High-Resolution Core Gene-Associated Multiple Nucleotide Polymorphism (cgMNP) Markers for Strain Identification in the Wine Cap Mushroom Stropharia rugosoannulata
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, DNA Extraction and Genome Resequencing
2.2. Read Mapping and Genotype Calling
2.3. Core Gene Identification and Marker Development
2.4. Phylogenetic Analysis and Statistical Analysis
3. Results
3.1. Genome Resequencing and Identification of Core Gene-Assicated MNP Markers in Stropharia rugosoannulata
3.2. Phylogenetic Analysis and Genetic Similarity Values Using Core Gene-Associated MNP Markers
3.3. Nucleotide Diversity Analysis of Core Genes
3.4. Phylogenetic Analysis Using the Most Variable Gene
4. Discussion
4.1. Insights into Stropharia rugosoannulata Genetic Diversity and Phylogeny
4.2. Advantages of Core Gene-Associated MNP Markers
4.3. Implications for Breeding and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Hu, C.-F.; Feng, X.; Cheng, L.; Ibrahim, S.A.; Wang, C.-T.; Huang, W. Isolation, Characterization and Antioxidant of Polysaccharides from Stropharia rugosoannulata. Int. J. Biol. Macromol. 2020, 155, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.-X.; Huang, M.-X.; Sun, P.; Cheng, S.; Zhang, Q.; Dai, H. Steroids, Fatty Acids and Ceramide from the Mushroom Stropharia rugosoannulata Farlow apud Murrill. Biochem. Syst. Ecol. 2020, 88, 103963. [Google Scholar] [CrossRef]
- Szudyga, K. Stropharia Rugoso-Annulata. In The Biology and Cultivation of Edible Mushrooms; Elsevier: Amsterdam, The Netherlands, 1978; pp. 559–571. [Google Scholar]
- Guo, M.; Ma, X.; Zhou, Y.; Bian, Y.; Liu, G.; Cai, Y.; Huang, T.; Dong, H.; Cai, D.; Wan, X.; et al. Genome Sequencing Highlights the Plant Cell Wall Degrading Capacity of Edible Mushroom Stropharia rugosoannulata. J. Microbiol. 2023, 61, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Meng, G.; Ni, S.; Zhang, H.; Dong, C. Genomic Analysis of Stropharia rugosoannulata Reveals Its Nutritional Strategy and Application Potential in Bioremediation. J. Fungi 2022, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Castellet-Rovira, F.; Lucas, D.; Villagrasa, M.; Rodríguez-Mozaz, S.; Barceló, D.; Sarrà, M. Stropharia rugosoannulata and Gymnopilus luteofolius: Promising Fungal Species for Pharmaceutical Biodegradation in Contaminated Water. J. Environ. Manag. 2018, 207, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yan, J.; Lu, N.; Song, J.; Lin, J.; Zhou, X.; Ying, X.; Li, Z.; Zhou, Z.; Yao, F. Analysis of Gene Regulatory Network and Transcription Factors in Different Tissues of the Stropharia rugosoannulata Fruiting Body. J. Fungi 2025, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, S.; Hu, C.; Mao, C.; Guo, L.; Yu, H.; Yu, H. Whole Genome Sequence of an Edible Mushroom Stropharia rugosoannulata (Daqiugaigu). J. Fungi 2022, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Zhang, J.; Wang, Q.; Huang, J.; Juan, J.; Kuai, B.; Feng, Z.; Chen, H. Transcriptome and Differentially Expressed Gene Profiles in Mycelium, Primordium and Fruiting Body Development in Stropharia rugosoannulata. Genes 2022, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, X.; Zeng, Z.; Song, F.; Lin, Z.; Chen, L.; Cai, Z. Transcriptome Analysis Explored the Differential Genes’ Expression During the Development of the Stropharia rugosoannulata Fruiting Body. Front. Genet. 2022, 13, 924050. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ono, A.; Choi, J.-H.; Wu, J.; Kawagishi, H.; Dohra, H. The Complete Mitochondrial Genome Sequence of the Edible Mushroom Stropharia rugosoannulata (Strophariaceae, Basidiomycota). Mitochondrial DNA Part B 2019, 4, 570–572. [Google Scholar] [CrossRef]
