Diversity of Mercury-Tolerant Microorganisms
Abstract
:1. Introduction
2. Sources of Environmental Inputs and Geochemical Cycling of Mercury
3. Microorganisms as Primary Responders to Exposure to Metallic Eco-Pollutants
3.1. Diversity of Mercury-Tolerant Microorganisms
3.2. Mechanisms of Tolerance of Microorganisms to Heavy Metals
- The synthesis of organic acids and polysaccharides with chelating properties, capable of binding metal ions.
- The process of biosorption occurs at the level of cell walls of microorganisms.
- The intracellular accumulation of metals enables microorganisms to sequester toxic substances.
- The use of cysteine-rich buffer proteins, as these can bind to pollutants and reduce their toxicity.
- The sequestration in vacuoles is an effective method of storing mercury in an inactive metallic form.
- The chemical transformation of metals into less toxic forms.
Mechanisms of Resistance | Reference |
---|---|
Microalgae | |
Metals are bound and sequestered by cell wall components (e.g., polysaccharides and proteins), and complexes are formed with HM on the cell surface | [97] |
The expression of specific HM-binding peptides (phytochelatins and metallothioneins) results in the subsequent formation of peptide-HM complexes (phytochelatins and metallothioneins). For instance, phytochelatins form complexes with Hg2+. | [98] |
Chelation of HM by organic acids, amino acids, and peptides with further formation of insoluble complexes | [99] |
The synthesis of antioxidant enzymes in response to the presence of reactive oxygen species, including superoxide dismutase, peroxidase, and catalase | [100] |
The synthesis and activation of non-enzymatic systems, including carotenoids, tocopherol, and glutathione | [101] |
Overexpression of heat-shock proteins | [102] |
Expression of genes encoding cation efflux proteins and HM ATPases, including mercury | [103,104] |
Fungi | |
The synthesis of chitin and chitosan with amino and hydroxyl groups for the purpose of biosorbing phenolic compounds, dyes, and heavy metals | [105] |
Decrease in hyphae length and number of branches in response to metal stress. Changes in the distribution of fungal biomass within colonies | [106] |
Excessive accumulation of hydrolase and oxidase; inhibition of colony growth | [107] |
Changes in pigment synthesis | [108,109] |
Synthesis of antioxidant enzymes in response to the presence of reactive oxygen species: Peroxidase, catalase, lignin peroxidase, manganese peroxidase | [110,111] |
Increased production of HM-dependent ROS and RNS; modifications of RNA, DNA, and protein pools | [110] |
Biosynthesis of organic acids in response to the presence of HM in the medium, e.g., oxalic, citric, succinic, malic, acetic, and gluconic acids for subsequent binding to HM ions | [112,113] |
The synthesis of siderophores, which form complexes with HMs such as Cd, copper, Pb, Zn, nickel, and As, prevents these metals from being taken up by the cell | [114,115] |
The interaction of HM ions with functional groups on the cell surface, including hydroxyl, amide, carboxyl, and phosphate groups | [116] |
Synthesis of transporters of the ATP-binding cassette (ABC) family involved in intracellular HM transport | [117] |
Synthesis of specific metal-binding proteins: Glutathione, phytochelatins, and metallothioneins | [118,119,120] |
Active synthesis of transport proteins in the presence of excessive HM concentration in the medium, transport of HM ions from cytosol to vacuole to prevent toxicity | [121] |
Bacteria | |
Metal-tolerant strains precipitate HM ions (Pb2+, Hg2+, Cd2+, etc.) in the form of sulphide granules on the outer surface of cells | [5,122,123] |
Use of HM ions as thermal acceptors in energy metabolism during anaerobic respiration: Reduction of Fe3+ to Fe2+, reduction of Cr6+ to Cr3+ | [124] |
Synthesis of surfactants of biological origin | [123] |
Biofilm formation in response to metal stress. Synthesis of polymeric compounds to bind metal ions and prevent their entry into the complex and cells | [125] |
Regulation of cell wall fluidity and permeability in response to changes in external conditions depending on the culture medium, the presence of toxic compounds in the medium and various stresses | [8,126] |
Bioaccumulation of HM inside the cell through channel systems | [127] |
Synthesis of siderophores—low molecular weight chelating compounds | [128,129] |
3.3. Mechanisms of Bacterial Cell Resistance to Mercury
3.3.1. Nonspecific Resistance
- Redox processes and alkylation. The process of bacterial methylation of Hg is contingent upon a number of environmental factors that affect metal bioavailability and microbial community structure. These factors include temperature, pH, redox potential, availability of nutrients and electron acceptors, as well as the presence of ligands and adsorbing surfaces [133]. In numerous systems, sulfate-reducing bacteria [66,67,134,135,136] and iron-reducing bacteria [137,138] have been observed to act as microbiological methylators of mercury. The biochemical mechanism of mercury methylation by these bacteria involves two pathways: One acetyl-CoA–dependent and one independent [139].
- Passive adsorption. The adsorption process is not contingent upon the metabolism of the bacterial cell. The metals are located on the cell surface as a consequence of electrostatic interactions, van der Waals forces, covalent binding, changes in the redox potential, or a combination of these processes. The mechanism in question has been explained by a number of processes, including precipitation and surface complexation, ion exchange as the sole dominant role, and physical adsorption [140]. According to the findings of François et al. (2012) [141], in the presence of HgCl2, inactivated bacterial biomass has been shown to remove between 40.0 and 120.0 mg Hg per g biomass dry weight while concurrently forming extracellular Hg deposits.
3.3.2. Specific Resistance: mer Operon Genes
4. Methods of Hg Removal from Pollution Media
4.1. Physicochemical Methods
4.2. Biological Objects Perspective for Hg Removal from Contaminated Media
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
HM | Heavy metal |
Hg | Mercury |
As | Arsenic |
Cd | Cadmium |
Pb | Lead |
Zn | Zinc |
DNA | Deoxyribonucleic acid |
MeHg | Organomercury/monomethyl |
ROS | Reactive oxygen species |
EPS | Extracellular polymeric substances |
LPS | Particularly lipopolysaccharides |
EPSs | Exopolysaccharides |
RNS | Reactive nitrogen species |
RNA | Ribonucleic acid |
NCBI | National Center for Biotechnology Information |
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metals toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [PubMed]
- Gan, S.; Lau, E.V.; Ng, H.K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2009, 172, 532–549. [Google Scholar] [CrossRef] [PubMed]
- Gunatilake, S.K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. (JMESS) 2015, 1, 12–18. [Google Scholar]
- Morin-Crini, N.; Crini, G. Eaux Industrielles Contaminées; Presses universitaires de Franche-Comté: Besançon, France, 2017; Chapitre I; pp. 19–39. [Google Scholar] [CrossRef]
- El Baz, S.; Baz, M.; Barakate, M.; Hassani, L.; El Gharmali, A.; Imziln, B. Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Sci. World J. 2015, 1, 34–48. [Google Scholar] [CrossRef]
- Kumari, S.; Amit; Jamwal, R.; Mishra, N.; Singh, D.K. Recent developments in environmental mercury bioremediation and its toxicity: A review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100283. [Google Scholar] [CrossRef]
- Rani, L.; Srivastav, A.L.; Kaushal, J. Bioremediation: An effective approach of mercury removal from the aqueous solutions. Chemosphere 2021, 280, 130654. [Google Scholar] [CrossRef]
- Alvarez, A.; Saez, J.M.; Costa, J.S.D.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Benimeli, C.S.; Polti, M.A.; Amoroso, M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef]
- Hussein, S.H.; Ruiz, O.N.; Terry, N.; Daniell, H. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: Enhanced root uptake, translocation to shoots, and volatilization. Environ. Sci. Technol. 2007, 41, 8439–8446. [Google Scholar] [CrossRef]
- Azevedo, B.F.; Furieri, L.B.; Peçanha, F.M.; Wiggers, G.A.; Vassallo, P.F.; Simões, M.R.; Fiorim, J.; de Batista, P.R.; Fioresi, M.; Rossoni, L.; et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar] [CrossRef]
- Bravo, A.G.; Cosio, C.; Amouroux, D.; Zopfi, J.; Chevalley, P.-A.; Spangenberg, J.E.; Ungureanu, V.-G.; Dominik, J. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chloralkali plant. Water Res. 2014, 49, 391–405. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018, 47, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Eizadi-Mood, N.; Hassanian-Moghaddam, H.; Etemad, L.; Moshiri, M.; Vahabzadeh, M.; Sadeghi, M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025, 11, e42696. [Google Scholar] [CrossRef] [PubMed]
- Outridge, P.M.; Mason, R.P.; Wang, F.; Guerrero, S.; Heimbürger-Boavida, L.E. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Matulik, A.G.; Kerstetter, D.W.; Hammerschlag, N.; Divol, T.; Hammerschmidt, C.R.; Evers, D.C. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Mar. Pollut. Bull. 2017, 116, 357–364. [Google Scholar] [CrossRef]
- Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal; United Nations Environment Programme: Geneva, Switzerland, 1989; Available online: https://www.basel.int/Portals/4/Basel%20Convention/docs/text/BaselConventionText-r.pdf (accessed on 27 May 2025).
