Risk Factors and Prognosis of Polymyxin- and Carbapenem-Resistant Enterobacteriaceae Infections: A Propensity-Matched Real-World Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Definitions
2.2. Efficacy and Prognosis Analysis in Patients with PR-CRE Infection
2.3. Laboratory Studies
2.4. Antibiotic Strategies and Clinical Outcomes
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Antimicrobial Susceptibility Testing
3.3. Risk Factor Analysis for PR-CRE Infections
3.4. Treatment Efficacy in PR-CRE Patients
3.5. Twenty-Eight-Day In-Hospital Mortality Analysis for Patients with PR-CRE Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ainsworth, G.C.; Brown, A.M.; Brownlee, G. Aerosporin, an antibiotic produced by Bacillus aerosporus Greer. Nature 1947, 159, 263. [Google Scholar] [CrossRef] [PubMed]
- Hamel, M.; Rolain, J.M.; Baron, S.A. The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 2021, 9, 442. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Okpala, C.O.R.; Njoga, E.O.; Okafor, N.A.; Oguttu, J.W. Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics 2023, 12, 1117. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.; Manjunath, A.; Halami, P.M. Prevalence of polymyxin resistance through the food chain, the global crisis. J. Antibiot. 2022, 75, 185–198. [Google Scholar] [CrossRef]
- Babiker, A.; Clarke, L.G.; Saul, M.; Gealey, J.A.; Clancy, C.J.; Nguyen, M.H.; Shields, R.K. Changing Epidemiology and Decreased Mortality Associated With Carbapenem-resistant Gram-negative Bacteria, 2000–2017. Clin. Infect. Dis. 2021, 73, e4521–e4530. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes. Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Zhu, Y.; Jia, P.; Li, X.; Jia, X.; Yu, W.; Cui, Y.; Yang, R.; Xia, W.; et al. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg. Microbes Infect. 2022, 11, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Bogdanovich, T.; Adams-Haduch, J.M.; Tian, G.B.; Nguyen, M.H.; Kwak, E.J.; Muto, C.A.; Doi, Y. Colistin-resistant, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae belonging to the international epidemic clone ST258. Clin. Infect. Dis. 2011, 53, 373–376. [Google Scholar] [CrossRef]
- Samonis, G.; Matthaiou, D.K.; Kofteridis, D.; Maraki, S.; Falagas, M.E. In vitro susceptibility to various antibiotics of colistin-resistant gram-negative bacterial isolates in a general tertiary hospital in Crete, Greece. Clin. Infect. Dis. 2010, 50, 1689–1691. [Google Scholar] [CrossRef]
- Brink, A.J.; Coetzee, J.; Corcoran, C.; Clay, C.G.; Hari-Makkan, D.; Jacobson, R.K.; Richards, G.A.; Feldman, C.; Nutt, L.; van Greune, J.; et al. Emergence of OXA-48 and OXA-181 carbapenemases among Enterobacteriaceae in South Africa and evidence of in vivo selection of colistin resistance as a consequence of selective decontamination of the gastrointestinal tract. J. Clin. Microbiol. 2013, 51, 369–372. [Google Scholar] [CrossRef]
- Teo, J.Q.; Chang, C.W.; Leck, H.; Tang, C.Y.; Lee, S.J.; Cai, Y.; Ong, R.T.; Koh, T.H.; Tan, T.T.; Kwa, A.L. Risk factors and outcomes associated with the isolation of polymyxin B and carbapenem-resistant Enterobacteriaceae spp.: A case-control study. Int. J. Antimicrob. Agents 2019, 53, 657–662. [Google Scholar] [CrossRef]
