Nutrient-Driven Metabolic Activation and Microbial Restructuring Induced by Endophytic Bacillus in Blight-Affected Forest Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Assessment of Effects of Csuftcsp75 Strain on Soil Environment
2.2. Evaluation of Effects of Csuftcsp75 Strain on Soil Environment
2.2.1. Pot Experiment
2.2.2. Determination of Soil Physicochemical Properties
2.2.3. Soil Microbial Diversity Assessment
2.3. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Different Treatments on Basic Soil Physicochemical Properties
3.2. Analysis of Microbial Metabolic Functions and Temporal Metabolic Dynamics in Soil
3.3. Analysis of Soil Microbial Community Diversity Indices
Correlation Analysis of Soil Physicochemical Properties and Microbial Diversity Among Different Treatment Groups
4. Discussion
4.1. Soil Nutrients Drive Microbial Functional Activation
4.2. Integrated Interpretation of Soil Microbial Functional Diversity and Carbon Metabolic Profiles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Wang, L.; Yuan, X. Pesticide control, physical control, or biological control? How to manage forest pests and diseases more effectively. Front. Ecol. Evol. 2023, 11, 1200268. [Google Scholar] [CrossRef]
- Tagele, S.B.; Gachomo, E.W. A comparative study: Impact of chemical and biological fungicides on soil bacterial communities. Environ. Microbiome. 2025, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Okorski, A.; Pszczółkowska, A.; Oszako, T.; Nowakowska, J.A. Current possibilities and prospects of using fungicides in forestry. For. Res. Pap. 2015, 76, 60–70. [Google Scholar] [CrossRef]
- Ni, B.; Xiao, L.; Lin, D.; Zhang, T.-L.; Zhang, Q.; Liu, Y.; Chen, Q.; Zhu, D.; Qian, H.; Rillig, M.C.; et al. Increasing pesticide diversity impairs soil microbial functions. Proc. Natl. Acad. Sci. USA 2025, 122, e2419917122. [Google Scholar] [CrossRef] [PubMed]
- Prospero, S.; Botella, L.; Santini, A.; Prospero, S. Biological control of emerging forest diseases: How can we move from dreams to reality? For. Ecol. Manag. 2021, 496, 119377. [Google Scholar] [CrossRef]
- Singh, D.P.; Maurya, S.; Satnami, L.; Renu; Prabha, R.; Sarma, B.K.; Rai, N. Roots of resistance: Unraveling microbiome-driven plant immunity. Plant Stress 2024, 14, 100661. [Google Scholar] [CrossRef]
- Mageshwaran, V.; Gupta, R.; Singh, S.; Sahu, P.K.; Singh, U.B.; Chakdar, H.; Bagul, S.Y.; Paul, S.; Singh, H.V. Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front. Microbiol. 2022, 13, 994847. [Google Scholar] [CrossRef]
- Zhu, M.-L.; Wu, X.-Q.; Wang, Y.-H.; Dai, Y. Role of biofilm formation by Bacillus pumilus HR10 in biocontrol against pine seedling damping-off disease caused by Rhizoctonia solani. Forests 2020, 11, 652. [Google Scholar] [CrossRef]
- Dobrzyński, J.; Jakubowska, Z.; Dybek, B. Potential of Bacillus pumilus to directly promote plant growth. Front. Microbiol. 2022, 13, 1069053. [Google Scholar] [CrossRef]
- Puche, R.; Basso, V.; Fumero, M.V.; Medeot, D.; Jofré, E. Antagonistic activity of autochthonous strains of Bacillus amyloliquefaciens and Bacillus velezensis against fungi and oomycetes associated to damping off. Rhizosphere 2025, 33, 101052. [Google Scholar] [CrossRef]
