Effect of Crop Type Shift on Soil Phosphorus Morphology and Microbial Functional Diversity in a Typical Yellow River Irrigation Area
Abstract
1. Background
2. Materials and Method
2.1. The Study Area
2.2. Sample Collection
2.3. Sample Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Effect of Crop Type Shifts on Soil Basic Properties
3.2. Effect of Crop Type Shifts on Soil P Storage, P Availability, and P Fractions
3.3. Soil P Leaching Change Point Calculation and P Leaching Risk Assessment
3.4. Effect of Crop Type Shifts on the Abundance of Soil PSMs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Amount, forms, and solubility of phosphorus in soils receiving manure. Soil Sci. Soc. Am. J. 2004, 68, 2048–2055. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, X.; Sun, X.; Huang, L.; Li, S.; Hu, Z. Effects of biochar application and irrigation rate on the soil phosphorus leaching risk of fluvisol profiles in open vegetable fields. Sci. Total Environ. 2021, 789, 147973. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus. Chemosphere 2017, 171, 106–117. [Google Scholar] [CrossRef]
- Xie, Z.; Ye, C.; Li, C.; Shi, X. The global progress on the non-point source pollution research from 2012 to 2021: A bibliometric analysis. Environ. Sci. Eur. 2022, 34, 121. [Google Scholar] [CrossRef]
- Ahlgren, J.; Djodjic, F.; Borjesson, G.; Mattsson, L. Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use Manag. 2013, 29, 24–35. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, D.; Wei, W.; Ye, C.; Wang, H.; Li, C. Phosphorus leaching risk from black soil increased due to conversion of arid agricultural land to paddy land in northeast China. Chem. Biol. Technol. Agric. 2023, 10, 59. [Google Scholar] [CrossRef]
- Tiessen, H.J.; Moir, J.O. Characterization of available P by sequential extraction, soil sampling and methods of analysis. In Soil Sampling and Methods of Analysis; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Sun, X.; Li, M.; Wang, G.; Drosos, M.; Liu, F.; Hu, Z. Response of phosphorus fractions to land-use change followed by long-term fertilization in a sub-alpine humid soil of Qinghai—Tibet plateau. J. Soils Sediments 2019, 19, 1109–1119. [Google Scholar] [CrossRef]
- Zhu, Y.; Xing, Y.; Li, Y.; Jia, J.; Ying, Y.; Shi, W. The Role of Phosphate-Solubilizing Microbial Interactions in Phosphorus Activation and Utilization in Plant–Soil Systems: A Review. Plants 2024, 13, 2686. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Liu, Y.; Feng, C.; Li, Z. Metagenomic Analysis Reveals the Effects of Different Land Use Types on Functional Soil Phosphorus Cycling: A Case Study of the Yellow River Alluvial Plain. Microorganisms 2024, 12, 2194. [Google Scholar] [CrossRef] [PubMed]
- Pang, F.; Li, Q.; Solanki, M.K.; Wang, Z.; Xing, Y.X.; Dong, D.F. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front. Microbiol. 2024, 15, 1383813. [Google Scholar] [CrossRef]
- Lei, Y.; Kuai, Y.; Guo, M.; Zhang, H.; Yuan, Y.; Hong, H. Phosphate-solubilizing microorganisms for soil health and ecosystem sustainability: A forty-year scientometric analysis (1984–2024). Front. Microbiol. 2025, 16, 1546852. [Google Scholar] [CrossRef]