- Gu, M.; Chen, Q.; Zhang, Y.; Zhao, Y.; Wang, L.; Wu, X.; Zhao, M.; Gao, W. Evaluation of Genetic Diversity and Agronomic Traits of Germplasm Resources of Stropharia rugosoannulata. Horticulturae 2024, 10, 213. [Google Scholar] [CrossRef]
- Liu, F.; Ma, X.-B.; Han, B.; Wang, B.; Xu, J.-P.; Cao, B.; Ling, Z.-L.; He, M.-Q.; Zhu, X.-Y.; Zhao, R.-L. Pan-Genome Analysis Reveals Genomic Variations during Enoki Mushroom Domestication, with Emphasis on Genetic Signatures of Cap Color and Stipe Length. J. Adv. Res. 2024, S2090-1232(24)00497-1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, N.; Li, C.; Xiang, X.; Liu, G.; Gui, Y.; Patev, S.; Hibbett, D.S.; Barry, K.; Andreopoulos, W.; et al. Population Genomics Provides Insights into the Genetic Basis of Adaptive Evolution in the Mushroom-Forming Fungus Lentinula edodes. J. Adv. Res. 2022, 38, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Lv, G.; Wang, R.; Wang, M.; Yuan, Y.; Quan, X.; Yao, X. Molecular Insights into Temperature-Driven Color Variation in Stropharia rugosoannulata Mushrooms. Genomics 2025, 117, 111044. [Google Scholar] [CrossRef] [PubMed]
- Iquebal, M.A.; Jaiswal, S.; Mishra, V.K.; Jasrotia, R.S.; Angadi, U.B.; Singh, B.P.; Passari, A.K.; Deka, P.; Prabha, R.; Singh, D.P.; et al. Fungal Genomic Resources for Strain Identification and Diversity Analysis of 1900 Fungal Species. J. Fungi 2021, 7, 288. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Zhang, M.; Ling, Z.; Zhao, Z. Evolutionary Relationship and a Novel Method of Efficient Identification of Lentinula edodes Cultivars in China. Mycosphere 2022, 13, 56–85. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.-H.; Jia, D.-H.; Tan, H.; Wang, B.; Zhao, R.-L. Development of Multiple Nucleotide Polymorphism Molecular Markers for Enoki Mushroom (Flammulina filiformis) Cultivars Identification. J. Fungi 2023, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- We, C.; Wang, M.; Zhang, P.; Liu, F.; Yan, J.; Xie, B.; Deng, Y.; Xie, L. Identification of Pleurotus eryngii Strains by MNP Makers Based on Next-Generation Sequencing. Acta Edulis Fungi 2023, 30, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Wang, Q.; Qu, J.; Zhang, J.; Huang, C. Identification of Commercial Cultivars of Agaricus bisporus in China Using Genome-Wide Microsatellite Markers. J. Integr. Agric. 2019, 18, 580–589. [Google Scholar] [CrossRef]
- Hosseinzadeh-Colagar, A.; Haghighatnia, M.J.; Amiri, Z.; Mohadjerani, M.; Tafrihi, M. Microsatellite (SSR) Amplification by PCR Usually Led to Polymorphic Bands: Evidence Which Shows Replication Slippage Occurs in Extend or Nascent DNA Strands. Mol. Biol. Res. Commun. 2016, 5, 167–174. [Google Scholar] [PubMed]
