Intercropping of Oats with Vetch Conducts to Improve Soil Bacteriome Diversity and Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description, Experimental Design and Soil Sampling
2.2. Soil Nutrient Analyses
2.3. High-Throughput Amplicon Sequencing
2.3.1. DNA Extraction
2.3.2. Alpha Diversity
2.3.3. Beta Diversity
2.3.4. Data Availability
2.4. Soil Data Analysis
3. Results
3.1. Soil Physicochemical Parameters
3.2. High-Throughput Amplicon Sequencing of Soil Bacteriome
3.2.1. Sequencing Results
3.2.2. Bacterial Diversity and Abundance Curves
3.2.3. Ternary Plot and Venn Diagram
3.2.4. Alpha Diversity
3.2.5. UniFrac-Weighted and Unweighted Analyses
3.2.6. Unweighted Group Pair Method with Arithmetic Mean (UPGMA)
3.2.7. Principal Component Analysis (PCA)
3.2.8. Principal Coordinate Analysis (PCoA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebru, H. A review on the comparative advantages of intercropping to mono-cropping system. J. Biol. Agric. Healthc. 2015, 5, 1–13. [Google Scholar]
- Maitra, S.; Palai, J.B.; Manasa, P.; Kumar, D.P. Potential of intercropping system in sustaining crop productivity. Int. J. Agric. Environ. Biotechnol. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Anil, L.; Park, J.; Phipps, R.H.; Miller, F.A. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 1998, 53, 301–317. [Google Scholar] [CrossRef]
- Georgieva, T.; Zorovski, P. The content of non-essential amino acids in the grains of winter and spring varieties of oats (Avena sativa L.) under the conditions of Central Southern Bulgaria. AGRO-Knowl. J. 2013, 14, 105–113. [Google Scholar]
- Al-Fredan, M.A. Nitrogen fixing legumes in the plant communities. Am. J. Environ. Sci. 2011, 7, 166. [Google Scholar] [CrossRef]
- Abaye, A.O.; Basden, T.J.; Byers, R.A.; Clark, E.; Cropper, J.B.; Curran, W.S.; Vough, L.R. Forage Production for Pasture-Based Livestock Production. In Chapter 1: Plant Morphology and Its Effects on Management; Rayburn, E.B., Ed.; NRAES 172: Ithaca, NY, USA, 2006; ISBN 1-933395-00-1. [Google Scholar]
- Georgieva, N.; Nikolova, I.; Naydenova, Y. Nutritive value of forage of vetch cultivars (Vicia sativa L., Vicia villosa Roth.). Banat. J. Biotechnol. 2016, 7, 5. [Google Scholar] [CrossRef]
- Saleem, M.; Pervaiz, Z.H.; Contreras, J.; Lindenberger, J.H.; Hupp, B.M.; Chen, D.; Twigg, P. Cover crop diversity improves multiple soil properties via altering root architectural traits. Rhizosphere 2020, 16, 100248. [Google Scholar] [CrossRef]
- Wang, B.; Deng, J.; Wang, T.; Ni, W.; Feng, Q.; Lan, J. Effect of Seeding Options on Interspecific Competition in Oat (Avena sativa L.)—Common Vetch (Vicia sativa L.) Forage Crops. Agronomy 2022, 12, 3119. [Google Scholar] [CrossRef]
- Pużyńska, K.; Synowiec, A.; Pużyński, S.; Bocianowski, J.; Klima, K.; Lepiarczyk, A. The Performance of Oat-Vetch Mixtures in Organic and Conventional Farming Systems. Agriculture 2021, 11, 332. [Google Scholar] [CrossRef]