- Minamata Convention on Mercury; United Nations Environment Programme: Geneva, Switzerland, 2013; Available online: https://minamataconvention.org/en/resources/minamata-convention-mercury-text-and-annexes (accessed on 27 May 2025).
- Yang, Z.; Li, H.; Yang, Q.; Qu, W.; Zhao, J.; Feng, Y.; Hu, Y.; Yang, J.; Shih, K. Development of selenized magnetite (Fe3O4−xSey) as an efficient and recyclable trap for elemental mercury sequestration from coal combustion flue gas. Chem. Eng. J. 2020, 394, 125022. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 2013, 27, 410–421. [Google Scholar] [CrossRef]
- AMAP/UN Environment. Technical Background Report to the Global Mercury Assessment 2018; UN Environment Programme, Chemicals and Health Branch: Geneva, Switzerland; Arctic Monitoring and Assessment Programme: Oslo, Norway, 2019. [Google Scholar]
- Ramesh, G.; Radhakrishnan, T. A universal sensor for mercury (Hg, Hg(I), Hg(II)) based on silver nanoparticle-embedded polymer thin film. ACS Appl. Mater. Interfaces 2011, 3, 988–994. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–75. [Google Scholar] [CrossRef]
- You, C.-H.; Kim, B.-G.; Jo, E.-M.; Kim, G.-Y.; Yu, B.-C.; Hong, M.-G.; Kim, D.-S.; Hong, Y.-S. The relationship between the fish consumption and blood total/methyl-mercury concentration of costal area in Korea. Neurotoxicology 2012, 33, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Chávez, R.D.; Ali, A.; Cabaniss, S.E. Mercury in natural waters: A mini-review. Environ. Forensics 2011, 12, 14–18. [Google Scholar] [CrossRef]
- Xu, J.; Bravo, A.G.; Lagerkvis, A.; Bertilsson, S.; Sjöblom, R.; Kumpiene, J. Sources and remediation techniques for mercury contaminated soil. Environ. Int. 2015, 74, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Zhang, G.; Chen, X.; Zhao, Q.; Wang, W.; Bian, H.; Li, Z.; Wang, D. Measurement and scaling of mercury on soil and air in a historical artisanal gold mining area in northeastern China. Chin. Geogr. Sci. 2019, 29, 245–257. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Chatterjee, S.; Rath, S.; Dash, H.R.; Das, S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. J. Hazard. Mater. 2022, 423 Pt A, 126985. [Google Scholar] [CrossRef]
- Sherman, L.; Blum, J.D.; Keeler, G.J.; Demers, J.D.; Dvonch, J.T. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes. Environ. Sci. Technol. 2012, 46, 382–390. [Google Scholar] [CrossRef]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Haroon, M.; Hayyat, M. Assessing the dual impact of gold mining on local communities: Socio-economic benefits and environmental challenges. Resour. Policy 2025, 103, 105559. [Google Scholar] [CrossRef]
- Gonzalez-Raymat, H.; Liu, G.; Liriano, C.; Li, Y.; Yin, Y.; Shi, J.; Jiang, G.; Cai, Y. Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environ. Pollut. 2017, 229, 69–86. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Al-Sulaiti, M.M.; Soubra, L.; Al-Ghouti, M.A. The causes and effects of mercury and methylmercury contamination in the marine environment: A review. Curr. Pollut. Rep. 2022, 8, 249–272. [Google Scholar] [CrossRef]
- De, J.; Dash, H.R.; Das, S. Mercury pollution and bioremediation—A case study on biosorption by a mercury-resistant marine bacterium. Microb. Biodegrad. Bioremediation 2014, 137–166. [Google Scholar] [CrossRef]
- O’Driscoll, N.J.; Lean, D.; Loseto, L.; Carignan, R. Effect of dissolved organic carbon on the photoproduction of dissolved gaseous mercury in lakes: Potential impacts of forestry. Environ. Sci. Technol. 2004, 38, 2664–2672. [Google Scholar] [CrossRef]
- Whalin, L.; Kim, E.H.; Mason, R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 2007, 107, 278–294. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sanghi, R.; Mudhoo, A. Green practices to save our precious “Water Resource”. In Advances in Water Treatment and Pollution Prevention; Sharma, S.K., Sanghi, R., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2012; pp. 1–36. [Google Scholar] [CrossRef]
- Mortula, M.; Ahmad, A. Leaching of antimony from bottle water. ACSEE 2013, 85–88. [Google Scholar]
- Litvinenko, L.V. Ability of the Dietzia, Gordonia and Rhodococcus actinobacteria to accumulate nickel ions. Microbiology 2019, 88, 191–199. [Google Scholar] [CrossRef]
- Yadav, P.; Bora, J.; Gupta, A.; Raina, G.; Nigam, S.; Chaturvedi, N.; Kumar, A.; Singh, R.P.; Singh, S.K.; Verma, H. Microbial bioremediation of heavy metal approaches and advancement. Adv. Chem. Pollut. Environ. Manag. Prot. 2025, 12, 473–488. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Miyauchi, K.; Huang, Y.; Chien, M.-F.; Ilori, M.O.; Amund, O.O.; Endo, G. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutions. Int. Biodeterior. Biodegrad. 2016, 119, 615–620. [Google Scholar] [CrossRef]
- Pátek, M.; Grulich, M.; Nešvera, J. Stress response in Rhodococcus strains. Biotechnol. Adv. 2021, 53, 107698. [Google Scholar] [CrossRef]
- Gauthier, I.; McGugin, R.W.; Richler, J.J.; Herzmann, G.; Speegle, M.; Van Gulick, A.E. Experience moderates overlap between object and face recognition, suggesting a common ability. J. Vis. 2014, 14, 1–12. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Litvinenko, L.V.; Golysheva, A.A.; Kostrikina, N.A.; Sorokin, V.V.; Mulyukin, A.L. Bioaccumulation of molybdate ions by alkanotrophic Rhodococcus leads to significant alterations in cellular ultrastructure and physiology. Ecotoxicol. Environ. Saf. 2024, 274. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.L.; Polley, D.; Gould, C.J. Phenyl Mercuric or Ethyl Mercuric Compounds. Anal. Chem. 1951, 23, 1286–1299. [Google Scholar] [CrossRef]
- Tonomura, K.; Maeda, K.; Futai, F.; Nakagami, T.; Yamada, M. Stimulative vaporization of phenylmercuric acetate by mercury-resistant bacteria. Nature 1968, 217, 644–646. [Google Scholar] [CrossRef]
- Gómez-Jacinto, V.; García-Barrera, T.; Gómez-Ariza, J.L.; Garbayo-Nores, I.; Vílchez-Lobato, C. Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins. Chem.-Biol. Interact. 2015, 238, 82–90. [Google Scholar] [CrossRef]
- Benítez Alvis, S.; Pérez Cordero, A.; Vitola Romero, D. Removal and recovery of mercury in vitro using immobilized live biomass of Chlorella sp. Indian J. Sci. Technol. 2018, 11, 45. [Google Scholar] [CrossRef]
- Peng, Y.; Deng, A.; Gong, X.; Li, X.; Zhang, Y. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae. Bioresour. Technol. 2017, 243, 628–630. [Google Scholar] [CrossRef]
- Samadani, M.; El-Khoury, J.; Dewez, D. Tolerance capacity of Chlamydomonas VHLR mutants for the toxicity of mercury. Water Air Soil Pollut. 2020, 231, 167. [Google Scholar] [CrossRef]
- Lown, L.; Vernaz, J.E.; Dunham-Cheatham, S.M.; Gustin, M.S.; Hiibel, S.R. Phase partitioning of mercury, arsenic, selenium, and cadmium in Chlamydomonas reinhardtii and Arthrospira maxima microcosms. Environ. Pollut. 2023, 329, 121679. [Google Scholar] [CrossRef]
