Synergistic Effects of Different Endophytic Actinobacteria Combined with Organic Fertilizer on Soil Nutrients and Microbial Diversity in Camellia oleifera
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Microorganisms
2.2. Experimental Design
2.3. Determination of Chemical and Physical Properties of Rhizosphere Soil
2.4. Determination of Soil Enzyme Activity
2.5. Diversity Analysis of Rhizosphere Soil Microorganisms
2.6. Statistical Analysis
3. Results
3.1. Effect on Soil Element Contents Under Camellia Oleifera Plantation
3.2. Effect on Soil Enzyme Activity Under Camellia Oleifera Plantation
3.3. Effect on Soil Bacterial Community Under Camellia Oleifera Plantation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | Raw Tags | Clean Tags |
---|---|---|
XL1_1 | 69,172 | 64,941 |
XL1_2 | 48,414 | 45,946 |
XL1_3 | 45,680 | 43,251 |
XL2_1 | 68,448 | 66,361 |
XL2_2 | 24,941 | 23,993 |
XL2_3 | 48,305 | 46,741 |
XL3_1 | 97,867 | 94,393 |
XL3_2 | 49,043 | 47,354 |
XL3_3 | 81,099 | 77,621 |
XL4_1 | 35,828 | 34,610 |
XL4_2 | 59,179 | 57,519 |
XL4_3 | 64,131 | 62,621 |
XL5_1 | 49,134 | 47,661 |
XL5_2 | 117,833 | 113,444 |
XL5_3 | 282,653 | 273,342 |
XL6_1 | 166,279 | 160,931 |
XL6_2 | 237,655 | 230,963 |
XL6_3 | 131,795 | 125,677 |
XL7_1 | 209,166 | 202,892 |
XL7_2 | 26,211 | 24,076 |
XL7_3 | 365,223 | 356,826 |
XL8_1 | 81,657 | 79,783 |
XL8_2 | 96,888 | 93,374 |
XL8_3 | 69,074 | 67,290 |
XL9_1 | 55,083 | 53,306 |
XL9_2 | 32,538 | 32,247 |
XL9_3 | 43,940 | 42,819 |
References
- Li, Z.; Zhong, S.Q.; Huang, Q.; Zhang, Y.; Xu, T.Y.; Shi, W.K.; Guo, D.S.; Zeng, Z.J. The mechanism of Andrena camellia in digesting toxic sugars. iScience 2024, 27, 109847. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.X.; Wang, Z.W.; Yang, D.Y.; Yang, S.L.; Bai, W.N.; Wu, N.Y.; Lu, X.; Liu, Z. Effects of tea oil camellia (Camellia oleifera Abel.) shell-based organic fertilizers on the physicochemical property and microbial community structure of the rhizosphere soil. Front. Microbiol. 2023, 14, 1231978. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Bhowmick, S.; Yadav, S.; Rashid, M.M.; Chouhan, G.K.; Vaishya, J.K.; Verma, J.P. Re-vitalizing of endophytic microbes for soil health management and plant protection. 3 Biotech 2021, 11, 399. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.G.; Zhao, Y.Y.; Yang, Y.; Lu, F.; Dai, C.C. Endophytic fungus alleviates soil sickness in peanut crops by improving the carbon metabolism and rhizosphere bacterial diversity. Microb. Ecol. 2021, 82, 49–61. [Google Scholar] [CrossRef]
- He, C.; Zeng, Q.; Chen, Y.; Chen, C.; Wang, W.; Hou, J.L.; Li, X.N. Colonization by dark septate endophytes improves the growth and rhizosphere soil microbiome of licorice plants under diferent water treatments. Appl. Soil Ecol. 2021, 166, 103993. [Google Scholar] [CrossRef]