- Pan, L.; Cai, B. Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms 2023, 11, 2904. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; Moral, F.D.; Hueso, J.J.; Tsanis, L.K. A review of soil-improving cropping systems for soil salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Cai, X.; Xie, Z.; Liu, W.; Ye, C.; Li, C. Variation characteristics and source analysis of nitrogen and phosphorus in shallow groundwater in a typical agricultural area of the Hetao Irrigation District. Water Resour. Hydropower Eng. 2024, 55, 98–109. [Google Scholar]
- Huo, H.; Yang, J.; Yao, R.; Xie, W.; Wang, X.; Zhang, L. Effect of Composite Interlayer on Soil Water-Salt Transport in Hetao Irrigation District. Soils 2024, 56, 90–96. [Google Scholar]
- González-Pérez, S.; Vereijken, J.M. Sunflower proteins: Overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 2007, 87, 2173–2191. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods of Soil Agrochemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Xie, Z.; Li, S.; Tang, S.; Huang, L.; Wang, G.; Sun, X.; Hu, Z. Phosphorus Leaching from Soil Profiles in Agricultural and Forest Lands Measured by a Cascade Extraction Method. J. Environ. Qual. 2019, 48, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Report. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Shi, H.; Liu, Y.; Chen, S. Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Environ. Res. 2021, 201, 111599. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, T.; Ye, T.; Yang, X.; Xue, Y.; Shen, Y.; Zhang, Q.; Zheng, X. Effect of lactic acid bacteria and yeasts on the structure and fermentation properties of Tibetan kefir grains. Int. Dairy J. 2021, 114, 104943. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, F.; Ye, C.; Wang, H.; Wei, W.; Li, C.; Shi, X. A tool (SPOLERC) to guide the evaluation of phosphorus leaching for agricultural soil by using the change point value in the Xingkai lake Basin. Environ. Sci. Eur. 2021, 33, 132. [Google Scholar] [CrossRef]
- Ning, S.; Zhou, B.; Shi, J.; Wang, Q. Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang. Agric. Water Manag. 2021, 245, 106651. [Google Scholar] [CrossRef]
- Su, Y.; Mai, W.; Zhao, Z.; Liu, Y.; Yan, Y.; Yao, L.; Zhou, H. The Effects of Different Planting Patterns in Bare Strips on Soil Water and Salt Accumulation under Film—Mulched Drip Irrigation. Agronomy 2024, 14, 1103. [Google Scholar] [CrossRef]
- National Soil Survey Center. Soils in China; China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- Liu, J.; Han, D.; Wang, Z.; Xue, M.; Zhu, L.; Yan, H.; Zheng, X.; Guo, Z.; Wang, H. Clinical Analysis of the Treatment of Spinal Cord Injury with Umbilical Cord Mesenchymal Stem cells. Cytotherapy 2013, 15, 185–191. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Cheng, G.; Malhi, S.S.; Vera, C.L.; Guo, Z.; Zhang, Y. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of northwest China. Agric. Water Manag. 2010, 97, 917–923. [Google Scholar] [CrossRef]
- Liu, C.; Cui, B.; Zeleke, K.T.; Hu, C.; Wu, H.; Cui, E.; Huang, P.; Gao, F. Risk of Secondary Soil Salinization under Mixed Irrigation Using Brackish Water and Reclaimed Water. Agronomy 2021, 11, 2039. [Google Scholar] [CrossRef]
- Negassa, W.; Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant Nutr. Soil Sci. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Shariatmadari, H.; Shirvani, M.; Jafari, A. Phosphorus release kinetics and availability in calcareous soils of selected arid and semiarid toposequences. Geoderma 2006, 132, 261–272. [Google Scholar] [CrossRef]