- Kelly, D.; Budd, K.; Lefebvre, D.D. Mercury analysis of acid- and alkaline-reduced biological samples: Identification of meta-cinnabar as the major biotransformed compound in algae. Appl. Environ. Microbiol. 2006, 72, 363–365. [Google Scholar] [CrossRef]
- Thabet, J.; Elleuch, J.; Martínez, F.; Abdelkafi, S.; Hernández, L.E.; Fendri, I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. Chemosphere 2023, 338, 139391. [Google Scholar] [CrossRef]
- Vela-García, N.; Guamán-Burneo, M.C.; González-Romero, N.P. Efficient bioremediation from metallurgical effluents through the use of microalgae isolated from the amazonic and highlands of Ecuador. Rev. Int. Contam. Ambient. 2019, 35, 917–929. [Google Scholar] [CrossRef]
- Huang, R.; Huo, G.; Song, S.; Li, Y.; Xia, L.; Gaillard, J.-F. Immobilization of mercury using high-phosphate culture-modified microalgae. Environ. Pollut. 2019, 254 Pt A, 112966. [Google Scholar] [CrossRef]
- Yannai, S.; Berdicevsky, I.; Duek, L. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1991, 57, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Hoque, E.; Fritscher, J. A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms. Microbiologyopen 2016, 5, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Shi, Y.; Si, G.; Yang, Q.; Dong, J.; Chen, J. The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil. J. Hazard. Mater. 2020, 396, 122638. [Google Scholar] [CrossRef]
- Cardona, G.I.; Escobar, M.C.; Acosta-González, A.; Marín, P.; Marqués, S. Highly mercury-resistant strains from different Colombian Amazon ecosystems affected by artisanal gold mining activities. Appl. Microbiol. Biotechnol. 2022, 106, 2775–2793. [Google Scholar] [CrossRef]
- Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Assessment of Mercury biosorption by Saccharomyces cerevisiae: Response surface methodology for optimization of low Hg (II) concentrations. J. Environ. Chem. Eng. 2018, 6, 4980–4987. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Miyauchi, K.; Suzuki, H.; Endo, G. Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp. AMB Express 2016, 6, 99. AMB Express 2016, 6, 99. [Google Scholar] [CrossRef]
- Sinha, A.; Pant, K.K.; Khare, S.K. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int. Biodeterior. Biodegrad. 2012, 71, 1–8. [Google Scholar] [CrossRef]
- Joshia, G.; Meena, B.; Verma, P.; Nayak, J.; Vinithkumar, N.V.; Dharani, G. Deep-sea mercury resistant bacteria from the Central Indian Ocean: A potential candidate for mercury bioremediation. Mar. Pollut. Bull. 2021, 169, 112549. [Google Scholar] [CrossRef]
- Ekstrom, E.; Morel, F.; Benoit, J. Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria. Appl. Environ. Microbiol. 2003, 69, 5414–5422. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.M.; Aiken, G.R.; Gilmour, C.C. Effect of dissolved organic matter source and character on microbial Hg methylation in Hg-S-DOM solutions. Environ. Sci. Technol. 2013, 47, 5746–5754. [Google Scholar] [CrossRef] [PubMed]
- Nonnoi, F.; Chinnaswamy, A.; García de la Torre, V.S.; Coba de la Peña, T.; Lucas, M.M.; Pueyo, J.J. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl. Soil Ecol. 2012, 61, 49–59. [Google Scholar] [CrossRef]
- Touahir, N.; Alouache, S.; Dehane, D. Assessment and characterization of heavy metals resistance bacteria isolated in Southwestern Mediterranean coastal waters (Bou-Ismail Bay): Impacts of anthropogenic activities. Mar. Pollut. Bull. 2023, 192, 115085. [Google Scholar] [CrossRef]
- Mello, I.S.; Targanski, S.; Pietro-Souza, W.; Stachack, F.F.F.; Terezo, A.J.; Soares, M.A. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol. Environ. Saf. 2020, 202, 110818. [Google Scholar] [CrossRef]
- Lefebvre, D.D.; Kelly, D.; Budd, K. Biotransformation of Hg (II) by Cyanobacteria. Appl. Environ. Microbiol. 2007, 73, 244–248. [Google Scholar] [CrossRef]
- Mathew, D.C.; Ho, Y.-N.; Gicana, R.G.; Mathew, G.M.; Chien, M.-C.; Huang, C.-C. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS ONE 2015, 10, e0121178. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Megharaj, M. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. J. Environ. Sci. 2017, 51, 128–137. [Google Scholar] [CrossRef]
- Imron, M.F.; Kurniawan, S.B.; Soegianto, A. Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate, Surabaya, Indonesia under different saline conditions. J. Environ. Manag. 2019, 241, 114–118. [Google Scholar] [CrossRef]
- Cabral, L.; Giovanella, P.; Gianello, C.; Bento, F.M.; Andreazza, R.; Camargo, F.A.O. Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain. Biodegradation 2013, 24, 319–331. [Google Scholar] [CrossRef]
- Dabrock, B.; Kesseler, M.; Averhoff, B.; Gottschalk, G. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 1994, 60, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, T.; Chowdhury, S.P.; Uhl, J.; Rothballer, M. Genome-based characterization of plant-associated Rhodococcus qingshengii RL1 reveals stress tolerance and plant-microbe interaction traits. Front. Microbiol. 2021, 12, 708605. [Google Scholar] [CrossRef]
- Petrus, A.K.; Rutner, C.; Liu, S.; Wang, Y.; Wiatrowski, H.A. Mercury reduction and methyl mercury degradation by the soil bacterium Xanthobacter autotrophicus Py2. Appl. Environ. Microbiol. 2015, 81, 7834–7836. [Google Scholar] [CrossRef]
- Vanella, R.; Verma, S.K. Co2+, Cu2+ and Zn2+ accumulation by cyanobacterium Spirullina platensis. Biotechnol. Prog. 2006, 22, 1282–1293. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Mattson, M.P. How does hormesis impact biology, toxicology, and medicine? Aging. Mech. Disease 2017, 3, 13. [Google Scholar] [CrossRef]
- Samal, D.P.K.; Sukla, L.B.; Pattanaik, A.; Pradhan, D. Role of microalgae in treatment of acid mine drainage and recovery of valuable metals. Mater. Today Proc. 2020, 30, 346–350. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Mandotra, S.K.; Kumar, N.; Singh, N.K.; Singh, L.; Rai, U.N. Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour. Technol. 2016, 221, 430–437. [Google Scholar] [CrossRef]
- Danouche, M.; El-Ghachtouli, N.; El-Arroussi, H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021, 7, e07609. [Google Scholar] [CrossRef]
- Nateras-Ramírez, O.; Martínez-Macias, M.R.; Sánchez-Machado, D.I.; López-Cervantes, J.; Aguilar-Ruiz, R.J. An overview of microalgae for Cd2+ and Pb2+ biosorption from wastewater. Bioresour. Technol. Rep. 2022, 17, 100932. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Shi, K.; Gao, Z.; Shi, T.-Q.; Song, P.; Ren, L.-J.; Huang, H.; Ji, X.-J. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: The state of the art and future perspectives. Front. Microbiol. 2017, 8, 793. [Google Scholar] [CrossRef] [PubMed]
- Balzano, S.; Sardo, A.; Blasio, M.; Chahine, T.B.; dell’Anno, F.; Sansone, C. Microalgal metallothioneins and phytochelatins and their potential use in bioremediation. Front. Microbiol. 2020, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Jebapriya, G.R.; Gnanadoss, J.J. Bioremediation of textile dye using white-rot fungi: A review. Int. J. Curr. Res. Rev. 2013, 5, 1–13. [Google Scholar]