- Arguelles-Arias, A.; Ongena, M.; Halimi, B.; Lara, Y.; Brans, A.; Joris, B.; Fickers, P. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 2009, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zeng, S.; Zhou, M.; Li, Y.; Jiang, Z.; Cheng, P.; Zhang, C. Comprehensive genomic and metabolomic analysis revealed the physiological characteristics and pickle-like odor compounds metabolic pathways of Bacillus amyloliquefaciens ZZ7 isolated from fermented grains of Maotai-flavor baijiu. Front. Microbiol. 2023, 14, 1295393. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Kang, Y.; Wen, T. Small molecule metabolites drive plant rhizosphere microbial community assembly patterns. Front. Microbiol. 2025, 16, 1503537. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, X.; Ma, J.; Liu, H.; Zeng, H.; Zhang, F.; Wang, J.; Song, K. Multiple perspectives of study on the potential of Bacillus amyloliquefaciens JB20221020 for alleviating nutrient stress in lettuce. Curr. Microbiol. 2024, 81, 228. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Qiu, J.; Tian, D.; Shi, H.; Liu, Z.; Wen, H.; Xie, S.; Chen, H.; Wu, M.; Kou, Y. Mixture of Bacillus amyloliquefaciens and Bacillus pumilus modulates community structures of rice rhizosphere soil to suppress rice seedling blight. Rice Sci. 2025, 32, 118–130. [Google Scholar] [CrossRef]
- Okoroafor, P.U.; Mann, L.; Ngu, K.A.; Zaffar, N.; Monei, N.L.; Boldt, C.; Reitz, T.; Heilmeier, H.; Wiche, O. Impact of soil inoculation with Bacillus amyloliquefaciens FZB42 on the phytoaccumulation of germanium, rare earth elements, and potentially toxic elements. Plants 2022, 11, 341. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, J.; Zhang, X.; Dou, S.; Gao, T.; Wang, D.; Zhang, D. Influence of Bacillus subtilis strain Z-14 on microbial communities of wheat rhizospheric soil infested with Gaeumannomyces graminis var. tritici. Front. Microbiol. 2022, 13, 923242. [Google Scholar] [CrossRef]
- LY/T 1228-2015; Nitrogen Determination Methods of Forest Soils. State Forestry Administration: Beijing, China, 2015.
- LY/T 1232-2015; Phosphorus Determination Methods of Forest Soils. State Forestry Administration: Beijing, China, 2015.
- LY/T 1234-2015; Potassium Determination Methods of Forest Soils. State Forestry Administration: Beijing, China, 2015.
- HJ 704-2014; Soil Quality—Determination of Available Phosphorus—Sodium Hydrogen. Ministry of Environmental Protection: Beijing, China, 2014.
- Wang, S.; Jin, Z.; Li, X.; Zhu, H.; Fang, F.; Luo, T.; Li, J. Characterization of microbial carbon metabolism in karst soils from citrus orchards and analysis of its environmental drivers. Microorganisms 2025, 13, 267. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Jia, B.; Tao, L.; Li, H.; Wang, J.; Yuan, Z.; Sun, X.; Yao, Y. Four decades of Bacillus biofertilizers: Advances and future prospects in agriculture. Microorganisms 2025, 13, 187. [Google Scholar] [CrossRef]
- Schubert, C.; Nguyen, B.D.; Sichert, A.; von Mering, C.; Hardt, W.-D.; Sauer, U.; Sichert, A.; Feer, L.; Näpflin, N.; Daniel, B.B.J.; et al. Monosaccharides drive Salmonella gut colonization in a context-dependent or -independent manner. Nat. Commun. 2025, 16, 1735. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wu, Z.; Zhu, W.; Wu, G. Amino acids in microbial metabolism and function. Adv. Exp. Med. Biol. 2022, 1354, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Wiesenbauer, J.; Gorka, S.; Jenab, K.; Kumar, N.; Inselsbacher, E.; Kaiser, C.; König, A.; Schuster, R.; Rottensteiner, C.; Kraemer, S. Preferential use of organic acids over sugars by soil microbes in simulated root exudation. Soil. Biol. Biochem. 2025, 203, 109738. [Google Scholar] [CrossRef]
- Suresh, V.; Shams, R.; Dash, K.K.; Béla, K.; Shaikh, A.M. Comprehensive review on enzymatic polymer degradation: A sustainable solution for plastics. J. Agric. Food Res. 2025, 20, 101788. [Google Scholar] [CrossRef]