- Heckrath, G.; Brookes, P.C.; Poulton, P.R.; Goulding, K.W.T. Phosphorus leaching from soils containing different P concentrations in the Broadbalk experiment. J. Environ. Qual. 1995, 24, 904–910. [Google Scholar] [CrossRef]
- Hesketh, N.; Brookes, P.C. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 2000, 29, 105–110. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, X.; Bao, H.; Li, H.; Li, G.; Tuo, D.; Lin, Q.; Brookes, P. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils. Geoderma 2007, 142, 237–244. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Jia, P.; Yang, T.; Zeng, Q.; Zhang, S.; Liao, B.; Shu, W.; Li, J. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020, 14, 1600–1613. [Google Scholar] [CrossRef]
- Tian, J.; Kuang, X.; Tang, M.; Chen, X.; Huang, F.; Cai, Y.; Cai, K. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Sci. Total Environ. 2021, 779, 146556. [Google Scholar] [CrossRef]
Crop Types | pH | SOM | TN | Salinity | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|
- | g kg−1 | mg kg−1 | % | ||||
SF * | 8.8 ± 0.5 a † | 8.6 ± 1.8 b | 0.70 ± 0.17 b | 2.8 ± 4.4 a | 62.2 ± 12.5 a | 32.0 ± 9.4 a | 5.8 ± 3.7 a |
VFL | 8.3 ± 0.3 b | 13.2 ± 5.9 a | 1.03 ± 0.40 a | 2.7 ± 3.2 a | 67.7 ± 11.1 a | 26.7 ± 9.3 a | 5.6 ± 2.5 a |
WL | 8.4 ± 0.1 b | 12.1 ± 1.9 a | 0.98 ± 0.18 a | 0.8 ± 0.5 a | 68.7 ± 8.9 a | 27.2 ± 7.6 a | 4.1 ± 2.4 a |
CF | 8.5 ± 0.1 b | 11.6 ± 2.7 a | 1.02 ± 0.18 a | 1.9 ± 2.9 a | 62.0 ± 10.6 a | 33.5 ± 9.6 a | 4.5 ± 1.8 a |
Crop Types | Olsen-P | CaCl2-P | TP |
---|---|---|---|
(mg kg−1) | |||
SF * | 10.3 ± 11.8 ac † | 2.5 ± 3.5 ac | 848.0 ± 229.1 a |
VFL | 28.0 ± 25.0 b | 5.2 ± 4.7 b | 975.7 ± 196.6 a |
WL | 9.8 ± 3.0 c | 1.3 ± 0.4 c | 878.5 ± 89.3 a |
CF | 14.1 ± 14.2 c | 2.2 ± 1.9 c | 870.8 ± 128.3 a |
Crop Types | Chao1 Index | Shannon Index | Simpson Index |
---|---|---|---|
SF * | 1686 ± 327 a† | 5.5 ± 0.8 a | 0.88 ± 0.09 a |
VFL | 1558 ± 107 a | 5.5 ± 0.1 a | 0.85 ± 0.01 a |
WL | 1514 ± 120 a | 5.1 ± 0.3 a | 0.82 ± 0.01 a |
CF | 1770 ± 202 a | 5.6 ± 0.2 a | 0.85 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Zhao, R.; Bo, B.; Li, C.; Wang, Y.; Chu, Y.; Ye, C. Effect of Crop Type Shift on Soil Phosphorus Morphology and Microbial Functional Diversity in a Typical Yellow River Irrigation Area. Microorganisms 2025, 13, 1458. https://doi.org/10.3390/microorganisms13071458
Xie Z, Zhao R, Bo B, Li C, Wang Y, Chu Y, Ye C. Effect of Crop Type Shift on Soil Phosphorus Morphology and Microbial Functional Diversity in a Typical Yellow River Irrigation Area. Microorganisms. 2025; 13(7):1458. https://doi.org/10.3390/microorganisms13071458
Chicago/Turabian StyleXie, Zijian, Rongbo Zhao, Bo Bo, Chunhua Li, Yang Wang, Yu Chu, and Chun Ye. 2025. "Effect of Crop Type Shift on Soil Phosphorus Morphology and Microbial Functional Diversity in a Typical Yellow River Irrigation Area" Microorganisms 13, no. 7: 1458. https://doi.org/10.3390/microorganisms13071458
APA StyleXie, Z., Zhao, R., Bo, B., Li, C., Wang, Y., Chu, Y., & Ye, C. (2025). Effect of Crop Type Shift on Soil Phosphorus Morphology and Microbial Functional Diversity in a Typical Yellow River Irrigation Area. Microorganisms, 13(7), 1458. https://doi.org/10.3390/microorganisms13071458