- Devi, R.; Kaur, T.; Kour, D.; Rana, K.L.; Yadav, A.; Yadav, A.N. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial. Biosyst. 2020, 5, 21–47. [Google Scholar] [CrossRef]
- Goutam, J.; Sharma, J.; Singh, R.; Sharma, D. Fungal-mediated bioremediation of heavy metal–polluted environment. In Microbial Rejuvenation of Polluted Environment; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2021; pp. 51–76. [Google Scholar] [CrossRef]
- Bellion, M.; Courbot, M.; Jacob, C. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 2006, 254, 173–181. [Google Scholar] [CrossRef]
- Siddiquee, S.; Rovina, K.; Azad, S.A. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. J. Microb. Biochem Technol. 2015, 7, 384–395. [Google Scholar] [CrossRef]
- Teitzel, G.M.; Parsek, M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2003, 69, 2315–2318. [Google Scholar] [CrossRef]
- Nocelli, N.; Bogino, P.C.; Banchio, E.; Giordano, W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of Rhizobia. Materials 2016, 9, 419–423. [Google Scholar] [CrossRef]
- Chen, H.W.; Huang, W.-J.; Wu, T.-H.; Hon, C.-L. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa. J. Environ. Sci. Health Tox. Hazard. Subst. Environ. Eng. 2014, 49, 1371–1375. [Google Scholar] [CrossRef]
- Chen, H.W.; Wu, Y.-Y.; Li, Y.-X.; Huang, W.-J. Methylmercury accumulation and toxicity to cyanobacteria: Implications of extracellural polymeric substances and growth properties. Water Environ. Res. 2014, 86, 627–632. [Google Scholar] [CrossRef]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Zheng, Y.; Ge, Y. Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. Ecotoxicol. Environ. Saf. 2017, 136, 150–160. [Google Scholar] [CrossRef]
- Barra, L.; Greco, S. The Potential of microalgae in phycoremediation submitted. In Microalgae—Current and Potential Applications; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Shivaji, S.; Dronamaraju, S.V.L. Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of Cadmium and Zinc. Sci. Rep. 2019, 9, 8485. [Google Scholar] [CrossRef] [PubMed]
- Danouche, M.; El-Ghachtouli, N.; El-Baouchi, A.; El-Arroussi, H. Heavy metals phycoremediation using tolerant green microalgae: Enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. J. Environ. Chem. Eng. 2020, 8, 104460. [Google Scholar] [CrossRef]
- Gielen, H.; Remans, T.; Vangronsveld, J.; Cuypers, A. MicroRNAs in metal stress: Specific roles or secondary responses? In. J. Mol. Sci. 2012, 13, 15826–15847. [Google Scholar] [CrossRef]
- Beauvais-Flück, R.; Slaveykova, V.I.; Cosio, C. Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci. Rep. 2017, 7, 8034. [Google Scholar] [CrossRef]
- Chakravorty, M.; Nanda, M.; Bisht, B.; Sharma, R.; Kumar, S.; Mishra, A.; Vlaskin, M.S.; Chauhan, P.K.; Kumar, V. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. Aquat. Toxicol. 2023, 260. [Google Scholar] [CrossRef]
- Prigione, V.; Zerlottin, M.; Refosco, D.; Tigini, V.; Anastasi, A.; Varese, G.C. Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresour. Technol. 2009, 100, 2770–2776. [Google Scholar] [CrossRef]
- Gadd, G.M.; Ramsay, L.; Crawford, J.W.; Ritz, K. Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol. Lett. 2001, 204, 311–316. [Google Scholar] [CrossRef]
- Cherrad, S.; Girard, V.; Dieryckx, C.; Gonçalves, I.R.; Dupuy, J.-W.; Bonneu, M.; Rascle, C.; Job, C.; Job, D.; Vacher, S.; et al. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 2012, 4, 835–846. [Google Scholar] [CrossRef]
- Lorenzo-Gutiérrez, D.; Gómez-Gil, L.; Guarro, J.; Roncero, M.I.G.; Fernández-Bravo, A.; Capilla, J.; López-Fernández, L. Role of the Fusarium oxysporum metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics 2019, 11, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian Fazli, M.; Soleimani, N.; Mehrasbi, M.; Darabian, S.; Mohammadi, J.; Ramazani, A. Highly cadmium tolerant fungi: Their tolerance and removal potential. J. Environ. Health Sci. Eng. 2015, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, J.; Azzahra, N.A.; Bingöl, Ö.A.; Izbiańska-Jankowska, K.; Jelonek, T.; Deckert, J.; Floryszak-Wieczorek, J.; Arasimowicz-Jelonek, M. Cadmium stress reprograms ROS/RNS homeostasis in Phytophthora infestans (Mont.) de Bary. Int. J. Mol. Sci. 2020, 21, 8375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zeng, G.; Chen, G.; Yan, M.; Chen, A.; Du, J.; Huang, J.; Yi, B.; Zhou, Y.; He, X.; et al. The effect of heavy metal-induced oxidative stress on the enzymes in white rot fungus Phanerochaete chrysosporium. Biotechnol. Appl. Biochem. 2015, 175, 1281–1293. [Google Scholar] [CrossRef]
- Sazanova, K.; Osmolovskaya, N.; Schiparev, S.; Yakkonen, K.; Kuchaeva, L.; Vlasov, D. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions. Curr. Microbiol. 2015, 70, 520–527. [Google Scholar] [CrossRef]
- Fomina, M.A.; Alexander, I.J.; Colpaert, J.V.; Gadd, G.M. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil. Biol. Biochem. 2005, 37, 851–866. [Google Scholar] [CrossRef]
- Ahmed, E.; Holmström, S.J. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Hong, J.W.; Park, J.Y.; Gadd, G.M. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J. Appl. Microbiol. 2010, 108, 2030–2040. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Sheng, F.; Qing, H. Adsorption characteristics of Copper (II), Zinc (II) and Mercury (II) by four kinds of immobilized fungi residues. Ecotoxicol. Environ. Saf. 2018, 147, 357–366. [Google Scholar] [CrossRef]
- Kovalchuk, A.; Driessen, A.J.M. Phylogenetic analysis of fungal ABC transporters. BMC Genom. 2010, 11, 177. [Google Scholar] [CrossRef]
- Calvo, J.; Jung, H.; Meloni, G. Copper metallothioneins. IUBMB Life 2017, 69, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S. Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 2014, 160, 2235–2242. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Cho, M.; Hu, G.; Caza, M.; Horianopoulos, L.C.; Kronstad, J.W.; Jung, W.H. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans. J. Microbiol. 2018, 56, 65–71. [Google Scholar] [CrossRef]
- Urai, M.; Aizawa, T.; Anzai, H.; Ogihara, J.; Iwabuchi, N.; Neilan, B.; Couperwhite, I.; Nakajima, M.; Sunairi, M. Structural analysis of an extracellular polysaccharide produced by a benzene tolerant bacterium Rhodococcus sp. 33. Carbohydr. Res. 2006, 341, 616–623. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Krivoruchko, A.; Ivshina, I.B. Hydrocarbon and metal-polluted soil bioremediation: Progress and challenges. Microbiol. Aust. 2018, 39, 133–136. [Google Scholar] [CrossRef]
- Faisal, M.; Hasnain, S. Comparative study of Cr (VI) uptake and reduction in industrial effluent by Ochrobacterium intermedium and Brevibacterium sp. Biotechnol. Lett. 2004, 26, 1623–1628. [Google Scholar] [CrossRef]
- Henson, W.R.; Hsu, F.-F.; Dantas, G.; Moon, T.S.; Foston, M. Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion. Biotechnol. Biofuels. 2018, 11, 1556–1565. [Google Scholar] [CrossRef]