- Mhawish, R.; Komarnytsky, S. Small phenolic metabolites at the nexus of nutrient transport and energy metabolism. Molecules 2025, 30, 1026. [Google Scholar] [CrossRef]
- Zhang, C.; Zhen, Y.; Weng, Y.; Zhong, Y.; Xu, X.; Lin, J.; Ma, J.; Wang, M. Research progress on the microbial metabolism and transport of polyamines and their roles in animal gut homeostasis. J. Anim. Sci. Biotechnol. 2025, 16, 57. [Google Scholar] [CrossRef]
- Daly, A.B.; Jilling, A.; Bowles, T.M.; Buchkowski, R.W.; Frey, S.D.; Kallenbach, C.M.; Keiluweit, M.; Mooshammer, M.; Schimel, J.P.; Grandy, A.S. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. Biogeochemistry 2021, 154, 211–229. [Google Scholar] [CrossRef]
- Wang, S.; Heal, K.V.; Zhang, Q.; Yu, Y.; Zhou, C.; Huang, S.; Tigabu, M. Soil microbial community, dissolved organic matter and nutrient cycling interactions change along an elevation gradient in subtropical China. J. Environ. Manag. 2023, 345, 118793. [Google Scholar] [CrossRef]
- Pan, L.; Cai, B. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms 2023, 11, 2904. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Shen, Z.; Ye, J. Whole-genome sequencing and potassium-solubilizing mechanism of Bacillus aryabhattai SK1-7. Front. Microbiol. 2021, 12, 722379. [Google Scholar] [CrossRef]
- Gianfreda, L. Enzymes of importance to rhizosphere processes. J. Soil. Sci. Plant Nutr. 2015, 15, 191–206. [Google Scholar] [CrossRef]
- Microbial metabolism and the power of the small. Nat. Metab. 2023, 5, 1073. [CrossRef] [PubMed]
- Kang, H.; Xue, Y.; Cui, Y.; Lambers, H.; Moorhead, D.L.; Wang, D. Nutrient limitation mediates soil microbial community structure and stability in forest restoration. Sci. Total Environ. 2024, 935, 173266. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Y.; Li, Z.; Zhang, Y.; Lu, L. Microbial community and soil enzyme activities driving microbial metabolic efficiency patterns in riparian soils of the Three Gorges Reservoir. Front. Microbiol. 2023, 14, 1108025. [Google Scholar] [CrossRef]
- Chen, J.; Xu, H.; Seven, J.; Kuzyakov, Y.; Zilla, T.; Dippold, A.M. Microbial phosphorus recycling in soil by intra- and extracellular mechanisms. ISME Commun. 2023, 3, 135. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, S.; Li, W.; Yang, M.; Wu, T.; Ullah, S. Effect of inoculation with rhizosphere phosphate-solubilizing bacteria on the growth and physiological characteristics of Parashorea chinensis. Forests 2024, 15, 1932. [Google Scholar] [CrossRef]
- Liu, D.; Xu, L.; Wang, H.; Xing, W.; Song, B.; Wang, Q. Root Exudates Promoted Microbial Diversity in the Sugar Beet Rhizosphere for Organic Nitrogen Mineralization. Agriculture 2024, 14, 1094. [Google Scholar] [CrossRef]
- Ajilogba, C.F.; Habig, J.; Babalola, O.O. Carbon source utilization pattern of soil bacterial microbiome of bambara groundnut rhizosphere at the different growth stages determines soil fertility. Front. Sustain. Food Syst. 2022, 6, 1012818. [Google Scholar] [CrossRef]
- Mamet, S.D.; Helgason, B.L.; Lamb, E.G.; McGillivray, A.; Stanley, K.G.; Robinson, S.J.; Aziz, S.U.; Vail, S.; Siciliano, S.D. Phenology-dependent root bacteria enhance yield of Brassica napus. Soil Biol. Biochem. 2022, 166, 108468. [Google Scholar] [CrossRef]
- Wang, H.; Ke, H.; Wu, H.; Ma, S.; Diao, X.; Altaf, M.M. Season shapes the functional diversity of microbial carbon metabolism in mangrove soils of Hainan Island, China. CATENA 2024, 235, 107710. [Google Scholar] [CrossRef]
