Salvage Therapy Against Infections of MDR Acinetobacter baumannii Achieved by Synergistic Effect of Colistin-Containing Therapies—Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Bacterial Isolates and Antimicrobial
2.3. MIC Determination
2.4. Checkerboard Method—Evaluation of Activity for Combinations of Antibiotics
2.5. Fractional Inhibitory Concentration Index
3. Results
3.1. Minimal Inhibitory Concentrations of the Applied Antimicrobials
3.2. Changes in MIC Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CoR-AB | colistin-resistant A. baumannii |
CRAB | carbapenem-resistant A. baumannii |
FICI | Fractional Inhibitory Concentration Index |
MDR | Multi-drug resistant |
MDR-AB | Multi-drug-resistant A. baumannii |
MHB | Mueller Hinton Broth |
MIC | minimal inhibitory concentration |
NCU CM | Nicolaus Copernicus University Collegium Medicum |
WHO | World Health Organization |
References
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zeng, M.; Xu, J.; Zhou, H.; Gu, B.; Li, Z.; Jin, H.; Wang, X.; Zhang, W.; Hu, Y.; et al. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006–2016. EBioMedicine 2019, 42, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Böhm, R.; Holtmann-Klenner, C.; Korn, L.; Santana, A.P.; Betsch, C. Behavioral determinants of antibiotic resistance: The role of social information. Appl. Psychol. Health Well Being 2022, 14, 757–775. [Google Scholar] [CrossRef]
- World Health Organization. 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. Available online: https://iris.who.int/bitstream/handle/10665/354545/9789240047655-eng.pdf?sequence=1 (accessed on 17 March 2025).
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef]
- Zhu, Y.; Monsel, A.; Roberts, J.A.; Pontikis, K.; Mimoz, O.; Rello, J.; Qu, J.; Rouby, J.J.; on behalf of the European Investigator Network for Nebulized Antibiotics in Ventilator-Associated Pneumonia (ENAVAP). Nebulized Colistin in Ventilator-Associated Pneumonia and Tracheobronchitis: Historical Background, Pharmacokinetics and Perspectives. Microorganisms 2021, 9, 1154. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, E.S. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect. Chemother. 2024, 56, 171–187. [Google Scholar] [CrossRef]
- Papazachariou, A.; Tziolos, R.-N.; Karakonstantis, S.; Ioannou, P.; Samonis, G.; Kofteridis, D.P. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics 2024, 13, 423. [Google Scholar] [CrossRef]
- Abou Fayad, A.; Haraoui, L.-P.; Sleiman, A.; Hussein, H.; Grenier, F.; Derbaj, G.; Itani, D.; Iweir, S.; Sherri, N.; Bazzi, W.; et al. Molecular Characteristics of Colistin Resistance in Acinetobacter baumannii and the Activity of Antimicrobial Combination Therapy in a Tertiary Care Medical Center in Lebanon. Microorganisms 2024, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Halim, J.; Carr, R.A.; Fliorent, R.; Jonnalagadda, K.; Kurbonnazarova, M.; Kaur, M.; Millstein, I.; Carabetta, V.J. Combinations of Antibiotics Effective against Extensively- and Pandrug-Resistant Acinetobacter baumannii Patient Isolates. Microorganisms 2024, 12, 1353. [Google Scholar] [CrossRef]
- Garbusińska, A.; Szliszka, E. Aktywność leków przeciwdrobnoustrojowych zastosowanych w kombinacjach wobec pałeczek Gram-ujemnych w badaniach in vitro. Postępy Nauk. Med. 2017, 8, 427–433. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Seok, H.; Choi, W.S.; Lee, S.; Moon, C.; Park, D.W.; Song, J.Y.; Cheong, H.J.; Kim, J.; Kim, J.Y.; Park, M.N.; et al. What is the optimal antibiotic treatment strategy for carbapenem-resistant Acinetobacter baumannii (CRAB)? A multicentre study in Korea. J. Glob. Antimicrob. Resist. 2021, 24, 429–439. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Poulakou, G.; Tsiakos, K.; Chatzimichail, M.; Papamichalis, P.; Katsiaflaka, A.; Oikonomou, K.; Katsioulis, A.; Palli, E.; Komnos, A. ICU-Associated Gram-Negative Bloodstream Infection: Risk Factors Affecting the Outcome Following the Emergence of Colistin-Resistant Isolates in a Regional Greek Hospital. Antibiotics 2022, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0, Valid from 2024-01-01. Available online: https://www.megumed.de/wp-content/uploads/2024/02/v_14.0_Breakpoint_Tables.pdf (accessed on 17 March 2025).