- Sokolovska, I.; Rozenberg, R.; Riez, C.; Rouxhet, P.G.; Agathos, S.N.; Wattiau, P. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl. Environ. Microbiol. 2003, 69, 7019–7027. [Google Scholar] [CrossRef]
- Ledin, M. Accumulation of metals by microorganisms-processes and importance for soil systems. Earth-Sci. Rev. 2000, 51, 1–31. [Google Scholar] [CrossRef]
- Gomes, A.F.R.; Almeida, M.C.; Sousa, E.; Resende, D.I.S.P. Siderophores and metallophores: Metal complexation weapons to fight environmental pollution. Sci. Total Environ. 2024, 932, 173044. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhiqi, Q.; Tan, H.; Cao, L. Siderophore production by actinobacteria. BioMetals 2014, 27, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384. [Google Scholar] [CrossRef]
- Elbaz, A.; Wei, Y.Y.; Meng, Q.; Zheng, Q.; Yang, Z.M. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 2010, 19, 1285–1287. [Google Scholar] [CrossRef]
- Wang, Y.; Robison, T.; Wiatrowski, H. The impact of ionic mercury on antioxidant defenses in two mercury-sensitive anaerobic bacteria. BioMetals 2013, 26, 1023–1026. [Google Scholar] [CrossRef]
- Podar, M.; Gilmour, C.C.; Brandt, C.C.; Soren, A.; Brown, S.D.; Crable, B.R.; Palumbo, A.V.; Somenahally, A.C.; Elias, D.A. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 2015, 1, e1500675. [Google Scholar] [CrossRef]
- Desrosiers, M.; Planas, D.; Mucci, A. Total mercury and methylmercury accumulation in periphyton of Boreal Shield lakes: Influence of watershed physiographic characteristics. Sci. Total Environ. 2006, 355, 248–250. [Google Scholar] [CrossRef]
- Ranchou-Peyruse, M.; Monperrus, M.; Bridou, R.; Duran, R. Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: Implications for environmental studies. Geomicrobiol. J. 2009, 26, 1–8. [Google Scholar] [CrossRef]
- Podar, P.T.; Peyton, K.; Soren, A.; Wilpiszeski, R.L.; Gilmour, C.C.; Elias, D.A.; Podar, M. Complete genome sequence of Desulfobulbus oligotrophicus Prop6, an anaerobic Deltabacterota strain that lacks mercury methylation capability. Microbiol. Resour. Announc. 2021, 10, e00002-21. [Google Scholar] [CrossRef]
- Kerin, E.J.; Gilmour, C.C.; Roden, E.; Suzuki, M.T.; Coates, J.D.; Mason, R.P. Mercury methylation by dissimilatory iron-reducing bacteria. Appl. Environ. Microbiol. 2006, 72, 7919–7921. [Google Scholar] [CrossRef]
- Bravo, A.G.; Peura, S.; Buck, M.; Ahmed, O.; Mateos-Rivera, A.; Ortega, S.H.; Schaefer, J.K.; Bouchet, S.; Tolu, J.; Björn, E.; et al. Methanogens and iron-reducing bacteria: The overlooked members of mercury-methylating microbial communities in Boreal lakes. Appl. Environ. Microbiol. 2018, 84, e01774-18. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Yee, N.; Barkay, T. Microbial Transformations in the Mercury Cycle. In Environmental Chemistry and Toxicology of Mercury; Liu, G., Cai, Y., O’Driscoll, N., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 155–191. [Google Scholar]
- Ignatenko, A.V. Analysis of waste waters toxicity and detoxication during their biological treatment. Technol. Elimin. Chem. Hazards 2022, 6, 21–46. [Google Scholar] [CrossRef]
- François, F.; Lombard, C.; Guigner, J.-M.; Soreau, P.; Brian-Jaisson, F.; Martino, G.; Vandervennet, M.; Garcia, D.; Molinier, A.-L.; Pignol, D.; et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl. Environ. Microbiol. 2012, 78, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.K.; Rocks, S.S.; Zheng, W.; Liang, L.; Gu, B.; Morel, F.M.M. Active transport, substrate specificity, and methylation of Hg (II) in anaerobic bacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 8715–8717. [Google Scholar] [CrossRef]
- Boyd, E.S.; Barkay, T. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. Front. Microbiol. 2012, 3, 349. [Google Scholar] [CrossRef]
- Christakis, C.A.; Barkay, T.; Boyd, E.S. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic archaea. Front. Microbiol. 2021, 12, 682605. [Google Scholar] [CrossRef]
- Maynaud, G.; Brunel, B.; Yashiro, E.; Mergeay, M.; Cleyet-Marel, J.-C.; Le Quéré, A. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Res. Microbiol. 2014, 165, 175–189. [Google Scholar] [CrossRef]
- Dash, H.R.; Sahu, M.; Mallick, B.; Das, S. Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury. Biochimie 2017, 142, 207–215. [Google Scholar] [CrossRef]
- Fagorzi, C.; Checcucci, A.; diCenzo, G.C.; Debiec-Andrzejewska, K.; Dziewit, L.; Pini, F.; Mengoni, A. Harnessing Rhizobia to improve heavy-metal phytoremediation by legumes. Genes 2018, 9, 542. [Google Scholar] [CrossRef]
- Gionfriddo, C.M.; Stott, M.B.; Power, J.F.; Ogorek, J.M.; Krabbenhoft, D.P.; Wick, R.; Holt, K.; Chen, L.-X.; Thomas, B.C.; Banfield, J.F. Genome-resolved metagenomics and detailed geochemical speciation analyses yield new insights into microbial mercury cycling in geothermal springs. Appl. Environ. Microbiol. 2020, 86, e00176-20. [Google Scholar] [CrossRef]
- Hui, C.Y.; Ma, B.-C.; Hu, S.-Y.; Wu, C. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons. Environ. Pollut. 2024, 341, 123016. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zheng, G.; Kang, X.; Zhang, X.; Guo, J.; Wang, S.; Chen, Y.; Xue, L. Aquatic bacteria rheinheimera tangshanensis new ability for mercury pollution removal. Int. J. Mol. Sci. 2023, 24, 5009. [Google Scholar] [CrossRef] [PubMed]
- Barkay, T.; Kritee, K.; Boyd, E.; Geesey, G. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ. Microbiol. 2010, 12, 2904–2917. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, D.S.; Poulain, A.J. A physiological role for Hg (II) during phototrophic growth. Nat. Geosci. 2016, 9, 121–122. [Google Scholar] [CrossRef]
- Wood, J.M.; Kennedy, F.S.; Rosen, C.G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 1968, 220, 173–174. [Google Scholar] [CrossRef]
- Hamdy, M.; Noyes, O. Formation of methyl mercury by bacteria. Appl. Microbiol. 1975, 30, 424–432. [Google Scholar] [CrossRef]
- Bridou, R.; Monperrus, M.; Gonzalez, P.R.; Guyoneaud, R.; Amouroux, D. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environ. Toxicol. Chem. 2011, 30, 337–344. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, J.; Fan, F.; Wang, S.; Wang, D.; Huang, Y. Effects of redox-modified biochar on mercury reduction and methylation on electron transfer in Geobacter sulfurreducens PCA. Bioresour. Technol. 2025, 427, 132423. [Google Scholar] [CrossRef]
- Sone, Y.; Mochizuki, Y.; Koizawa, K.; Nakamura, R.; Pan-Hou, H.; Itoh, T.; Kiyono, M. Mercurial-resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB Express 2013, 3, 41. [Google Scholar] [CrossRef]
- Bhat, A.; Sharma, R.; Desigan, K.; Lucas, M.M.; Mishra, A.; Bowers, R.M.; Woyke, T.; Epstein, B.; Tiffin, P.; Pueyo, J.J.; et al. Horizontal gene transfer of the Mer operon is associated with large effects on the transcriptome and increased tolerance to mercury in nitrogen-fixing bacteria. BMC Microbiol. 2024, 24, 247. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Peshkur, T.A.; Korobov, V.P. Efficient uptake of cesium ions by Rhodococcus cells. Microbiology 2002, 71, 357–361. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Kostina, L.V. Adaptive mechanisms of nonspecific resistance to heavy metal ions in alkanotrophic actinobacteria. Russ. J. Ecol. 2013, 44, 123–130. [Google Scholar] [CrossRef]