- Insam, H. A new set of substrates proposed for community characterization in environmental samples. In Microbial Communities. Functional Versus Structural Approaches; Insam, H., Rangger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 260–261. [Google Scholar]
- Garland, J.L.; Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar] [CrossRef]
- Garland, J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. Fed. Eur. Microbiol. Soc. Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- Guckert, J.B.; Carr, G.J.; Johnson, T.D.; Hamm, B.G.; Davidson, D.H.; Kumagai, Y. Community analysis by Biolog: Curve integration for statistical analysis of activated sludge microbial habitats. J. Microbiol. Methods 1996, 27, 183–187. [Google Scholar] [CrossRef]
- Hackett, C.A.; Griffiths, B.S. Statistical analysis of the time-course of Biolog substrate utilization. J. Microbiol. Methods 1997, 30, 63–69. [Google Scholar] [CrossRef]
- Glimm, E.; Heuer, H.; Engelen, B.; Smalla, K.; Backhaus, H. Statistical comparisons of community catabolic profiles. J. Microbiol. Methods 1997, 30, 71–80. [Google Scholar] [CrossRef]
- Hitzl, W.; Henrich, M.; Kessel, M.; Insam, H. Application of multivariate analysis of variance and related techniques in soil studies with substrate utilization tests. J. Microbiol. Methods 1997, 30, 81–89. [Google Scholar] [CrossRef]
- Harch, B.D.; Correll, R.L.; Meech, W.; Kirkby, C.A.; Pankhurst, C.E. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil communities. J. Microbiol. Methods 1997, 30, 91–101. [Google Scholar] [CrossRef]
- Rutgers, M.; Wouterse, M.; Drost, S.M.; Breure, A.M.; Mulder, C.; Stone, D.; Creamer, R.E.; Winding, A.; Bloem, J. Monitoring soil bacteria with community-level physiological profiles using Biolog EcoPlates in the Netherlands and Europe. Appl. Soil Ecol. 2016, 97, 23–35. [Google Scholar] [CrossRef]
- Weber, K.P.; Legge, R.L. Community-level physiological profiling. Methods Microb. Ecol. 2010, 599, 263–281. [Google Scholar]
- Firestone, M.; Balser, T.; Herman, D. Defining soil quality in terms of microbial community structure. In Annual Reports of Research Projects; UC Berkeley: Berkeley, CA, USA, 1997. [Google Scholar]
Soil Property | Test Used |
---|---|
Total nitrogen | Kruskal–Wallis + Dunn |
Total phosphorus | ANOVA + Tukey |
Total potassium | Kruskal–Wallis + Dunn |
Total carbon | Kruskal–Wallis + Dunn |
Available nitrogen | Kruskal–Wallis + Dunn |
Available phosphorus | ANOVA + Tukey |
Available potassium | ANOVA + Tukey |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Tan, S.; Niu, A.; Liu, J.; Zhou, G. Nutrient-Driven Metabolic Activation and Microbial Restructuring Induced by Endophytic Bacillus in Blight-Affected Forest Soils. Microorganisms 2025, 13, 1454. https://doi.org/10.3390/microorganisms13071454
Yang Q, Tan S, Niu A, Liu J, Zhou G. Nutrient-Driven Metabolic Activation and Microbial Restructuring Induced by Endophytic Bacillus in Blight-Affected Forest Soils. Microorganisms. 2025; 13(7):1454. https://doi.org/10.3390/microorganisms13071454
Chicago/Turabian StyleYang, Quan, Shimeng Tan, Anqi Niu, Junang Liu, and Guoying Zhou. 2025. "Nutrient-Driven Metabolic Activation and Microbial Restructuring Induced by Endophytic Bacillus in Blight-Affected Forest Soils" Microorganisms 13, no. 7: 1454. https://doi.org/10.3390/microorganisms13071454
APA StyleYang, Q., Tan, S., Niu, A., Liu, J., & Zhou, G. (2025). Nutrient-Driven Metabolic Activation and Microbial Restructuring Induced by Endophytic Bacillus in Blight-Affected Forest Soils. Microorganisms, 13(7), 1454. https://doi.org/10.3390/microorganisms13071454