- Oliva, A.; Garzoli, S.; De Angelis, M.; Marzuillo, C.; Vullo, V.; Mastroianni, C.M.; Ragno, R. In-Vitro Evaluation of Different Antimicrobial Combinations with and without Colistin Against Carbapenem-Resistant Acinetobacter baumannii. Molecules 2019, 24, 886. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Ioannou, P.; Samonis, G.; Kofteridis, D.P. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter baumannii. Antibiotics 2021, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Mutakabbir, J.C.; Yim, J.; Nguyen, L.; Maassen, P.T.; Stamper, K.; Shiekh, Z.; Kebriaei, R.; Shields, R.K.; Castanheira, M.; Kaye, K.S.; et al. In Vitro Synergy of Colistin in Combination with Meropenem or Tigecycline against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics 2021, 10, 880. [Google Scholar] [CrossRef]
- Mantzana, P.; Protonotariou, E.; Kassomenaki, A.; Arhonti, M.; Meletis, G.; Vasilaki, O.; Kagkalou, G.; Skoura, L. In vitro Synergistic Activity of Colistin-Based Antimicrobial Combinations against Extensively Drug-Resistant (XDR) Acinetobacter baumannii from a Tertiary Hospital in Greece. Med. Sci. Forum 2022, 12, 37. [Google Scholar] [CrossRef]
- Mantzana, P.; Protonotariou, E.; Kassomenaki, A.; Meletis, G.; Tychala, A.; Keskilidou, E.; Arhonti, M.; Katsanou, C.; Daviti, A.; Vasilaki, O.; et al. In Vitro Synergistic Activity of Antimicrobial Combinations against Carbapenem- and Colistin-Resistant Acinetobacter baumannii and Klebsiella pneumoniae. Antibiotics 2023, 12, 93. [Google Scholar] [CrossRef]
- Palombo, M.; Bovo, F.; Amadesi, S.; Gaibani, P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics 2023, 12, 858. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Stegger, M.; Moodley, A.; Yang, M. Drug Combination of Ciprofloxacin and Polymyxin B for the Treatment of Multidrug–Resistant Acinetobacter baumannii Infections: A Drug Pair Limiting the Development of Resistance. Pharmaceutics 2023, 15, 720. [Google Scholar] [CrossRef] [PubMed]
- Luna-De-Alba, A.; Flores-Treviño, S.; Camacho-Ortiz, A.; Contreras-Cordero, J.F.; Bocanegra-Ibarias, P. Genetic Characterization of Multidrug-Resistant Acinetobacter baumannii and Synergy Assessment of Antimicrobial Combinations. Antibiotics 2024, 13, 1079. [Google Scholar] [CrossRef]
- Lewis, R.E.; Palombo, M.; Diani, E.; Secci, B.; Gibellini, D.; Gaibani, P. Synergistic Activity of Cefiderocol in Combination with Avibactam, Sulbactam or Tazobactam against Carbapenem-Resistant Gram-Negative Bacteria. Cells 2024, 13, 1315. [Google Scholar] [CrossRef]
- Scudeller, L.; Righi, E.; Chiamenti, M.; Bragantini, D.; Menchinelli, G.; Cattaneo, P.; Giske, C.G.; Lodise, T.; Sanguinetti, M.; Piddock, L.J.V.; et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int. J. Antimicrob. Agents 2021, 57, 106344. [Google Scholar] [CrossRef] [PubMed]
- Mehrad, B.; Clark, N.M.; Zhanel, G.G.; Lynch, J.P., 3rd. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest 2015, 147, 1413–1421. [Google Scholar] [CrossRef]