- Bell, J.M.L.; Philp, J.C.; Kuyukina, M.S.; Ivshina, I.B.; Dunbar, S.A.; Cunningham, C.J.; Anderson, P. Methods evaluating vanadium tolerance in bacteria isolated from crude oil contaminated land. J. Microbiol. Methods 2004, 58, 87–100. [Google Scholar] [CrossRef]
- Presentato, A.; Piacenza, E.; Turner, R.J.; Zannoni, D.; Cappelletti, M. Processing of metals and metalloids by Actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Microorganisms 2020, 8, 2027. [Google Scholar] [CrossRef]
- Li, Q.; Liu, T.; Deng, P. Recovery of mercury and lead from wastewater by sulfide precipitation-flotation. In Characterization of Minerals, Metals, and Materials, 2nd ed.; Carpenter, J.S., Bai, C., Escobedo, J.P., Hwang, J.-Y., Ikhmayies, S., Li, B., Li, J., Monteiro, S.N., Peng, Z., Zhang, M., Eds.; Springer Cham: Orlando, FL, USA, 2015; pp. 667–674. [Google Scholar] [CrossRef]
- Onaizi, S.A. Simultaneous mercury removal from wastewater and hydrogen sulfide scavenging from sour natural gas using a single unit operation. J. Clean. Prod. 2022, 380, 134900. [Google Scholar] [CrossRef]
- Piao, H.; Bishop, P. Stabilization of mercury-containing wastes using sulfide. Environ. Pollut. 2006, 139, 498–506. [Google Scholar] [CrossRef]
- Wang, Z.J.; Cai, X.-L.; Zhang, Z.-B.; Zhang, L.-B.; Wang, S.-X.; Peng, J.-H. Separation and enrichment of elemental sulfur and mercury from hydrometallurgical zinc residue using sodium sulfide. Trans. Nonferrous Met. Soc. China 2015, 25, 640–646. [Google Scholar] [CrossRef]
- Wagner-Döbler, I. Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl. Microbiol. Biotechnol. 2003, 62, 124–133. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- Okoronkwo, N.E.; Igwe, J.C.; Okoronkwo, I.J. Environmental impacts of mercury and its detoxification from aqueous solutions. Afr. J. Biotechnol. 2007, 6, 335–340. [Google Scholar]
- Bessbousse, H.; Rhlalou, T.; Verchère, J.-F.; Lebrun, L. Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix. J. Membr. Sci. 2008, 307, 249–259. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, S.; Wang, L.; Liu, F.; Lin, C.-J.; Zhang, L.; Wang, F. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Sci. Total Environ. 2014, 496, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Mallick, N.; Mohn, F.H. Use of chlorophyll fluorescence in metal-stress research: A case study with the green microalga Scenedesmus. Ecotoxicol. Environ. Saf. 2003, 55, 64–69. [Google Scholar] [CrossRef]
- Shanmugaprakash, M.; Sivakumar, V. Development of experimental design approach and ANN-based models for determination of Cr(VI) ions uptake rate from aqueous solution onto the solid biodiesel waste residue. Bioresour. Technol. 2013, 148, 550–559. [Google Scholar] [CrossRef]
- Yadav, M.; Rani, K.; Chauhan, M.K.; Panwar, A. Evaluation of mercury adsorption and removal efficacy of pulverized Chlorella (C. vulgaris). J. Appl. Phycol. 2020, 32, 1253–1262. [Google Scholar] [CrossRef]
- do Nascimento, F.H. Dynamic interactions of Hg(II) with the surface of green microalgae Chlamydomonas reinhardtii studied by stripping chronopotentiometry. Algal Res. 2017, 24, 347–353. [Google Scholar] [CrossRef]
- Torres, M.J.; Bellido-Pedraza, C.M.; Llamas, A. Applications of the microalgae chlamydomonas and its bacterial consortia in detoxification and bioproduction. Life 2024, 14, 940. [Google Scholar] [CrossRef]
- Gojkovic, Z.; Simansky, S.; Sanabria, A.; Márová, I.; Garbayo, I.; Vílchez, C. Interaction of naturally occurring phytoplankton with the biogeochemical cycling of mercury in aquatic environments and its effects on global Hg pollution and public health. Microorganisms 2023, 11, 2034. [Google Scholar] [CrossRef]
- Aksu, Z.; Isoglu, I.A. Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 2005, 40, 3031–3044. [Google Scholar] [CrossRef]
- Fu, Y.-Q.; Li, S.; Zhu, H.Y.; Jiang, R.; Yin, L.F. Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr. J. Biotechnol. 2012, 11, 1403–1411. [Google Scholar] [CrossRef]
- Kumar, R.; Pundir, S.P.; Dhir, B.; Sharma, A. Potential of some fungal and bacterial species in bioremediation of heavy metals. J. Nucl. Phys. Mater. Sci. Radiat. 2014, 1, 213–223. [Google Scholar] [CrossRef]
- Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Tang, D.; Dai, J.; Tang, X.; Bao, Y.; Ning, J.; Zhen, Q.; Song, H.; Leger, R.J.S.; Fang, W. Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proc. Natl. Acad. Sci. USA 2022, 119, e2214513119. [Google Scholar] [CrossRef]
- Kavčič, A.; Mikuš, K.; Debeljak, M.; van Elteren, J.T.; Arčon, I.; Kodre, A.; Kump, P.; Karydas, A.G.; Migliori, A.; Czyzycki, M.; et al. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushrooms. Ecotoxicol. Environ. Saf. 2019, 184, 109623. [Google Scholar] [CrossRef]
- Elahi, A.; Rehman, A. Oxidative stress, chromium-resistance and uptake by fungi: Isolated from industrial wastewater. Braz. Arch. Biol. Technol. 2017, 60, 1–14. [Google Scholar] [CrossRef]
- Cruz, K.; Guezennec, J.; Barkay, T. Binding of Hg by bacterial extracellular polysaccharide: A possible role in Hg tolerance. Appl. Microbiol. Biotechnol. 2017, 101, 5–7. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S.; Megharaj, M. Mercury toxicity to terrestrial biota. Ecol. Indic. 2017, 74, 451–462. [Google Scholar] [CrossRef]
- Nascimento, A.M.; Chartone-Souza, E. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2003, 2, 92–101. [Google Scholar]
- Zeng, X.; Tang, J.-X.; Jiang, P.; Liu, H.-W.; Dai, Z.-M.; Liu, X.-D. Isolation, characterizationand extraction of mer gene of Hg2+ resisting strain D2. Trans. Nonferrous Met. Soc. China 2010, 20, 507–512. [Google Scholar] [CrossRef]
- Chen, C.; Yu, H.; Zhao, J.; Li, B.; Qu, L.; Liu, S.; Zhang, P.; Chai, Z. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ. Health Perspect. 2006, 114, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Norambuena, J.; Hanson, T.E.; Barkay, T.; Boyd, J.M. Superoxide dismutase and pseudocatalase increase tolerance to Hg(II) in Thermus thermophilus HB27 by maintaining the reduced bacillithiol pool. mBio 2019, 10, e00183-19. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Du, P.; Shendi, A.A.I.; Yu, B. Mercury bioremediation in aquatic environment by genetically modified bacteria with self-controlled biosecurity circuit. J. Clean. Prod. 2022, 337, 130524. [Google Scholar] [CrossRef]
- Harithsa, S.; Kerkar, S.; Bharathi, P.A.L. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria. Mar. Pollut. Bull. 2002, 44, 726–732. [Google Scholar] [CrossRef]
- Li, R.; Qi, L.; Ibeanusi, V.; Badisa, V.; Brooks, S.; Chen, C. Reduction and bacterial adsorption of dissolved mercuric ion by indigenous bacteria at the Oak Ridge Reservation site. Chemosphere 2021, 280, 130629. [Google Scholar] [CrossRef]