- Cui, K.P.; Xu, T.; Chen, J.W.; Yang, H.Y.; Liu, X.M.; Zhuo, R.; Peng, Y.H.; Tang, W.; Wang, R.; Chen, L.S.; et al. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J. Clean. Prod. 2022, 367, 133110. [Google Scholar] [CrossRef]
- Wang, Z.K.; Xu, Z.H.; Chen, Z.Y.; Fu, X.X. Synergistic effects of organic fertilizer coupled with phosphate-solubilizing and nitrogen-fixing bacteria on nutrient characteristics of yellow-brown soil under carbon deficiency. Ying Yong Sheng Tai Xue Bao 2020, 31, 3413–3423. (In Chinese) [Google Scholar] [CrossRef]
- Xu, T.; Cui, K.P.; Chen, J.W.; Wang, R.; Wang, X.N.; Chen, L.S.; Zhang, Z.; He, Z.L.; Liu, C.X.; Tang, W.; et al. Biodiversity of culturable endophytic actinobacteria isolated from high yield Camellia oleifera and their plant growth promotion potential. Agriculture 2021, 11, 1150. [Google Scholar] [CrossRef]
- He, Z.L.; Cui, K.P.; Wang, R.; Xu, T.; Zhang, Z.; Wang, X.N.; Chen, Y.Z.; Zhu, Y.H. Multi-omics joint analysis reveals how Streptomyces albidoflavus OsiLf-2 assists Camellia oleifera to resist drought stress and improve fruit quality. Front. Microbiol. 2023, 14, 1152632. [Google Scholar] [CrossRef]
- Wang, H.H.; Yan, S.; Ren, T.B.; Yuan, Y.; Kuang, G.; Wang, B.; Yun, F.; Feng, H.L.; Ji, X.M.; Yuan, X.J.; et al. Novel environmental factors affecting microbial responses and physicochemical properties by sequentially applied biochar in black soil. Environ. Sci. Pollut. Res. 2020, 27, 37432–37443. [Google Scholar] [CrossRef]
- Tsiknia, M.; Tzanakakis, V.A.; Oikonomidis, D.; Paranychianakis, N.V.; Nikolaidis, N.P. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl. Microbiol. Biotechnol. 2014, 98, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S. Phosphorus. In Methods of Soil Analysis, Part 3. Chemical Methods; Sparks, D.L., Ed.; SSSA: Madison, WI, USA; ASA: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Yanu, P.; Jakmunee, J. Flow injection with in-line reduction column and conductometric detection for determination of total inorganic nitrogen in soil. Talanta 2015, 144, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Shi, R. Agricultural Chemistry Analyses of Soils; China Agricultural Press: Beijing, China, 1996; pp. 37–39. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Knudsen, D.; Peterson, G.; Pratt, P. Lithium, sodium, and potassium. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of American: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Vangaans, P.F.M.; Vriend, S.P.; Bleyerveld, S.; Schrage, G.; Vos, A. Assessing environmental soil quality in rural areas: A base line study in the province of Zeeland, the Netherlands and reflections on soil monitoring network designs. Environ. Monit. Assess. 1995, 34, 73–102. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.; Lamb, D.T.; Correll, R.; Megharaj, M.; Naidu, R. Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicol. Environ. Saf. 2015, 122, 252–259. [Google Scholar] [CrossRef]