- Liu, H.; Hu, D.; Wang, D.; Wu, H.; Pan, Y.; Chen, X.; Qi, L.; Li, L.; Liang, R. In vitro analysis of synergistic combination of polymyxin B with 12 other antibiotics against MDR Acinetobacter baumannii isolated from a Chinese tertiary hospital. J. Antibiot. 2023, 76, 20–26. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Xiong, L.; Wang, X.; Zhou, Y.; Chi, X.; Chen, T.; Fu, H.; Luo, Q.; Xiao, Y. Comparison of in vitro synergy between polymyxin B or colistin in combination with 16 antimicrobial agents against multidrug-resistant Acinetobacter baumannii isolates. J. Microbiol. Immunol. Infect. 2024, 57, 300–308. [Google Scholar] [CrossRef]
- Shafiee, F.; Naji Esfahani, S.S.; Hakamifard, A.; Soltani, R. In vitro synergistic effect of colistin and ampicillin/sulbactam with several antibiotics against clinical strains of multi-drug resistant Acinetobacter baumannii. Indian J. Med. Microbiol. 2021, 39, 358–362. [Google Scholar] [CrossRef]
- Marino, A.; Augello, E.; Stracquadanio, S.; Bellanca, C.M.; Cosentino, F.; Spampinato, S.; Cantarella, G.; Bernardini, R.; Stefani, S.; Cacopardo, B.; et al. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int. J. Mol. Sci. 2024, 25, 6814. [Google Scholar] [CrossRef]
- Rodjun, V.; Houngsaitong, J.; Montakantikul, P.; Paiboonvong, T.; Khuntayaporn, P.; Yanyongchaikit, P.; Sriyant, P. In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods. Antibiotics 2020, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Varache, M.; Rizzo, S.; Sayers, E.J.; Newbury, L.; Mason, A.; Liao, C.T.; Chiron, E.; Bourdiec, N.; Jones, A.; Fraser, D.J.; et al. Dextrin conjugation to colistin inhibits its toxicity, cellular uptake and acute kidney injury in vivo. RSC Pharm. 2024, 1, 68–79. [Google Scholar] [CrossRef]
- Gaudereto, J.J.; Neto, L.V.P.; Leite, G.C.; Espinoza, E.P.S.; Martins, R.C.R.; Villas Boa Prado, G.; Rossi, F.; Guimarães, T.; Levin, A.S.; Costa, S.F. Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria. BMC Microbiol. 2020, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- Quraini, M.A.; Jabri, Z.A.; Sami, H.; Mahindroo, J.; Taneja, N.; Muharrmi, Z.A.; Busaidi, I.A.; Rizvi, M. Exploring Synergistic Combinations in Extended and Pan-Drug Resistant (XDR and PDR) Whole Genome Sequenced Acinetobacter baumannii. Microorganisms 2023, 11, 1409. [Google Scholar] [CrossRef] [PubMed]
- Wences, M.; Wolf, E.R.; Li, C.; Singh, N.; Bah, N.; Tan, X.; Huang, Y.; Bulman, Z.P. Combatting Planktonic and Biofilm Populations of Carbapenem-Resistant Acinetobacter baumannii with Polymyxin-Based Combinations. Antibiotics 2022, 11, 959. [Google Scholar] [CrossRef]
- Black, C.; Al Mahmud, H.; Howle, V.; Wilson, S.; Smith, A.C.; Wakeman, C.A. Development of a Polymicrobial Checkerboard Assay as a Tool for Determining Combinatorial Antibiotic Effectiveness in Polymicrobial Communities. Antibiotics 2023, 12, 1207. [Google Scholar] [CrossRef]
Antibiotic | ABA25 Strain | ABA34 Strain | ||
---|---|---|---|---|
MIC [μg/mL] | Antibiotic Sensitivity | MIC [μg/mL] | Antibiotic Sensitivity | |
amikacin | 1 | sensitive | 1 | sensitive |
gentamicin | 4 | sensitive | 4 | sensitive |
ampicillin/sulbactam | 16 | - | 32 | - |