- Blum, P.W.; Hershey, A.E.; Tsui, M.T.-K.; Hammerschmidt, C.R.; Agather, A.M. Methylmercury and methane production potentials in North Carolina Piedmont stream sediments. Biogeochemistry 2018, 137, 181–195. [Google Scholar] [CrossRef]
- Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 2014, 5, e01918-14. [Google Scholar] [CrossRef]
- Komijani, M.; Shamabadi, N.S.; Shahin, K.; Eghbalpour, F.; Tahsili, M.R.; Bahram, M. Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environ. Pollut. 2021, 274, 116569. [Google Scholar] [CrossRef]
- Putri, W.A.; Rahayu, H.M.; Khasanah, A.U.; Sembiring, L. Identification of mercury-resistant Streptomyces isolated from Cyperus rotundus L. rhizosphere and molecular cloning of mercury (II) reductase gene. J. Biotechnol. 2021, 26, 206–213. [Google Scholar] [CrossRef]
- Undabarrena, A.; Ugalde, J.A.; Seeger, M.; Cámara, B. Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017, 5, e2912. [Google Scholar] [CrossRef]
- Lin, Y.B.; Wang, X.Y.; Li, H.F.; Wang, N.N.; Wang, H.X.; Tang, M.; Wei, G.-H. Streptomyces zinciresistens sp. nov., a zinc-resistant actinomycete isolated from soil from a copper and zinc mine. Int. J. Syst. Evol. Microbiol. 2011, 61 Pt 3, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, K.R.; King, W.L.; Siboni, N.; Nguyen, V.K.; Rahman, M.M.; Megharaj, M.; Seymour, J.R.; Franks, A.E.; Labbate, M. Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance. Environ. Pollut. 2020, 265 Pt B, 115057. [Google Scholar] [CrossRef]
- Hall, J.P.J.; Harrison, E.; Pärnänen, K.; Virta, M.; Brockhurst, M.A. The impact of mercury selection and conjugative genetic elements on community structure and resistance gene transfer. Front. Microbiol. 2020, 11, 1846. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.K.; Yagi, J.; Reinfelder, J.R.; Cardona, T.; Ellickson, K.M.; Tel-Or, S.; Barkay, T. Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ. Sci. Technol. 2004, 38, 4304–4311. [Google Scholar] [CrossRef]
- David, G.; Blondeau, K.; Renouard, M.; Lewit-Bentley, A. Crystallization and preliminary analysis of Escherichia coli YodA. Acta Crystallogr. D Biol. Crystallogr. 2002, 58 Pt 7, 1243–1245. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, C.J.; Brown, N.L.; Hobman, J.L. Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem. Biophys. Res. Commun. 2007, 364, 66–71. [Google Scholar] [CrossRef]
- Murphy, V.; Hughes, H.; McLoughlin, P. Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 2008, 70, 1128–1134. [Google Scholar] [CrossRef]
- Plaza, J.; Viera, M.; Donati, E.; Guibal, E. Biosorption of mercury by Macrocystis pyrifera and Undaria pinnatifida: Influence of zinc, cadmium and nickel. J. Environ. Sci. (China) 2011, 23, 1778–1786. [Google Scholar] [CrossRef]
- Pongratz, R.; Heumann, K.G. Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 1999, 39, 89–102. [Google Scholar] [CrossRef]
Organism | Resistance | Sample Characteristics/ Sampling Location | References |
---|---|---|---|
Microalgae | |||
Chlorella sp. | 2.89 mg/L | Live biomass of Chlorella sp. immobilised on dry fruits of Luffa cylindrical, Universidad de Sucre, Cinselejo, Colombia | [49] |
Ch. sorokiniana CCAP 211/8K | 5.0 mg/L | The Culture Collection of Algae, University of Texas at Austin (UTEX), Austin, TX, USA | [50] |
Ch. vulgaris | 0.0095 mg/L | Freshwater, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China (PRC) | [51] |
Chlamydomonas reinhardtii wild-type CC-125 | 1.904 mg/L | Chlamydomonas Resource Center, University of Minnesota, St. Paul, MN, USA | [52] |
C. reinhardtii | 0.000666 mg/L | Culture Collection of Algae at the University of Texas at Austin, UTEX | [53] |
Limnothrix planctonica | 0.06 mg/kg dry weight | Leaf surface of Nuphar variegatum, Tasso Lake, Ontario, Canada | [54] |
Chlorococcum dorsiventrale Ch-UB5 | 2.630 mg/L | Bentos, Mahdia Coast, Republic of Tunisia | [55] |
Scenedesmus sp. | 0.004 mg/L | Seawater, Ozogoche Lagoon, Sangay Lagoon National Park, Republic of Ecuador | [56] |
S. obtusus XJ-15 | 95.0 mg/L | Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, PRC | [57] |
Pleurococcus sp. | 0.006 mg/L | Sucus Lagoon, Cayambe-Coca Ecological Reserve, Republic of Ecuador | [56] |
Fungi | |||
Candida albicans | 0.75 mg/L | Collection strain, Department of Microbiology and Molecular Genetics, Technion-Israel Institute of Technology, Haifa, State of Israel | [58] |
Mucor hiemalis EH 8 | 50.0 mg/L | Microbial biofilm in sulphide-reduced spring water, Marching site, Bavaria, Federal Republic of Germany | [59] |
Penicillium spp. DC-F11 | 74.0 mg/kg dry weight | Soil contaminated with heavy metals, PRC | [60] |
Rhodotorula mucilaginosa TR52 | 58.0 mg/L | Water from Caño Amarillal, Amazon forest, Vaupés department, Republic of Colombia | [61] |
Saccharomyces cerevisiae PTCC 5010 | 0.005 mg/L | Lyophilised culture, Persian Type Culture Collection, Tehran, Islamic Republic of Iran | [62] |
Yarrowia spp. Idd1 | 32.0 mg/kg dry weight | Seawater, Lagos Lagoon, Nigeria | [63] |
Yarrowia spp. Idd2 | 59.0 mg/kg dry weight | Seawater, Lagos Lagoon, Nigeria | [63] |
Y. lipolytica TR55 | 51.0 mg/L | Water from Caño Amarillal, Amazon forest, Vaupés Department, Republic of Colombia | [61] |
Bacteria | |||
Bacillus sp. | 100.0 mg/L | Seawater, central Indian Ocean | [64] |
B. cereus MTCC 10650 | 67,000.0 mg/kg dry weight | Soil. Microbial Type Culture Collection and Gene Bank (MTCC), housed at the Institute of Microbial Technology (IMTECH), Chandigarh, Republic of India | [65] |
Burkholderia contaminans TR100 | 71.0 mg/L | Sediment from the Caño Rojo Creek, Amazon forest, Republic of Colombia | [61] |
Desulfobulbus propionicus MUD DSMZ 6523 | 0.0007 mg/L (MeHg) | German Collection of Microorganisms and Cell Cultures of the Leibniz Institute (DSMZ), Braunschweig, Federal Republic of Germany | [66] |
Desulfovibrio desulfuricans ND132 | 0.00014–0.0073 mg/L | DSMZ, Braunschweig, Federal Republic of Germany | [67] |
D. africanus DSMZ 2603 | 0.00045 mg/L (MeHg) | DSMZ, Braunschweig, Federal Republic of Germany | [66] |
Ensifer medicae AMp10 | 0.25 mg/L | Medicago polymorpha rhizosphere, Almadén mining district, Ciudad Real, Spain | [68] |
Citrobacter freundii | 200.0 mg/L | Seawater, Bou Ismail Gulf, Algeria | [69] |
Klebsiella sp. BacI31 | 125.0 mg/L | Aeschynomene luminensis rhizosphere, wetland biome, mercury contaminated soil (Hg concentration up to 3.24 mg/kg), Federative Republic of Brazil | [70] |
Limnothrix planctonica (Lemm.) | 3200.0 mg/L | Nuphar variegatum leaf surface, Tasso Lake, Lake of the Bays, Ontario, Canada | [71] |
Photobacterium spp. MELD1 | 33.0 mg/kg dry weight | Mercury and dioxin heavily contaminated rhizosphere soils of reed Phragmites australis at An-shun factory site, Taiwan | [72] |
Phormidium limnetica (Lemm.) | 3200.0 mg/L | Water from Lake Opinicon, Ontario, Canada | [71] |
Sphingopyxis sp. SE2 | 33.5 mg/L | Soil, New South Wales, Australia | [73] |
Pseudoalteromonas sp. | 100.0 mg/L | Seawater, central Indian Ocean | [65] |
Ps. stutzeri | 100.0 mg/L | Seawater, central Indian Ocean | [65] |