- Capone, A.; Giannella, M.; Fortini, D.; Giordano, A.; Meledandri, M.; Ballardini, M.; Venditti, M.; Bordi, E.; Capozzi, D.; Balice, M.P.; et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin. Microbiol. Infect. 2013, 19, E23–E30. [Google Scholar] [CrossRef]
- Balkan, I.I.; Alkan, M.; Aygün, G.; Kuşkucu, M.; Ankaralı, H.; Karagöz, A.; Şen, S.; Arsu, H.Y.; Biçer, M.; Kaya, S.Y.; et al. Colistin resistance increases 28-day mortality in bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI: Malvern, PA, USA, 2020. [Google Scholar]
- da Silva, K.E.; Baker, S.; Croda, J.; Nguyen, T.N.; Boinett, C.J.; Barbosa, L.S.; Tetila, A.; Simionatto, S. Risk factors for polymyxin-resistant carbapenemase-producing Enterobacteriaceae in critically ill patients: An epidemiological and clinical study. Int. J. Antimicrob. Agents 2020, 55, 105882. [Google Scholar] [CrossRef]
- Freire, M.P.; de Oliveira Garcia, D.; Cury, A.P.; Francisco, G.R.; Dos Santos, N.F.; Spadão, F.; Bueno, M.F.; Camargo, C.H.; de Paula, F.J.; Rossi, F.; et al. The role of therapy with aminoglycoside in the outcomes of kidney transplant recipients infected with polymyxin- and carbapenem-resistant Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 755–765. [Google Scholar] [CrossRef]
- Xiao, C.; Li, X.; Huang, L.; Cao, H.; Han, L.; Ni, Y.; Xia, H.; Yang, Z. Prevalence and molecular characteristics of polymyxin-resistant Enterobacterales in a Chinese tertiary teaching hospital. Front. Cell. Infect. Microbiol. 2023, 13, 1118122. [Google Scholar] [CrossRef] [PubMed]
- CHINET Institute of Antibiotics HH, Fudan University. CHINET Data Cloud [EB/OL]. Available online: http://www.chinets.com (accessed on 30 March 2024).
- Zeng, M.; Xia, J.; Zong, Z.; Shi, Y.; Ni, Y.; Hu, F.; Chen, Y.; Zhuo, C.; Hu, B.; Lv, X.; et al. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. J. Microbiol. Immunol. Infect. 2023, 56, 653–671. [Google Scholar] [CrossRef]
- Cockx, M.; Gouwy, M.; Van Damme, J.; Struyf, S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: Key players in chronic respiratory diseases. Cell. Mol. Immunol. 2018, 15, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Huffnagle, G.B.; Dickson, R.P. The bacterial microbiota in inflammatory lung diseases. Clin. Immunol. 2015, 159, 177–182. [Google Scholar] [CrossRef]
- Rangelov, K.; Sethi, S. Role of infections. Clin. Chest Med. 2014, 35, 87–100. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y.; Yu, J.; Li, S.; Zhang, Y.; Wang, H.; Lai, X.; Liu, D.; Mao, L.; Luo, Y.; et al. Bacterial characteristics of carbapenem-resistant Enterobacteriaceae (CRE) colonized strains and their correlation with subsequent infection. BMC Infect. Dis. 2021, 21, 638. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Lee, Y.T.; Yang, Y.S.; Chen, C.T.; Chiu, C.H.; Yin, T.; Kuo, S.C.; Chen, T.L.; Lin, J.C.; Wang, F.D.; et al. Risk factors and outcome for colistin-resistant Acinetobacter nosocomialis bacteraemia in patients without previous colistin exposure. Clin. Microbiol. Infect. 2015, 21, 758–764. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Q.; Chen, T.; Chi, X.; Zhou, Y.; Fu, H.; Lu, P.; Xiong, L.; Xiao, T.; Zheng, B.; et al. Clinical, biological and genome-wide comparison of carbapenem-resistant Klebsiella pneumoniae with susceptibility transformation to polymyxin B during therapy. Clin. Microbiol. Infect. 2023, 29, 1336.e1–1336.e8. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Nelson, B.; Mcconville, T.H.; Giddins, M.J.; Green, D.A.; Stump, S.; Gomez-Simmonds, A.; Annavajhala, M.K.; Uhlemann, A.C. Emergence of Polymyxin Resistance in Clinical Klebsiella pneumoniae Through Diverse Genetic Adaptations: A Genomic, Retrospective Cohort Study. Clin. Infect. Dis. 2020, 70, 2084–2091. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Zhou, Q.; Onufrak, N.J.; Wirth, V.; Chen, K.; Wang, J.; Forrest, A.; Chan, H.K.; Li, J. Aerosolized Polymyxin B for Treatment of Respiratory Tract Infections: Determination of Pharmacokinetic-Pharmacodynamic Indices for Aerosolized Polymyxin B against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrob. Agents Chemother. 2017, 61, e00211–e00217. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Gharaibeh, M.H.; Alyafawi, D.A.; Elnasser, Z.A.; Lafi, S.Q.; Obeidat, H.M. Emergence of mcr-1 gene and carbapenemase-encoding genes among colistin-resistant Klebsiella pneumoniae clinical isolates in Jordan. J. Infect. Public Health 2022, 15, 922–929. [Google Scholar] [CrossRef]
- Teo, J.W.; Chew, K.L.; Lin, R.T. Transmissible colistin resistance encoded by mcr-1 detected in clinical Enterobacteriaceae isolates in Singapore. Emerg. Microbes. Infect. 2016, 5, e87. [Google Scholar] [CrossRef]
- Wong, S.C.; Tse, H.; Chen, J.H.; Cheng, V.C.; Ho, P.L.; Yuen, K.Y. Colistin-Resistant Enterobacteriaceae Carrying the mcr-1 Gene among Patients in Hong Kong. Emerg. Infect. Dis. 2016, 22, 1667–1669. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Plasmid-mediated colistin resistance: An additional antibiotic resistance menace. Clin. Microbiol. Infect. 2016, 22, 398–400. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, R.; Schwarz, S.; Wu, C.; Shen, J.; Walsh, T.R.; Wang, Y. Farm animals and aquaculture: Significant reservoirs of mobile colistin resistance genes. Environ. Microbiol. 2020, 22, 2469–2484. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Johnson, A.P. Transferable resistance to colistin: A new but old threat. J. Antimicrob. Chemother. 2016, 71, 2066–2070. [Google Scholar] [CrossRef] [PubMed]
- Usui, M.; Nozawa, Y.; Fukuda, A.; Sato, T.; Yamada, M.; Makita, K.; Tamura, Y. Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive. J. Glob. Antimicrob. Resist. 2021, 24, 383–386. [Google Scholar] [CrossRef]
- Walsh, T.R.; Wu, Y. China bans colistin as a feed additive for animals. Lancet Infect. Dis. 2016, 16, 1102–1103. [Google Scholar] [CrossRef] [PubMed]
- Zuleta, Z. Argentina: No More Colistin in Veterinary Products Poultry World. 2019. Available online: https://www.poultryworld.net/health-nutrition/argentina-no-more-colistin-in-veterinary-products/ (accessed on 18 April 2025).
