Age-Dependent Composition and Diversity of the Gut Microbiome in Endangered Gibbon (Nomascus hainanus) Based on 16S rDNA Sequencing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Sample Collection
2.3. DNA Extraction and PCR Amplification
2.4. 16S rRNA Gene Sequencing
2.5. Processing of 16S rRNA Gene Sequencing Data
3. Results
3.1. Analysis of 16S rRNA Gene Sequencing Data
3.2. Dominant Bacterial Community Across Age Groups
3.3. Comparative Analysis of Microbial Diversity Across Age Groups
3.4. Comparative Analysis of Species Differentiation Across Age Groups
3.5. Functional Prediction Analysis of Gut Microbiome Across Age Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, P.F. Taxonomy and conservation status of gibbons in China. Acta Theriol. Sin. 2012, 32, 248–258. [Google Scholar] [CrossRef]
- Wang, Y.X.; Jiang, X.L.; Feng, Q. Distribution, Status and Conservation of Black-Crested Gibbon (Hylobates concolor) in China. Acta Anthropol. Sin. 2000, 19, 138–147. [Google Scholar]
- Geissmann, T.; Bleisch, W. Nomascus hainanus. The IUCN Red List of Threatened Species. 2020, e.T41643A17969392. Available online: https://www.iucnredlist.org/species/41643/17969392 (accessed on 22 July 2024).
- Li, Y.M.; Bi, Y.; Jin, K. Study on the Composition of Intestinal Microorganisms of Adult Male Hainan Gibbons by Metagenomics. Chin. J. Wildl. 2022, 43, 668–675. [Google Scholar] [CrossRef]
- Chen, S.H.; Yang, S.B.; Xu, H.; Li, Y.D.; Ding, Y.; Zang, R.G. Study on Edible Plants and Main Plant Population Structures in Distributed Area of Hylobates hainanus, Bawangling National Nature Reserve, Hainan Island, China. For. Environ. Sci. 2009, 25, 45–51. [Google Scholar] [CrossRef]
- Chan, B.P.L.; Lo, Y.F.P.; Mo, Y. New hope for the Hainan gibbon: Formation of a new group outside its known range. Oryx 2020, 54, 296. [Google Scholar] [CrossRef]
- Fan, K.; Xu, Y.; Liu, P.; Zang, R. Recovery of Logged Tropical Montane Rainforests as Potential Habitats for Hainan Gibbon. Forests 2021, 12, 711. [Google Scholar] [CrossRef]
- Zhang, M.; Fellowes, J.R.; Jiang, X.; Wang, W.; Chan, B.P.; Ren, G.; Zhu, J. Degradation of tropical forest in Hainan, China, 1991–2008: Conservation implications for Hainan Gibbon (Nomascus hainanus). Biol. Conserv. 2010, 143, 1397–1404. [Google Scholar] [CrossRef]
- Bryant, J.V. Developing a Conservation Evidence-Base for the Critically Endangered Hainan Gibbon (‘Nomascus hainanus’). Ph.D. Thesis, University College London, London, UK, 2014. Available online: http://discovery.ucl.ac.uk/1434514/ (accessed on 11 July 2024).
- Han, L. Study on Population Genetic Diversity of Hainan Gibbon (Nomascus hainanus). Master’s Thesis, Guizhou Normal University, Guiyang, China, 2019. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Z.; Zang, R.; Liu, S.; Long, W.; Chen, Y.; Feng, G. Food plant diversity in different-altitude habitats of Hainan gibbons (Nomascus hainanus): Implications for conservation. Glob. Ecol. Conserv. 2022, 38, e02204. [Google Scholar] [CrossRef]
- Xue, Q.; Zeng, X.; Du, Y.; Long, W. Reproductive Phenology and Climatic Drivers of Plant Species Used as Food by the Hainan Gibbon, Nomascus hainanus (Primates: Hylobatidae). Forests 2023, 14, 1732. [Google Scholar] [CrossRef]
- Du, R.P.; Wang, J.; Zhang, Z.D.; Xu, Y.; Long, W.X.; Feng, G. Prediction of suitable distribution of edible tree species for Hainan gibbons based on fruit types. Chin. J. Ecol. 2022, 41, 142–149. [Google Scholar] [CrossRef]
- Tang, W.L. Preliminary Analysis of the Dietary Source Plants and the Habitat Selection of Feeding and Sleeping Sites of Hainan Gibbons (Nomascus hainanus). Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, L.J.; Bordenstein, S.R. Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 2013, 11, e1001631. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Zhou, Z.; Shi, D.; Li, Z.; Li, S.; Xiao, Y. Age-Based Variations in the Gut Microbiome of the Shennongjia (Hubei) Golden Snub-Nosed Monkey (Rhinopithecus roxellana hubeiensis). BioMed Res. Int. 2021, 2021, 6667715. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Mahowald, M.A.; Rey, F.E.; Seedorf, H.; Turnbaugh, P.J.; Fulton, R.S.; Wollam, A.; Gordon, J.I. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA 2009, 106, 5859–5864. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, R.; Weersma, R.K.; Vich Vila, A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023, 15, 2201155. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Yang, L.; Jin, K. Comparative study on intestinal microbiome composition and function in young and adult Hainan gibbons (Nomascus hainanus). PeerJ. 2022, 10, e13527. [Google Scholar] [CrossRef]
- Jia, T.; Zhao, S.; Knott, K.; Li, X.; Liu, Y.; Li, Y.; Zhang, C. The gastrointestinal tract microbiota of northern white-cheeked gibbons (Nomascus leucogenys) varies with age and captive condition. Sci. Rep. 2018, 8, 3214. [Google Scholar] [CrossRef]