Pseudomonas sp. TP30 | 64.0 mg/L | Sediment, Lake Tipiska, Amazon forest, Amazon department, Republic of Colombia | [61] |
P. aeruginosa FA-2 | 5.44 mg/L | Sanitary landfill, Keputih district, Sukolilo district, Madura Strait coastal area, Indonesia | [74] |
Pseudomonas monteilii BacI6 | 125.0 mg/L | Polygonum acuminatum rhizosphere, wetland biome, mercury contaminated soil (Hg concentration up to 3.24 mg/kg), Federative Republic of Brazil | [70] |
P. putida V1 | 2.37 mg/L | Soil, State of Rio Grande do Sul, Brazil | [75] |
Rhizobium leguminosarum bv. trifolii STf07 | 0.068 mg/L | Trifolium fragiferum rhizosphere, Almadén mining district, Ciudad Real, Spain | [68] |
Rhodococcus erythropolis BD2 | 816.0 mg/L | Institute of Microbiology, Georg August University, Göttingen, Germany | [76] |
R. qingshengii RL1 | 272.0 mg/L | Extracted from the leaves of Eruca sativa L., Germany | [77] |
Xanthobacter autotrophicus | 0.04 mg/L Hg2+, 0.01 mg/L MeHg | American Type Culture Collection (ATCC), USA | [78] |
No | Gene Symbol | Product | Locus Tag | Organism | Location of the Coding Sequence | Gene Length, nt | Protein Length, aa |
---|---|---|---|---|---|---|---|
1 | merA | Mercury (II) reductase | C5O27_RS02895 | Gordonia alkanivorans YC-RL2 | Chromosome Complement (618,730–620,151) | 1422 | 473 |
BCM27_RS13490 | G. terrae 3612 | Chromosome Complement (2,996,454–2,997,890) | 1437 | 478 | |||
IHQ52_RS14160 | G. amicalis CEGA1 | Chromosome Complement (3,090,014–3,091,450) | 1437 | 478 | |||
ABWI03_RS31730 | Rhodococcus baikonurensis NPDC097667 | Chromosome Complement (9129–10,565) | 1437 | 478 | |||
F1734_RS25830 | R. ruber C1 | Plasmid: unnamed1 129,228–130,664 | 1437 | 478 | |||
VYL96_RS16955 | Dietzia cinnamea 55 | Plasmid: unnamed 18,650–20,050 | 1401 | 466 | |||
VYL96_RS00490 | D. cinnamea 55 | Chromosome Complement (111,188–112,582) | 1395 | 464 | |||
JOE55_RS10340 | Kocuria palustris TAGA27 | Chromosome Complement (2,325,179–2,326,603) | 1425 | 584 | |||
O4162_RS16800 | D. maris ИЭГM 44 | Chromosome Complement (5029–6429) | 1401 | 466 | |||
2 | H351_RS26335 | MerR family transcription regulator | H351_RS26335 | R. erythropolis R138 | Chromosome 5,724,143–5,724,568 | 426 | 141 |
3 | NFA_RS29315 | MerR family DNA-binding protein | NFA_RS29315 | Nocardia farcinica IFM 10152 | Plasmid: pNF2 58,358–58,759 | 402 | 341 |
4 | Y013_RS03165 | DNA-binding transcriptional regulator of the MerR family | Y013_RS03165 | R. pyridinivorans SB3094 | Chromosome 679,626–680,465 | 840 | 279 |
5 | NFA_RS28365 | P-type cation-translocating ATPase | NFA_RS28365 | N. farcinica IFM 10152 | Plasmid: pNF1 39,781–41,745 | 1965 | 654 |
6 | merH | Hg2+ MerH transporter | MAB_RS00055 | Mycobacteroides abscessus ATCC 19977 | Plasmid: pMAB23 5371–5883 | 513 | 170 |
7 | CEQ30_RS22845 | Protein containing DUF3817 domain | CEQ30_RS22845 | N. brasiliensis FDAARGOS_352 | Chromosome 5,069,600–5,069,899 | 300 | 99 |
8 | MAB_RS00040 | MerT mercury transporter | MAB_RS00040 | Myc. abscessus ATCC 19977 | Plasmid: pMAB23 Complement 2964–3398 | 435 | 144 |
9 | Spa2297_RS28755 | Mercury reductase | Spa2297_RS28755 | Streptomyces parvulus 2297 | Chromosome 6,398,621–6,400,009 | 1389 | 462 |
No | Locus | Region Name | Definition | Organism | Protein Length, aa |
---|---|---|---|---|---|
1 | PZT88875 | TrxA | MAG: Mercury vector (Gram-positive bacteria with high G + C content) | Gordonia sp. | 172 |
2 | OLT52902 | TrxA | Mercury transporter | Gordonia sp. CNJ-863 | 171 |
3 | OBA35129 | CcdA | Mercury transporter | Gordonia sp. 852002-51296_SCH5728562-b | 301 |
4 | OZC38182 | TrxA | Mercury transporter | Rhodococcoides fascians | 174 |
5 | WP_283289544 | PRK13239 | Organomercurial lyase MerB | Microbacterium sp. | 218 |
6 | WP_367652617 | PRK13239 | Organomercurial lyase MerB | R. pyridinivorans | 278 |
7 | WP_374610375 | – | Organomercurial lyase MerB (in Gram-positive bacteria with high G + C content) | Gordonia sp. | 213 |
8 | WP_231381052 | HTH_MerR-SF | Organomercurial lyase MerB | G. alkanivorans | 373 |
9 | ATD71119 | PRK13239 | Alkylmercury lyase | Gordonia sp. 1D | 216 |
10 | KSU68309 | PRK13239 | Alkylmercury lyase | R. qingshengii | 222 |
11 | ANY23673 | PRK13239 | Alkylmercury lyase MerB | G. terrae | 216 |
12 | ORC17824 | PRK13239 | Alkylmercury lyase | R. qingshengii | 218 |
13 | GGB48061 | ArsR | Repressor of the mercury resistance operon MerR | G. jinhuaensis | 125 |
14 | CCW11083 | Haloacid Dehalogenase-like Hydrolases | ATPase that transports lead, cadmium, zinc, and mercury | R. aetherivorans | 321 |
15 | CCW11076 | TrxA | Mercury resistance operon ORF3 (precursor) | R. aetherivorans | 181 |
16 | AWK76739 | TrxA | Mercury transporter (plasmid) | R. oxybenzonivorans | 171 |
17 | AXY49768 | TrxA | Mercury transporter | R. ruber | 179 |
18 | BAX98527 | CcdA | Mercury resistance transport protein/cytochrome C biogenesis protein | Myc. stephanolepidis | 236 |
19 | WP_371955153 | – | Mercury resistance system, periplasmic binding protein MerP | Actinomadura sp. DLS-62 | 82 |
20 | EGQ75422 | CopZ | MerTP family, mercury (Hg2+) permease, MerP binding protein | Actinomyces sp. | 87 |
Method | Advantages | Disadvantages | Removal Mechanism | References |
---|---|---|---|---|
Ion exchange | Removes many contaminants, has high efficiency | It is imperative that ion exchange resins are periodically maintained, a process which is time-consuming | Reversible chemical reaction | [168] |
Precipitation | Characterised by ease of operation, cost-effectiveness, and high selectivity. | Production of large quantities of sludge | Chemical reaction | [169,170] |
Membrane filtration (Reverse Osmosis, Electrodialysis, Nanofiltration) | High efficiency, production of less toxic waste, and removal of multi-component pollutants | Expensive method and maintenance, production of waste, loss of huge amounts of water | Selective membrane permeability | [171] |
Adsorption | The use of raw materials that are both inexpensive and highly efficient, as well as simple operation, is a key advantage | High cost of sorbent regeneration, different uncontrolled removal capacity of adsorbents | Physical or chemical adsorption | [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golysheva, A.A.; Litvinenko, L.V.; Ivshina, I.B. Diversity of Mercury-Tolerant Microorganisms. Microorganisms 2025, 13, 1350. https://doi.org/10.3390/microorganisms13061350
Golysheva AA, Litvinenko LV, Ivshina IB. Diversity of Mercury-Tolerant Microorganisms. Microorganisms. 2025; 13(6):1350. https://doi.org/10.3390/microorganisms13061350
Chicago/Turabian StyleGolysheva, Anastasia A., Lyudmila V. Litvinenko, and Irina B. Ivshina. 2025. "Diversity of Mercury-Tolerant Microorganisms" Microorganisms 13, no. 6: 1350. https://doi.org/10.3390/microorganisms13061350
APA StyleGolysheva, A. A., Litvinenko, L. V., & Ivshina, I. B. (2025). Diversity of Mercury-Tolerant Microorganisms. Microorganisms, 13(6), 1350. https://doi.org/10.3390/microorganisms13061350