- Munyaka, P.M.; Eissa, N.; Bernstein, C.N.; Khafipour, E.; Ghia, J.E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: A role of the gut microbiota. PLoS ONE 2015, 10, e0142536. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, J.J.; Yang, Z.J.; Xu, C.H.; Liao, P.H.; Pu, S.S.; EI-Kassaby, Y.A.; Feng, J.L. Role of soil nutrient elements transport on Camellia oleifera yield under different soil types. BMC Plant Biol. 2023, 23, 378. [Google Scholar] [CrossRef]
- Koorneef, G.J.; Pulleman, M.M.; Comans, R.N.; van Rijssel, S.Q.; Barré, P.; Baudin, F.; de Goede, R.G. Assessing soil functioning: What is the added value of soil organic carbon quality measurements alongside total organic carbon content? Soil Biol. Biochem. 2024, 196, 109507. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Kulikov, V.O.; Shabaev, V.P. Effect of rhizospheric bacteria on the productivity of wheat plants and inflow of elements from contaminated soils. Mosc. Univ. Soil Sci. Bull. 2023, 78, 257–262. [Google Scholar] [CrossRef]
- Shah, A.S.; Huang, J.; Han, T.F.; Khan, M.N.; Tadesse, K.A.; Daba, N.A.; Khan, S.; Ullah, S.; Sardar, M.F.; Fahad, S.; et al. Impact of soil moisture regimes on greenhouse gas emissions, soil microbial biomass, and enzymatic activity in long-term fertilized paddy soil. Environ. Sci. Eur. 2024, 36, 120. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte, C.E.; Purza, L.; Badea, G.E. Effects of long term application of organic and mineral fertilizers on soil enzymes. Rev. Chim. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Saleem, M.; Hu, J.; Jousset, A.; Futuyma, D.J. More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 145–168. [Google Scholar] [CrossRef]
- Syed, S.; Wang, X.X.; Prasad, T.N.V.K.V.; Lian, B. Bio-organic mineral fertilizer for sustainable agriculture: Current trends and future perspectives. Minerals 2021, 11, 1336. [Google Scholar] [CrossRef]
- Lai, X.J.; Duan, W.J.; Zhang, W.Y.; Peng, Z.S.; Wang, X.J.; Wang, H.Y.; Qi, X.B.; Pi, H.Q.; Chen, K.L.; Yan, L. Integrative analysis of microbiome and metabolome revealed the effect of microbial inoculant on microbial community diversity and function in rhizospheric soil under tobacco monoculture. Microbiol. Spectr. 2024, 12, e0404623. [Google Scholar] [CrossRef]
- Wu, J.Q.; Sha, C.Y.; Wang, M.; Ye, C.M.; Li, P.; Huang, S.F. Effect of organic fertilizer on soil bacteria in maize fields. Land 2021, 10, 328. [Google Scholar] [CrossRef]
- Lu, K.Z.; Chen, C.; Zhou, J.Q.; Yuan, J.; Lu, M.Q.; Xiao, Z.; Tan, X.F. Metagenomic and metabolomic profiling of rhizosphere microbiome adaptation to irrigation gradients in Camellia oil trees. Ind. Crops Prod. 2025, 232, 121250. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Saleh, A.M.; Al Jaouni, S.; Selim, S.; Hassan, M.O.; Wadaan, M.A.M.; Shuikan, A.M.; Mohamed, H.S.; Hozzein, W.N. Utilization of actinobacteria to enhance the production and quality of date palm (Phoenix dactylifera L.) fruits in a semi-arid environment. Sci. Total Environ. 2019, 665, 690–697. [Google Scholar] [CrossRef]