tigecycline | 2 | - | 1 | - |
imipenem | 32 | resistant | 32 | resistant |
meropenem | 128 | resistant | 256 | resistant |
colistin | 128 | resistant | 8 | resistant |
Drug in Combination with Colistin | Number (%) of Combinations | Lowest FICI | |||
---|---|---|---|---|---|
Antagonistic | Indifferent | Additive | Synergistic | ||
amikacin | 60 (62.5%) | 26 (27.08%) | 4 (4.17%) | 0 (0%) | 0.5625 |
gentamicin | 36 (37.5%) | 30 (31.25%) | 4 (4.17%) | 0 (0%) | 0.6250 |
ampicillin/sulbactam | 12 (12.5%) | 33 (34.38%) | 13 (13.54%) | 12 (12.5%) | 0.1563 |
tigecycline | 48 (50%) | 27 (28.13%) | 9 (9.38%) | 0 (0%) | 0.5020 |
imipenem | 0 (0%) | 36 (37.5%) | 12 (12.5%) | 8 (8.33%) | 0.1875 |
meropenem | 0 (0%) | 16 (16.67%) | 14 (14.58%) | 14 (14.58%) | 0.1563 |
Drug in Combination with Colistin | Number (%) of Combinations | Lowest FICI | |||
---|---|---|---|---|---|
Antagonistic | Indifferent | Additive | Synergistic | ||
amikacin | 72 (75%) | 18 (18.75%) | 1 (1.04%) | 0 (0%) | 1.0000 |
gentamicin | 56 (58.33%) | 17 (17.71%) | 1 (1.04%) | 0 (0%) | 1.0000 |
ampicillin/sulbactam | 32 (33.33%) | 25 (26.04%) | 6 (6.25%) | 4 (4.17%) | 0.3125 |
tigecycline | 70 (72.92%) | 16 (16.67%) | 0 (0%) | 0 (0%) | 1.0160 |
imipenem | 27 (28.13%) | 16 (16.67%) | 0 (0%) | 0 (0%) | 1.0630 |
meropenem | 29 (30.21%) | 12 (12.5%) | 1 (1.04%) | 0 (0%) | 0.7500 |
Antibiotics Combination | Colistin MIC Decrease [μg/mL] | Other Antibiotic MIC Decrease [μg/mL] |
---|---|---|
colistin + ampicillin/sulbactam | 128 → 1/(128-fold) | 16 → 1/(16-fold) |
colistin + imipenem | 128 → 4/(32-fold) | 32 → 2/(16-fold) |
colistin + meropenem | 128 → 2/(64-fold) | 128 → 2/(64-fold) |
Antibiotics Combination | Colistin MIC Decrease [μg/mL] | Other Antibiotic MIC Decrease [μg/mL] |
---|---|---|
colistin + ampicillin/sulbactam | 8 → 1/(8-fold) | 32 → 2/(16-fold) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kmiecikowski, P.; Gabriel, A.; Depka, D.; Bogiel, T. Salvage Therapy Against Infections of MDR Acinetobacter baumannii Achieved by Synergistic Effect of Colistin-Containing Therapies—Preliminary Study. Microorganisms 2025, 13, 1206. https://doi.org/10.3390/microorganisms13061206
Kmiecikowski P, Gabriel A, Depka D, Bogiel T. Salvage Therapy Against Infections of MDR Acinetobacter baumannii Achieved by Synergistic Effect of Colistin-Containing Therapies—Preliminary Study. Microorganisms. 2025; 13(6):1206. https://doi.org/10.3390/microorganisms13061206
Chicago/Turabian StyleKmiecikowski, Paweł, Aniela Gabriel, Dagmara Depka, and Tomasz Bogiel. 2025. "Salvage Therapy Against Infections of MDR Acinetobacter baumannii Achieved by Synergistic Effect of Colistin-Containing Therapies—Preliminary Study" Microorganisms 13, no. 6: 1206. https://doi.org/10.3390/microorganisms13061206
APA StyleKmiecikowski, P., Gabriel, A., Depka, D., & Bogiel, T. (2025). Salvage Therapy Against Infections of MDR Acinetobacter baumannii Achieved by Synergistic Effect of Colistin-Containing Therapies—Preliminary Study. Microorganisms, 13(6), 1206. https://doi.org/10.3390/microorganisms13061206