- Treangen, T.J.; Salzberg, S.L. Repetitive DNA and Next-Generation Sequencing: Computational Challenges and Solutions. Nat. Rev. Genet. 2011, 13, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cai, Z.-X.; Kang, W.-Y.; Chen, W.-Z.; Lu, Y.-P.; Chen, M.-Y.; Zhao, R.-L. A New Method for Constructing High-Resolution Phylogenomic Topologies Using Core Gene-Associated MNP Markers: A Case Study From Agaricus bisporus. Microb. Biotechnol. 2025, 18, e70070. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Weissman, S.J.; Minin, V.N.; Russo, T.A.; Dykhuizen, D.E.; Sokurenko, E.V. High Frequency of Hotspot Mutations in Core Genes of Escherichia coli Due to Short-Term Positive Selection. Proc. Natl. Acad. Sci. USA 2009, 106, 12412–12417. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Gilchrist, C.L.M.; Chun, J.; Steinegger, M. UFCG: Database of Universal Fungal Core Genes and Pipeline for Genome-Wide Phylogenetic Analysis of Fungi. Nucleic Acids Res. 2023, 51, D777–D784. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.; Bianchi, L.; Rastelli, F.; Piron-Prunier, F.; Ayciriex, S.; Besmond, C.; Hubert, L.; Barth, M.; Barbosa, I.A.; Deshpande, C.; et al. Biallelic Variants in TAMM41 Are Associated with Low Muscle Cardiolipin Levels, Leading to Neonatal Mitochondrial Disease. HGG Adv. 2022, 3, 100097. [Google Scholar] [CrossRef] [PubMed]
- Jeffroy, O.; Brinkmann, H.; Delsuc, F.; Philippe, H. Phylogenomics: The beginning of incongruence? Trends Genet. 2006, 22, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Philippe, H.; Douady, C.J. Horizontal Gene Transfer and Phylogenetics. Curr. Opin. Microbiol. 2003, 6, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, S.-H.; Cheewangkoon, R.; Zhao, R.-L. Uneven Distribution of Prokaryote-Derived Horizontal Gene Transfer in Fungi: A Lifestyle-Dependent Phenomenon. mBio 2025, 16, e02855-24. [Google Scholar] [CrossRef] [PubMed]
- Maris, C.; Dominguez, C.; Allain, F.H.-T. The RNA Recognition Motif, a Plastic RNA-Binding Platform to Regulate Post-Transcriptional Gene Expression. FEBS J. 2005, 272, 2118–2131. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.P.; Pandey, S. WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions. Protein J. 2018, 37, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Abdellah, Y.A.Y.; Dou, T.; Keiblinger, K.M.; Zhou, Z.; Bhople, P.; Jiang, J.; Shi, X.; Zhang, F.; Yu, F.; et al. Livestock–Crop–Mushroom (LCM) Circular System: An Eco-Friendly Approach for Enhancing Plant Performance and Mitigating Microbiological Risks. Environ. Sci. Technol. 2025, 59, 8541–8554. [Google Scholar] [CrossRef] [PubMed]
- Pintarič, M.; Štuhec, A.; Tratnik, E.; Langerholc, T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
Sample | BaseSum (G) | Mean Depth | Source | Location | Color |
---|---|---|---|---|---|
01R0001 | 2.4634890 | 48.82 | Cultivar | Shaanxi | brown |
01R0002 | 2.7003492 | 53.53 | Cultivar | Fujian | brown |
01R0003 | 2.2118484 | 43.84 | Wild | Fujian | brown |
01R0004 | 2.4641238 | 47.61 | Wild | Fujian | brown |
01R0005 | 3.2382552 | 63.92 | Cultivar | Fujian | brown |
01R0006 | 3.1049862 | 61.25 | Wild | Fujian | brown |
01R0007 | 2.1526557 | 42.72 | Cultivar | Fujian | brown |
01R0008 | 2.8159038 | 55.81 | Cultivar | Fujian | brown |
01R0009 | 2.4095355 | 46.78 | Cultivar | Fujian | brown |
01R0010 | 3.8067042 | 75.28 | Cultivar | Beijing | brown |
01R0011 | 2.2150770 | 43.84 | Cultivar | Shandong | brown |
01R0012 | 2.3642259 | 44.65 | Wild | Shandong | brown |
01R0013 | 2.2152048 | 43.81 | Cultivar | Shandong | brown |