- Ghazouani, S.; Bejaoui, Z.; Michael, P.; Spiers, G.; Beckett, P.; Gtari, M.; Nkongolo, K. Rhizobioaugmentation of Casuarina glauca with N-fixing actinobacteria Frankia decreases enzymatic activities in wastewater irrigated soil: Effects of Frankia on C. glauca growth. Ecotoxicology 2020, 29, 417–428. [Google Scholar] [CrossRef]
- Sun, X.; Xu, Z.; Xie, J.; Hesselberg-Thomsen, V.; Tan, T.; Zheng, D.; Strube, M.L.; Dragos, A.; Shen, Q.; Zhang, R.; et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022, 16, 778–787. [Google Scholar] [CrossRef]
Treatments | Groups |
---|---|
XL1 | CoT10 + organic fertilizer |
XL2 | CoH27 + organic fertilizer |
XL3 | CoH17 + organic fertilizer |
XL4 | CoT10 + CoH27 + organic fertilizer |
XL5 | CoT10 + CoH17 + organic fertilizer |
XL6 | CoH27 + CoH17 + organic fertilizer |
XL7 | CoT10 + CoH27 + CoH17 + organic fertilizer |
XL8 | Control; organic fertilizer |
XL9 | Negative control; without treatment |
XL1 | XL2 | XL3 | XL4 | XL5 | XL6 | XL7 | XL8 | XL9 | |
---|---|---|---|---|---|---|---|---|---|
pH | 5.45 ± 0.25 | 5.15 ± 0.05 | 5.10 ± 0.00 | 4.85 ± 0.05 | 5.54 ± 0.05 * | 4.85 ± 0.05 | 4.85 ± 0.05 | 5.00 ± 0.00 | 4.55 ± 0.00 |
Porosity (%) | 71.54 ± 1.39 | 68.61 ± 1.43 | 64.38 ± 2.02 | 68.06 ± 4.26 | 66.69 ± 1.38 | 64.84 ± 0.72 | 65.38 ± 0.57 | 62.80 ± 1.51 | 61.14 ± 1.48 |
Organic matter (g kg−1) | 25.4 ± 1.60 * | 21.15 ± 0.35 | 20.9 ± 0.30 | 17.25 ± 1.35 | 23.95 ± 0.65 * | 13.75 ± 0.75 | 15.3 ± 0.30 | 13.7 ± 1.90 | 7.45 ± 0.06 |
Total nitrogen (g kg−1) | 1.96 ± 0.03 ** | 1.02 ± 0.01 * | 1.06 ± 0.01 * | 0.93 ± 0.03 | 1.17 ± 0.01 * | 0.84 ± 0.02 | 0.85 ± 0.04 | 0.79 ± 0.05 | 0.70 ± 0.04 |
Total phosphorus (g kg−1) | 0.77 ± 0.07 * | 0.61 ± 0.03 * | 0.40 ± 0.002 | 0.34 ± 0.01 | 1.14 ± 0.02 *** | 0.33 ± 0.01 | 0.28 ± 0.01 | 0.35 ± 0.01 | 0.11 ± 0.01 |
Total potassium (g kg−1) | 6.96 ± 0.32 | 6.91 ± 0.12 | 8.89 ± 0.47 | 6.91 ± 0.29 | 7.06 ± 1.10 | 7.90 ± 0.61 | 8.12 ± 0.68 | 6.82 ± 0.67 | 6.51 ± 0.72 |
Hydrolyzable nitrogen (mg kg−1) | 137.37 ± 1.65 ** | 100.69 ± 6.42 | 97.21 ± 1.84 | 74.83 ± 1.47 | 78.87 ± 20.18 | 82.53 ± 1.83 | 75.38 ± 3.49 | 76.30 ± 5.87 | 53.19 ± 1.84 |
Available phosphorus (mg kg−1) | 85.1 ± 6.60 * | 73.55 ± 1.05 ** | 54.65 ± 4.65 | 63.75 ± 2.05 * | 84.25 ± 0.45 ** | 78.49 ± 0.49 ** | 96.92 ± 1.62 ** | 32.35 ± 3.55 | 0.30 ± 0.00 |
Available potassium (mg kg−1) | 161.14 ± 3.60 ** | 127.57 ± 0.73 ** | 90.97 ± 0.75 | 93.97 ± 6.17 | 153.29 ± 0.67 ** | 140.88 ± 0.80 ** | 100.58 ± 0.44 * | 87.8 ± 2.71 | 57.50 ± 4.18 |