- Shi, Y.; Hu, J.; Liu, P.; Wang, T.; Wang, H.; Liu, Y.; Cao, Q.; Zuo, X. Ceftazidime-Avibactam-Based Versus Tigecycline-Based Regimen for the Treatment of Carbapenem-Resistant Klebsiella pneumoniae-Induced Pneumonia in Critically Ill Patients. Infect. Dis. Ther. 2021, 10, 2721–2734. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Lowrie, K. Efficacy and safety of ceftazidime-avibactam compared to other antimicrobials for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae strains, a systematic review and meta-analysis. Microb. Pathog. 2023, 179, 106090. [Google Scholar] [CrossRef]
- Deresinski, S. Tigecycline Graduates to a Black Box. Infect. Dis. Alert 2013, 33. [Google Scholar]
- Liu, C.; Dong, N.; Chan, E.W.C.; Chen, S.; Zhang, R. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in China, 2016–2020. Lancet Infect. Dis. 2022, 22, 167–168. [Google Scholar] [CrossRef]
- Ma, J.; Song, X.; Li, M.; Yu, Z.; Cheng, W.; Yu, Z.; Zhang, W.; Zhang, Y.; Shen, A.; Sun, H.; et al. Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiol. Res. 2023, 266, 127249. [Google Scholar] [CrossRef]
- Raith, E.P.; Udy, A.A.; Bailey, M.; McGloughlin, S.; MacIsaac, C.; Bellomo, R.; Pilcher, D.V. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults with Suspected Infection Admitted to the Intensive Care Unit. JAMA 2017, 317, 290–300. [Google Scholar] [CrossRef]
- Pano Pardo, J.R.; Serrano Villar, S.; Ramos Ramos, J.C.; Pintado, V. Infections caused by carbapenemase-producing Enterobacteriaceae: Risk factors, clinical features and prognosis. Enferm. Infecc. Microbiol. Clin. 2014, 32 (Suppl. S4), 41–48. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, O.; Dogho, P.; Osadiaye, N. Carbapenem-resistant Enterobacteriaceae: A retrospective review of treatment and outcomes in a long-term acute care hospital. Am. J. Infect. Control 2020, 48, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Retamar, P.; Portillo, M.M.; López-Prieto, M.D.; Rodríguez-López, F.; De Cueto, M.; García, M.V.; Gómez, M.J.; Del Arco, A.; Muñoz, A.; Sánchez-Porto, A.; et al. Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: A propensity score-based analysis. Antimicrob. Agents Chemother. 2012, 56, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Lamy, B.; Sundqvist, M.; Idelevich, E.A. Bloodstream infections—Standard and progress in pathogen diagnostics. Clin. Microbiol. Infect. 2020, 26, 142–150. [Google Scholar] [CrossRef]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: A retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect. Dis. 2021, 21, 241–251. [Google Scholar] [CrossRef]
Variables | PR-CRE Group (n = 127) | PS-CRE Group (n = 127) | Statistical Values | p-Value |
---|---|---|---|---|
Demographic variables | ||||
Age | (55.70 ± 16.80) | (57.62 ± 16.10) | - | - |
Male | 70.08% (89/127) | 69.29% (88/127) | - | - |
Bacterial species | ||||
Klebsiella pneumoniae | 96.06% (122/127) | 96.06% (122/127) | - | - |
Escherichia coli | 2.36% (3/127) | 2.36% (3/127) | - | - |
Enterobacter cloacae | 1.57% (2/127) | 1.57% (2/127) | - | - |
Laboratory test results | ||||
White blood cell (WBC) (109/L) | 10.25 (6.64, 16.55) | 9.28 (6.74, 13.57) | Z = −0.635 | 0.525 |
Neutrophil count (109/L) | 8.09 (5.16, 14.08) | 7.92 (5.23, 11.54) | Z = 0.062 | 0.950 |
Procalcitonin (PCT) (ng/mL) | 1.11 (0.34, 3.45) | 0.79 (0.19, 4.11) | Z = −1.199 | 0.230 |
Interleukin-6 (IL-6) (pg/mL) | 80.24 (29.15, 288.60) | 76.10 (21.90, 301.90) | Z = −0.053 | 0.958 |
C-reactive protein (CRP) (mg/L) | 75.20 (25.70, 152.00) | 77.40 (33.80, 118.00) | Z = −0.516 | 0.606 |
CD3+ T lymphocyte (cell/µL) a | 378.5 (224.0, 599.0) | 414.5 (233.0, 633.0) | Z = 0.191 | 0.848 |
CD4+ T lymphocyte (cell/µL) a | 200.0 (124.0, 363.0) | 241.5 (116.5, 375.0) | Z = 0.702 | 0.483 |
CD8+ T lymphocyte (cell/µL) a | 137.0 (61.0, 276.0) | 151.0 (63.5, 261.5) | Z = −0.293 | 0.769 |
Lymphocyte count (cell/µL) b | 0.74 (0.48, 1.095) | 0.8 (0.47, 1.08) | Z = 0.272 | 0.786 |
Infection sites | ||||
Lung | 53.54% (68/127) | 59.06% (75/127) | χ2 = 0.784 | 0.376 |
Bloodstream | 18.9% (24/127) | 14.96% (19/127) | χ2 = 0.700 | 0.403 |
Urinary tract | 7.87% (10/127) | 8.66% (11/127) | χ2 = 0.052 | 0.820 |
Other sites c | 19.69% (25/127) | 17.32% (22/127) | χ2 = 0.235 | 0.628 |
28-day all-cause mortality d | 33.02% (35/106) | 35.78% (42/109) | χ2 = 0.711 | 0.399 |
Antimicrobial Agents | PR-CRE Group (n = 127) | PS-CRE Group (n = 127) | p-Value | ||||
---|---|---|---|---|---|---|---|
S | I | R | S | I | R | ||
% (No. of Susceptible Isolates/no. of Isolates Tested) | |||||||
Amikacin | 29.1 (37/127) | 1.6 (2/127) | 69.3 (88/127) | 23.6 (30/127) | 1.6 (2/127) | 74.8 (95/127) | 0.605 |
Ceftazidime | 0 | 0 | 100 (127/127) | 0 | 0 | 100 (127/127) | - |
Ceftazidime–avibactam | 88.9 (104/117) | 0 | 11.1 (13/117) | 81.5 (97/119) | 0 | 18.5 (22/119) | 0.111 |
Levofloxacin | 0 | 1.6 (2/127) | 98.4 (125/127) | 0.8 (1/127) | 0 | 99.2 (126/127) | 0.498 |
Meropenem | 1.6 (2/127) | 0 | 98.4 (125/127) | 0.8 (1/127) | 0.8 (1/127) | 98.4 (125/127) | 1.00 |
Minocycline | 9.5 (10/105) | 19 (20/105) | 71.5 (75/105) | 16.5 (17 /103) | 16.5 (17/103) | 67 (69/103) | 0.324 |
Co-trimoxazole | 24.4 (31/127) | 1.6 (2/127) | 74 (94/127) | 16.5 (21/127) | 3.1 (4/127) | 80.4 (102/127) | 0.23 |
Tetracycline | 7.9 (10/126) | 4 (5/126) | 88.1 (111/126) | 13.4 (17/127) | 0 | 86.6 (110/127) | 0.029 |
Tigecycline | 94.4 (117/124) | 4.8 (6/124) | 0.8 (1/124) | 94.5 (120/127) | 64.7 (6/127) | 0.8 (1/127) | 1.00 |
Piperacillin–tazobactam | 0 | 0.8 (1/127) | 99.2 (126/127) | 0 | 0 | 100 (127/127) | 1.0 |
Variables | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
PR-CRE Group (n = 127) | PS-CRE Group (n = 127) | p-Value | OR (95% CI) | p-Value | |
Vulnerability factors | |||||
Length of hospital stay | 34.0 (20.5, 53.0) | 23.0 (12.0, 31.0) | <0.001 | 0.99 (0.972, 1.008) | 0.268 |
Consciousness disorders | 82 | 86 | 0.596 | ||
Invasive procedure of sampling sites a | 116 | 106 | 0.059 | ||
Body Mass Index (kg/m2) | 22.86 (20.2, 25.95) | 23.48 (21.01, 25.64) | 0.373 | ||
Uncontrolled diabetes mellitus | 37 | 28 | 0.196 | ||
Chronic organic diseases at sampling sites b | 43 | 18 | <0.001 | 2.747 (1.303, 5.789) | 0.008 |
Immunosuppression | 36 | 15 | 0.001 | 2.298 (0.864, 6.112) | 0.096 |
Organ transplantation | 19 | 8 | 0.025 | 1.237 (0.358, 4.268) | 0.737 |
Intensive care unit | 102 | 94 | 0.232 | ||
Operation | 65 | 75 | 0.207 | ||
Antimicrobial exposure | |||||
Beta-lactamase inhibitors | 105 | 114 | 0.101 | ||
Cephalosporins | 38 | 41 | 0.547 | ||