- Li, Q.; Fei, H.L.; Luo, Z.H.; Gao, S.M.; Wang, P.D.; Lan, L.Y.; Fan, P.F. Gut microbiome responds compositionally and functionally to the seasonal diet variations in wild gibbons. NPJ Biofilms Microbiomes 2023, 9, 21. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.D.; Sokol, H.; Doré, J.; Furet, J. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- Hooper, L.V. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004, 12, 129–134. [Google Scholar] [CrossRef]
- Sears, C.L. A dynamic partnership: Celebrating our gut flora. Anaerobe 2005, 11, 247–251. [Google Scholar] [CrossRef]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Vaiserman, A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.P.; McCormick, C.A.; Suen, G. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environ. Microbiol. 2017, 19, 3768–3783. [Google Scholar] [CrossRef] [PubMed]
- Jewell, K.A.; Scott, J.J.; Adams, S.M.; Suen, G. A phylogenetic analysis of the phylum Fibrobacteres. Syst. Appl. Microbiol. 2013, 36, 376–382. [Google Scholar] [CrossRef]
- Ley, R.E. Gut microbiota in 2015: Prevotella in the gut: Choose carefully. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 69–70. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef] [PubMed]
- White, B.A.; Lamed, R.; Bayer, E.A.; Flint, H.J. Biomass utilization by gut microbiomes. Annu. Rev. Microbiol. 2014, 68, 279–296. [Google Scholar] [CrossRef]
- Wu, F.; Guo, X.; Zhang, J.; Zhang, M.; Ou, Z.; Peng, Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp. Ther. Med. 2017, 14, 3122–3126. [Google Scholar] [CrossRef]
- Jung, D.H.; Yong, J.H.; Hwang, W.; Yoon, M.Y.; Yoon, S.S. An efficient system for intestinal on-site butyrate production using novel microbiome-derived esterases. J. Biol. Eng. 2021, 15, 9. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Sang, J.; Zhuang, D.; Zhang, T.; Wu, Q.; Yu, J.; Zhang, Z. Convergent and Divergent Age Patterning of Gut Microbiota Diversity in Humans and Nonhuman Primates. mSystems 2022, 7, e01512-21. [Google Scholar] [CrossRef]
- Reese, A.T.; Phillips, S.R.; Owens, L.A.; Venable, E.M.; Langergraber, K.E.; Machanda, Z.P.; Carmody, R.N. Age Patterning in Wild Chimpanzee Gut Microbiota Diversity Reveals Differences from Humans in Early Life. Curr. Biol. 2021, 31, 613–620.e3. [Google Scholar] [CrossRef] [PubMed]
- Faith, J.J.; Guruge, J.L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A.L.; Gordon, J.I. The long-term stability of the human gut microbiota. Science 2013, 341, 1237439. [Google Scholar] [CrossRef] [PubMed]
- Onyango, S.O.; Juma, J.; De Paepe, K.; Van de Wiele, T. Oral and Gut Microbial Carbohydrate-Active Enzymes Landscape in Health and Disease. Front. Microbiol. 2021, 12, 653448. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Y.; Zhu, X.; Cai, L.; Farooq, M.Z.; Yan, X. Bacteroides-derived isovaleric acid enhances mucosal immunity by facilitating intestinal IgA response in broilers. J. Anim. Sci. Biotechnol. 2023, 14, 4. [Google Scholar] [CrossRef]
- Wardman, J.F.; Bains, R.K.; Rahfeld, P.; Withers, S.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 2022, 20, 542–556. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Cerda, G.; A Schmitt, C.; Cramer, J.D.; Miller, M.E.B.; Leigh, S.R. Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome 2015, 3, 53. [Google Scholar] [CrossRef]
- Huang, H.; Pang, X.; Que, T.; Chen, P.; Li, S.; Wu, A.; Hu, Y. Antibiotic resistance profiles of gut microbiota across various primate species in Guangxi. Front. Microbiol. 2023, 14, 1309709. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, L.; Sun, T.; Guo, K.; Geng, S. Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients. BMC Microbiol. 2021, 21, 78. [Google Scholar] [CrossRef]
- Rastelli, M.; Cani, P.D.; Knauf, C. The Gut Microbiome Influences Host Endocrine Functions. Endocr. Rev. 2019, 40, 1271–1284. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Yin, Y.; Liu, Y.; Chen, Y.; Long, W.; Liao, C. Age-Dependent Composition and Diversity of the Gut Microbiome in Endangered Gibbon (Nomascus hainanus) Based on 16S rDNA Sequencing Analysis. Microorganisms 2025, 13, 1214. https://doi.org/10.3390/microorganisms13061214
Fan J, Yin Y, Liu Y, Chen Y, Long W, Liao C. Age-Dependent Composition and Diversity of the Gut Microbiome in Endangered Gibbon (Nomascus hainanus) Based on 16S rDNA Sequencing Analysis. Microorganisms. 2025; 13(6):1214. https://doi.org/10.3390/microorganisms13061214
Chicago/Turabian StyleFan, Jieli, Yanan Yin, Yanhui Liu, Yuan Chen, Wenxing Long, and Chenghong Liao. 2025. "Age-Dependent Composition and Diversity of the Gut Microbiome in Endangered Gibbon (Nomascus hainanus) Based on 16S rDNA Sequencing Analysis" Microorganisms 13, no. 6: 1214. https://doi.org/10.3390/microorganisms13061214
APA StyleFan, J., Yin, Y., Liu, Y., Chen, Y., Long, W., & Liao, C. (2025). Age-Dependent Composition and Diversity of the Gut Microbiome in Endangered Gibbon (Nomascus hainanus) Based on 16S rDNA Sequencing Analysis. Microorganisms, 13(6), 1214. https://doi.org/10.3390/microorganisms13061214