01R0014 | 2.7182691 | 53.96 | Wild | Shandong | brown |
01R0015 | 2.3323134 | 46.26 | Wild | Shandong | brown |
01R0016 | 2.1267690 | 41.98 | Wild | Shandong | brown |
01R0017 | 2.3049033 | 45.76 | Cultivar | Heilongjiang | brown |
01R0018 | 2.2960254 | 45.33 | Cultivar | Shandong | brown |
01R0019 | 2.5697190 | 48.79 | Wild | Heilongjiang | brown |
01R0020 | 2.1695034 | 42.97 | Cultivar | Heilongjiang | brown |
01R0021 | 2.5653045 | 50.58 | Cultivar | Xinjiang | brown |
01R0022 | 2.3667072 | 46.81 | Cultivar | Shandong | brown |
01R0023 | 1.8403629 | 36.23 | Cultivar | Fujian | brown |
01R0024 | 2.3851818 | 45.32 | Wild | Shanghai | brown |
01R0025 | 2.3525052 | 43.29 | Wild | Yunnan | brown |
01R0026 | 2.2615755 | 40.93 | Wild | Yunnan | brown |
01R0027 | 2.6118186 | 48.34 | Wild | Yunnan | brown |
01R0028 | 2.3147187 | 42.99 | Wild | Yunnan | brown |
01R0029 | 2.0687826 | 38.71 | Wild | Yunnan | brown |
01R0030 | 2.3813883 | 43.69 | Wild | Yunnan | brown |
01R0031 | 2.1197256 | 38.65 | Wild | Yunnan | brown |
01R0032 | 2.0447976 | 37.89 | Wild | Yunnan | brown |
01R0033 | 2.0854716 | 41.14 | Cultivar | Yunnan | brown |
01R0034 | 2.3866515 | 47.10 | Cultivar | Yunnan | brown |
01R0035 | 2.4101256 | 47.73 | Cultivar | Shandong | brown |
01R0036 | 2.4361248 | 47.90 | Cultivar | Shandong | brown |
01R0037 | 2.4706656 | 48.73 | Cultivar | Shandong | brown |
01R0038 | 2.8203177 | 55.23 | Cultivar | Shandong | brown |
01R0039 | 2.3010948 | 45.61 | Cultivar | Xinjiang | brown |
01R0040 | 2.2662033 | 44.86 | Cultivar | Xinjiang | brown |
01R0041 | 2.0078208 | 39.72 | Cultivar | Shandong | brown |
01R0042 | 2.2996011 | 45.61 | Cultivar | Shandong | brown |
01R0043 | 1.9783281 | 38.87 | Cultivar | Shandong | brown |
01R0044 | 2.2833378 | 43.88 | Wild | Shandong | brown |
01R0045 | 2.1330795 | 42.21 | Cultivar | Beijing | brown |
01R0046 | 2.3766336 | 46.77 | Cultivar | Beijing | brown |
02R0001 | 2.1366321 | 42.40 | Cultivar | Fujian | brown |
02R0002 | 3.9907788 | 78.80 | Cultivar | Shandong | brown |
02R0003 | 4.0328454 | 78.92 | Cultivar | Sichuan | brown |
03R0001 | 2.1084636 | 40.96 | Wild | Shandong | brown |
Sru01 | 5.6994243 | 113.32 | Cultivar | Sichuan | brown |
Sru02 | 5.5662936 | 111.02 | Cultivar | Sichuan | brown |
Sru03 | 5.9468457 | 118.30 | Cultivar | Yunnan | yellow |
Sru04 | 5.8567626 | 116.58 | Cultivar | Yunnan | yellow |
Sru05 | 5.5058730 | 109.77 | Cultivar | Yunnan | yellow |
Sru06 | 5.8558644 | 116.71 | Cultivar | Yunnan | yellow |
Sru07 | 5.7291126 | 113.94 | Cultivar | Beijing | brown |
Sru09 | 5.1560214 | 102.65 | Cultivar | Beijing | brown |
Sru10 | 5.7752538 | 114.96 | Cultivar | Beijing | brown |
Sru11 | 5.6348997 | 112.48 | Cultivar | Zhejiang | brown |
Sru12 | 5.4018870 | 107.45 | Cultivar | Jiangxi | brown |
Sru13 | 5.8063167 | 115.58 | Cultivar | Beijing | brown |
Sru14 | 5.7922959 | 115.30 | Cultivar | Beijing | brown |
Sru15 | 5.8244898 | 116.15 | Cultivar | Yunnan | yellow |
Sru16 | 5.9801625 | 119.33 | Cultivar | Henan | yellow |
Sru17 | 5.7301551 | 114.16 | Cultivar | Beijing | brown |
Sru18 | 5.8504152 | 116.27 | Cultivar | Beijing | brown |
Sru19 | 5.9063601 | 117.76 | Cultivar | Beijing | brown |
Sru20 | 5.9725761 | 119.05 | Cultivar | Beijing | brown |
Sru21 | 5.7092889 | 113.46 | Cultivar | Beijing | brown |