- Harel, M.; Weiss, G.; Lieman-Hurwitz, J.; Gun, J.; Lev, O.; Lebendiker, M.; Kaplan, A. Interactions between S cenedesmus and M icrocystis may be used to clarify the role of secondary metabolites. Environ. Microbiol. Rep. 2013, 5, 97–104. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Erol, A.; Kaplan, M.-T.; Kizilsimsek, M. Oats (Avena sativa)—Common vetch (Vicia sativa) mixtures grown on a low-input basis for a sustainable agriculture. TG Trop. Grassl. 2009, 43, 191. [Google Scholar]
- Marković, J.; Vasic, T.; Terzic, D.; Štrbanović, R.; Knežević, J.; Blagojević, M.; Lazarević, Đ. Protein and carbohydrate fractions of common vetch-oat mixtures depending on stage of growth and seeding rate in the mixtures. Emir. J. Food Agric. 2020, 32, 890–896. [Google Scholar] [CrossRef]
- Husein, N.; Diriba, L. Cluster based Oat-vetch mixtures for forage production in Dodola district of West Arsi Zone, Ethiopia. J. Agric. Sc. Food Technol. 2021, 7, 359–363. [Google Scholar]
- Ijaz, S.; Rasheed, M. Winter forage quality of oats (Avena sativa), barley (Hordeum vulgare) and vetch (Vicia sativa) in pure stand and cereal legume mixture. Pak. J. Agric. Res. 2015, 28, 1–10. [Google Scholar]
- Yong, Y.; Shahrajabian, M.H. Effects of intercropping and rotation on forage yield and quality of oat and common vetch in Jilin province, China. Res. Crop Ecophysiol. 2017, 12, 9–23. [Google Scholar]
- Dhakal, B.; Poudel, N.; Shah, B. Effect of Different Irrigation Patterns on Oat-Vetch Mixed Forage Production System in Rasuwa, Mid Hills of Nepal. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 210–220. [Google Scholar] [CrossRef]
- Brader, G.; Compant, S.; Vescio, K.; Mitter, B.; Trognitz, F.; Ma, L.J.; Sessitsch, A. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 2017, 55, 61–83. [Google Scholar] [CrossRef]
- Marcheva, M.; Petkova, M.; Slavova, V.; Popov, V. Positive Effect of Camelina Intercropping with Legumes on Soil Microbial Diversity by Applying NGS Analysis and Mobile Fluorescence Spectroscopy. Appl. Sci. 2024, 14, 9046. [Google Scholar] [CrossRef]
- Naliukhin, A.N.; Khamitova, S.M.; Glinushkin, A.P.; Avdeev, Y.M.; Snetilova, V.S.; Laktionov, Y.V.; Surov, V.V.; Siluyanova, O.V.; Belozerov, D.A. Changes in the Metagenome of Prokaryotic Community as an Indicator of Fertility of Arable Soddy-Podzolic Soils upon Fertilizer Application. Eurasian Soil Sci. 2018, 51, 321–326. [Google Scholar] [CrossRef]
- Keeny, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis; Part 2, Chemical and microbiological methods; Page, A.L., Miller, D.R., Keeny, D.R., Eds.; Agronomy: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 49–121. [Google Scholar]
- Fernandes, M.-V.; Indiati, R.; Coutinho, J.; Buondonno, A. Soil properties affecting phosphorus extraction from Portuguese soils by conventional and innovative methods. Commun. Soil Sci. Plant Anal. 1999, 30, 921–936. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.H.; Gomez, K.A. Laboratory Manual for Physiological Studies of Rice; International Rice Research Institute (IRRI): Manila, Philippines, 1976; pp. 27–34. Available online: https://www.yumpu.com/en/document/view/34129573/laboratory-manual-for-physiological-studies-of-rice-irri-books (accessed on 21 April 2025).