Quinolones | 24 | 25 | 0.874 | ||
Aminoglycosides | 17 | 7 | 0.032 | 0.971 (0.280, 3.368) | 0.963 |
Co-trimoxazole | 12 | 4 | 0.039 | 0.673 (0.129, 3.514) | 0.639 |
Carbapenems | 99 | 80 | 0.009 | 0.981 (0.482, 1.997) | 0.958 |
Tigecycline | 72 | 36 | <0.001 | 1.114 (0.536, 2.314) | 0.773 |
Ceftazidime–avibactam | 10 | 1 | 0.006 | 1.995 (0.165, 24.159) | 0.587 |
Polymyxin | 67 | 6 | <0.001 | 19.203 (7.126, 51.752) | <0.001 |
Tigecycline Treatment Group b (n = 65) | Ceftazidime–Avibactam Treatment Group c (n = 28) | Combination Treatment Group d (n = 13) | p-Value | |
---|---|---|---|---|
Treatment efficacy rate (n = 106) a | 58.46% (38/65) | 71.43% (20/28) | 76.92% (10/13) | 0.289 |
SOFA score < 5.5 (n = 55) | 76.32% (29/38) | 90.91% (10/11) | 100.00% (6/6) | 0.342 |
SOFA score ≥ 5.5 (n = 51) | 33.33% (9/27) | 58.82% (10/17) | 57.14% (4/7) | 0.192 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Demographic variables | ||||
Male | 1.099 (0.538, 2.244) | 0.796 | ||
Age | 1.024 (1.003, 1.045) | 0.025 | 1.012 (0.988, 1.036) | 0.343 |
Infection sites | ||||
Lung | 0.941 (0.485, 1.825) | 0.856 | ||
Bloodstream | 2.298 (1.076, 4.911) | 0.032 | 1.842 (0.816, 4.158) | 0.141 |
Urinary tract | 0.041 (0, 4.038) | 0.173 | ||
Other sites | 1.014 (0.461, 2.233) | 0.972 | ||
Vulnerability factors | ||||
SOFA scores ≥ 5.5 | 8.756 (3.388, 22.632) | <0.001 | 6.718 (2.526, 17.866) | <0.001 |
aCCI ≥ 2.5 | 3.389 (1.195, 9.606) | 0.022 | 1.799 (0.576, 5.619) | 0.312 |
Uncontrolled diabetes mellitus | 1.324 (0.658, 2.663) | 0.431 | ||
Chronic kidney disease | 0.675 (0.295, 1.547) | 0.353 | ||
Chronic organic diseases of infection sites | 0.697 (0.341, 1.422) | 0.321 | ||
Immunosuppression | 0.949 (0.445, 2.026) | 0.893 | ||
Organ transplantation | 0.801 (0.311, 2.065) | 0.646 | ||
History of surgical procedures before infection | 0.823 (0.374, 1.813) | 0.629 | ||
Treatment | ||||
Tigecycline | 1.139 (0.574, 2.261) | 0.710 | ||
Ceftazidime–avibactam | 1.055 (0.507, 2.198) | 0.885 | ||
Tigecycline and ceftazidime–avibactam | 0.642 (0.197, 2.097) | 0.463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liang, M.; Luo, Y.; Qu, J. Risk Factors and Prognosis of Polymyxin- and Carbapenem-Resistant Enterobacteriaceae Infections: A Propensity-Matched Real-World Study. Microorganisms 2025, 13, 1256. https://doi.org/10.3390/microorganisms13061256
Xu J, Liang M, Luo Y, Qu J. Risk Factors and Prognosis of Polymyxin- and Carbapenem-Resistant Enterobacteriaceae Infections: A Propensity-Matched Real-World Study. Microorganisms. 2025; 13(6):1256. https://doi.org/10.3390/microorganisms13061256
Chicago/Turabian StyleXu, Jian, Mei Liang, Yanan Luo, and Junyan Qu. 2025. "Risk Factors and Prognosis of Polymyxin- and Carbapenem-Resistant Enterobacteriaceae Infections: A Propensity-Matched Real-World Study" Microorganisms 13, no. 6: 1256. https://doi.org/10.3390/microorganisms13061256
APA StyleXu, J., Liang, M., Luo, Y., & Qu, J. (2025). Risk Factors and Prognosis of Polymyxin- and Carbapenem-Resistant Enterobacteriaceae Infections: A Propensity-Matched Real-World Study. Microorganisms, 13(6), 1256. https://doi.org/10.3390/microorganisms13061256