Iron (g kg−1) | 31.55 ± 0.95 | 32.35 ± 1.55 | 32.6 ± 0.90 | 32.85 ± 3.75 | 31.45 ± 2.15 | 32.3 ± 2.50 | 33.15 ± 0.45 | 30.65 ± 2.05 | 29.85 ± 2.95 |
Calcium (g kg−1) | 1.05 ± 0.21 | 0.60 ± 0.20 | 0.32 ± 0.40 | 0.70 ± 0.04 ** | 1.14 ± 0.30 | 0.29 ± 0.08 | 1.04 ± 0.05 ** | 0.18 ± 0.03 | 0.05 ± 0.00 |
Aluminum (g kg−1) | 9.53 ± 1.77 | 9.09 ± 1.05 * | 12.3 ± 1.10 | 9.87 ± 2.33 | 13.1 ± 0.20 ** | 9.6 ± 0.60 | 10.53 ± 1.08 | 8.17 ± 0.10 | 9.62 ± 0.49 |
XL1 | XL2 | XL3 | XL4 | XL5 | XL6 | XL7 | XL8 | XL9 | |
---|---|---|---|---|---|---|---|---|---|
Acid Phosphatase | 18.71 ± 0.59 * | 19.69 ± 0.93 * | 19.56 ± 0.47 * | 20.18 ± 0.52 * | 19.17 ± 0.04 * | 20.03 ± 0.24 ** | 19.42 ± 0.58 * | 13.79 ± 0.56 | 18.61 ± 0.69 |
Urease | 22.67 ± 2.49 | 29.32 ± 0.98 * | 25.65 ± 0.20 * | 22.92 ± 0.85 | 32.41 ± 0.13 ** | 20.89 ± 0.13 | 21.48 ± 1.25 | 20.93 ± 0.59 | 23.48 ± 1.85 |
Amylase | 1.98 ± 0.01 *** | 1.28 ± 0.004 *** | 1.24 ± 0.08 * | 1.20 ± 0.01 *** | 1.27 ± 0.10 * | 1.22 ± 0.17 | 3.54 ± 0.13 ** | 0.72 ± 0.01 | 0.92 ± 0.07 |
Acid Protease | 2.17 ± 0.15 | 2.44 ± 0.78 ** | 1.27 ± 0.03 * | 1.57 ± 0.03 | 2.87 ± 0.08 ** | 2.16 ± 0.04 ** | 2.30 ± 0.03 ** | 1.55 ± 0.02 | 1.51 ± 0.06 |
Nitrate Reductase | 7.30 ± 0.01 *** | 7.81 ± 0.03 *** | 6.17 ± 0.01 *** | 3.13 ± 0.17 * | 12.20 ± 0.02 *** | 3.25 ± 0.002 *** | 0.97 ± 0.004 | 1.90 ± 0.001 | 1.10 ± 0.02 |
Nitrite Reductase | 9.77 ± 0.07 | 13.05 ± 0.03 ** | 12.42 ± 0.19 * | 12.11 ± 1.42 | 9.46 ± 0.06 | 11.36 ± 0.35 | 12.15 ± 1.05 | 9.84 ± 0.22 | 8.87 ± 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Cui, K.; Jian, H.; Zhang, Z.; Chen, L.; Xu, Y.; Li, Z.; Liu, H.; Xu, T.; Wang, R. Synergistic Effects of Different Endophytic Actinobacteria Combined with Organic Fertilizer on Soil Nutrients and Microbial Diversity in Camellia oleifera. Microorganisms 2025, 13, 1396. https://doi.org/10.3390/microorganisms13061396
Peng Y, Cui K, Jian H, Zhang Z, Chen L, Xu Y, Li Z, Liu H, Xu T, Wang R. Synergistic Effects of Different Endophytic Actinobacteria Combined with Organic Fertilizer on Soil Nutrients and Microbial Diversity in Camellia oleifera. Microorganisms. 2025; 13(6):1396. https://doi.org/10.3390/microorganisms13061396
Chicago/Turabian StylePeng, Yinghe, Kunpeng Cui, Huimin Jian, Zhen Zhang, Longsheng Chen, Yanming Xu, Zhigang Li, Hongsheng Liu, Ting Xu, and Rui Wang. 2025. "Synergistic Effects of Different Endophytic Actinobacteria Combined with Organic Fertilizer on Soil Nutrients and Microbial Diversity in Camellia oleifera" Microorganisms 13, no. 6: 1396. https://doi.org/10.3390/microorganisms13061396
APA StylePeng, Y., Cui, K., Jian, H., Zhang, Z., Chen, L., Xu, Y., Li, Z., Liu, H., Xu, T., & Wang, R. (2025). Synergistic Effects of Different Endophytic Actinobacteria Combined with Organic Fertilizer on Soil Nutrients and Microbial Diversity in Camellia oleifera. Microorganisms, 13(6), 1396. https://doi.org/10.3390/microorganisms13061396