- Beltrame, K.K.; Souza, A.M.; Coelho, M.R.; Winkler, T.C.B.; Souza, W.E.; Valderrama, P. Soil Organic Carbon Determination Using NIRS: Evaluation of Dichromate Oxidation and Dry Combustion Analysis as Reference Methods in Multivariate Calibration. J. Braz. Chem. Soc. 2016, 27, 1527–1532. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis. Part 3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; ASA and SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Chiodi, C.; Moro, M.; Squartini, A.; Concheri, G.; Occhi, F.; Fornasier, F.; Stevanato, P. High-throughput isolation of nucleic acids from soil. Soil Syst. 2019, 4, 3. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, P.C. Next generation sequencing-based emerging trends in molecular biology of gastric cancer. Am. J. Cancer Res. 2018, 8, 207. [Google Scholar]
- Krstić Tomić, T.; Atanasković, I.; Nikolić, I.; Joković, N.; Stević, T.; Stanković, S.; Lozo, J. Culture-dependent and metabarcoding characterization of the sugar beet (Beta vulgaris L.) microbiome for high-yield isolation of bacteria with plant growth-promoting traits. Microorganisms 2023, 11, 1538. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, Y.; Qin, T.; Ma, J.; Liu, J.; Zou, J.; Huang, H.; Zhong, X.; Yang, M. Developmental stage variation in the gut microbiome of South China tigers. Front. Microbiol. 2022, 13, 962614. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef]
- Feng, K.; Costa, J.; Edwards, J.S. Next-generation sequencing library construction on a surface. BMC Genom. 2018, 19, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, X.; Jiang, L.; Guo, L.; Chen, Y.; Yang, S.; Liu, L. Partitioning of beta-diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecol. Evol. 2022, 12, e9016. [Google Scholar] [CrossRef] [PubMed]
- Avershina, E.; Frisli, T.; Rudi, K. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data. Microbes Environ. 2013, 28, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef]
- White, J.R.; Nagarajan, N.; Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009, 5, e1000352. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.-L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef]
- Schloss, P.D. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE 2009, 4, e8230. [Google Scholar] [CrossRef]
- Kandeler, E.; Marschner, P.; Tscherko, D.; Gahoonia, T.S.; Nielsen, N.E. Microbial community composition and functional diversity in the rhizosphere of maize. Plant Soil 2002, 238, 301–312. [Google Scholar] [CrossRef]
- Wu, X.; Wu, W.; Yang, H. Effects of Legume–Grass Ratio on C and Nutrients of Root and Soil in Common Vetch–Oat Mixture under Fertilization. Agronomy 2022, 12, 1936. [Google Scholar] [CrossRef]
- Yao, Y.M.; Ye, L.M.; Tang, H.J.; Tang, P.Q.; Wang, D.Y.; Si, H.Q.; Hu, W.J.; Eric, V.R. Cropland soil organic matter content change in Northeast China, 1985–2005. Open Geosci. 2015, 7, 234–243. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L.; Janssen, B.H.; van der Werf, W. Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 2015, 391, 399–411. [Google Scholar] [CrossRef]
- Li, Q.; Yu, P.; Li, G.; Zhou, D. Grass-legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland. Soil Till. Res. 2016, 175, 23–31. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, C.; Wei, L.; Wang, S.; Deng, Y.; Ling, W.; Xiang, W.; Kuzyakov, Y.; Zhu, Z.; Ge, T. Microbial mechanisms of organic matter mineralization induced by straw in biochar-amended paddy soil. Biochar 2024, 6, 18. [Google Scholar] [CrossRef]
- Daquiado, A.R.; Kuppusamy, S.; Kim, S.Y.; Kim, J.H.; Yoon, Y.E.; Kim, P.J.; Lee, Y.B. Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Appl. Soil Ecol. 2016, 108, 84–91. [Google Scholar] [CrossRef]
- Zverev, A.O.; Kurchak, O.N.; Orlova, O.V.; Onishchuk, O.P.; Kichko, A.A.; Eregin, A.V.; Naliukhin, A.N.; Pinaev, A.G.; Andronov, E.E. Dynamic of the Soil Microbiota in Short-Term Crop Rotation. Life 2023, 13, 400. [Google Scholar] [CrossRef]
- Naliukhin, A.N.; Zavalin, A.A.; Siluyanova, O.V.; Belozerov, D.A. Influence of biofertilizers and liming on vetch–oat mixture productivity and change in sod-podzolic soil microbocenosis. Russ. Agric. Sci. 2018, 44, 58–63. [Google Scholar] [CrossRef]
- Qiao, Y.J.; Li, Z.H.; Wang, X.; Zhu, B.; Hu, Y.G.; Zeng, Z.H. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ. 2012, 58, 174–180. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Richer, E.; Clevenger, W.B.; Davis, M.; Lindsey, L.E. Effect of mono, relay-, and double-crop systems on yield and profitability. Agron. J. 2021, 113, 1747–1757. [Google Scholar] [CrossRef]
- Xiao, X.; Han, L.; Chen, H.; Wang, J.; Zhang, Y.; Hu, A. Intercropping enhances microbial community diversity and ecosystem functioning in maize fields. Front. Microbiol. 2023, 13, 1084452. [Google Scholar] [CrossRef] [PubMed]
- Janati, W.; