrossRef]
- Zocevic, A.; Vorimore, F.; Marhold, C.; Horvatek, D.; Wang, D.; Slavec, B.; Prentza, Z.; Stavianis, G.; Prukner-Radovcic, E.; Dovc, A.; et al. Molecular characterization of atypical Chlamydia and evidence of their dissemination in different European and Asian chicken flocks by specific real-time PCR. Environ. Microbiol. 2012, 14, 2212–2222. [Google Scholar] [CrossRef]
- Zocevic, A.; Vorimore, F.; Vicari, N.; Gasparini, J.; Jacquin, L.; Sachse, K.; Magnino, S.; Laroucau, K. A real-time PCR assay for the detection of atypical strains of Chlamydiaceae from pigeons. PLoS ONE 2013, 8, e58741. [Google Scholar] [CrossRef] [PubMed]
- Vorimore, F.; Hsia, R.C.; Huot-Creasy, H.; Bastian, S.; Deruyter, L.; Passet, A.; Sachse, K.; Bavoil, P.; Myers, G.; Laroucau, K. Isolation of a New Chlamydia species from the Feral Sacred Ibis (Threskiornis aethiopicus): Chlamydia ibidis. PLoS ONE 2013, 8, e74823. [Google Scholar] [CrossRef]
- Staub, E.; Marti, H.; Biondi, R.; Levi, A.; Donati, M.; Leonard, C.A.; Ley, S.D.; Pillonel, T.; Greub, G.; Seth-Smith, H.M.B.; et al. Novel Chlamydia species isolated from snakes are temperature-sensitive and exhibit decreased susceptibility to azithromycin. Sci. Rep. 2018, 8, 5660. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Brown, A.; Spang, L.; Borel, N.; Polkinghorne, A. Culture-independent metagenomics supports discovery of uncultivable bacteria within the genus Chlamydia. Sci. Rep. 2017, 7, 10661. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Brown, A.; Bachmann, N.L.; Borel, N.; Polkinghorne, A. Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genom. 2016, 17, 710. [Google Scholar] [CrossRef] [PubMed]
- Schachter, J.; Stephens, R.; Timms, P.; Kuo, C.; Bavoil, P.M.; Birkelund, S.; Boman, J.; Caldwell, H.; Campbell, L.; Chernesky, M. Radical changes to chlamydial taxonomy are not necessary just yet. Int. J. Syst. Evol. Microbiol. 2001, 51, 249. [Google Scholar] [CrossRef] [PubMed]
Species | Primary Host | Diseases in Primary Host | Transmission to Human |
---|---|---|---|
C. abortus | Small ruminants e.g., sheep and goats | Abortion in late gestation or deliver weak/dead fetus [3] | Possible though close contact with infected tissues, causes abortion, stillbirth, gestational septicaemia, PID, and atypical pneumonia [4,5,6,7,8,9] |
C. avium | Avian e.g., pigeons and psittacine birds | Respiratory disease in psittacine birds and pigeons [10,11,12,13] | Unknown |
C. caviae | Guinea pigs, cat, dogs, rabbits, and horses | Conjunctivitis and urogenital tract infections [14,15,16] | Possible though close contact, causes mild conjunctivitis, severe community-acquired pneumonia [14,17,18] |
Ca. C. corallus | Snakes | Unknown | Unknown |
C. felis | Felines, especially cats, and dogs | Conjunctivitis with minimal respiratory disease, and upper reproductive tract infections [19,20] | Possible cause of conjunctivitis in human [21] |
C. gallinacea | Domestic poultry e.g., chickens, ducks, guinea fowls, turkeys | Reduced body weight [22] | Possible cause of atypical pneumoniae [13,23] |
Ca. C. ibidis | Feral sacred ibis | Unknown | Unknown |
C. muridarum | Rodents e.g., mouse, and chickens | Cervicovaginal infection, oviduct occlusion, hydrosalpinx formation in female mice [24,25] | - |
C. pecorum | Koala, livestock species including cattle, sheep, goats, water buffalos, swine, bandicoots, and pigeons | Pneumonia, conjunctivitis, blindness, urinary incontinence, cystitis, nephritis, abortion, infertility, polyarthritis, sporadic bovine encephalomyelitis, and enteritis [26,27,28,29,30,31,32] | Unknown |
C. pneumoniae | Human and a wide range of non-human mammals and reptiles encompassing koalas, horses, bandicoots, snakes, iguanas, chameleons, frogs, and turtles | Humans:
| Unknown. However, the discovery of animal genotypes of C. pneumoniae in humans suggests a likelihood for zoonotic transmission [51,52] |
Ca. C. sanzinia | Snake | Unknown | Unknown |
C. psittaci | Avian | Psittacosis/ornithosis conjunctivitis, rhinitis, and blepharitis [53,54] | Possible through inhalation; causes fever, chills, headache, myalgia, and malaise with or without respiratory symptoms [55] |
C. trachomatis | Human | Males: | - |
C. serpentis | Snakes | Unknown | Unknown |
C. suis | Swine | Respiratory disorders [84], conjunctivitis [85], enteritis [86], and reproductive failure | Possible through close contact, no reported symptoms [87,88,89] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, H.C.; Lee, C.Y.Q.; Cheok, Y.Y.; Tan, G.M.Y.; Looi, C.Y.; Wong, W.F. Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019, 7, 146. https://doi.org/10.3390/microorganisms7050146
Cheong HC, Lee CYQ, Cheok YY, Tan GMY, Looi CY, Wong WF. Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms. 2019; 7(5):146. https://doi.org/10.3390/microorganisms7050146
Chicago/Turabian StyleCheong, Heng Choon, Chalystha Yie Qin Lee, Yi Ying Cheok, Grace Min Yi Tan, Chung Yeng Looi, and Won Fen Wong. 2019. "Chlamydiaceae: Diseases in Primary Hosts and Zoonosis" Microorganisms 7, no. 5: 146. https://doi.org/10.3390/microorganisms7050146
APA StyleCheong, H. C., Lee, C. Y. Q., Cheok, Y. Y., Tan, G. M. Y., Looi, C. Y., & Wong, W. F. (2019). Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms, 7(5), 146. https://doi.org/10.3390/microorganisms7050146