Sru22 | 5.6090259 | 111.86 | Cultivar | Beijing | brown |
Sru23 | 5.8316094 | 116.25 | Cultivar | Hubei | brown |
Sru24 | 5.6767800 | 112.93 | Cultivar | Guangdong | brown |
Sru25 | 5.7882921 | 115.13 | Cultivar | Hubei | brown |
Sru26 | 5.9944332 | 119.12 | Cultivar | Shandong | brown |
Sru27 | 5.9446413 | 118.46 | Cultivar | Hubei | brown |
Sru28 | 5.5093176 | 109.88 | Cultivar | Jiangsu | brown |
Sru29 | 5.7809028 | 115.23 | Cultivar | Shaanxi | brown |
Sru30 | 5.7510969 | 114.69 | Cultivar | Yunnan | brown |
Sru31 | 5.8846452 | 117.11 | Cultivar | Shaanxi | brown |
Sru32 | 5.6994126 | 113.27 | Cultivar | Shaanxi | brown |
Sru33 | 5.8452510 | 116.32 | Cultivar | Shaanxi | brown |
Sru34 | 5.8584156 | 116.66 | Cultivar | Hebei | brown |
Sru35 | 5.7443418 | 114.49 | Cultivar | Shaanxi | brown |
Sru36 | 5.8878756 | 117.28 | Cultivar | Shaanxi | brown |
Sru37 | 5.5336191 | 110.15 | Cultivar | Shaanxi | brown |
Sru38 | 5.9763822 | 119.16 | Cultivar | Shaanxi | brown |
Sru39 | 5.6468109 | 112.55 | Cultivar | Hebei | brown |
Sru40 | 5.7865203 | 115.05 | Cultivar | Hebei | brown |
Sru42 | 5.8858707 | 117.23 | Cultivar | Fujian | brown |
Sru44 | 5.9152776 | 117.69 | Cultivar | Hubei | brown |
Sru45 | 5.9668284 | 119.01 | Cultivar | Hebei | brown |
Sru46 | 5.5061244 | 109.12 | Cultivar | Hebei | brown |
Sru47 | 5.7764799 | 115.12 | Wild | Shandong | brown |
Sru48 | 4.9183146 | 95.88 | Cultivar | Shandong | brown |
Sru49 | 5.9916786 | 119.14 | Cultivar | Shandong | brown |
Sru50 | 5.6500371 | 112.37 | Cultivar | Shandong | brown |
Sru51 | 5.6395635 | 112.08 | Cultivar | Hubei | brown |
Sru52 | 5.5902006 | 111.54 | Cultivar | Yunnan | brown |
Sru53 | 5.9733798 | 118.83 | Cultivar | Sichuan | brown |
Sru54 | 5.5741188 | 105.36 | Cultivar | Hunan | brown |
Sru55 | 4.4327850 | 83.93 | Cultivar | Shanxi | brown |
Sru56 | 5.7086718 | 113.87 | Cultivar | Gansu | brown |
Sru57 | 4.9019262 | 97.74 | Cultivar | Yunnan | brown |
Sru58 | 5.5635774 | 111.02 | Cultivar | Hebei | brown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Cao, B.; Dai, H.; Li, G.; Li, S.; Gao, W.; Zhao, R. High-Resolution Core Gene-Associated Multiple Nucleotide Polymorphism (cgMNP) Markers for Strain Identification in the Wine Cap Mushroom Stropharia rugosoannulata. Microorganisms 2025, 13, 1685. https://doi.org/10.3390/microorganisms13071685
Liu F, Cao B, Dai H, Li G, Li S, Gao W, Zhao R. High-Resolution Core Gene-Associated Multiple Nucleotide Polymorphism (cgMNP) Markers for Strain Identification in the Wine Cap Mushroom Stropharia rugosoannulata. Microorganisms. 2025; 13(7):1685. https://doi.org/10.3390/microorganisms13071685
Chicago/Turabian StyleLiu, Fei, Bin Cao, Hongmei Dai, Guojie Li, Shoumian Li, Wei Gao, and Ruilin Zhao. 2025. "High-Resolution Core Gene-Associated Multiple Nucleotide Polymorphism (cgMNP) Markers for Strain Identification in the Wine Cap Mushroom Stropharia rugosoannulata" Microorganisms 13, no. 7: 1685. https://doi.org/10.3390/microorganisms13071685
APA StyleLiu, F., Cao, B., Dai, H., Li, G., Li, S., Gao, W., & Zhao, R. (2025). High-Resolution Core Gene-Associated Multiple Nucleotide Polymorphism (cgMNP) Markers for Strain Identification in the Wine Cap Mushroom Stropharia rugosoannulata. Microorganisms, 13(7), 1685. https://doi.org/10.3390/microorganisms13071685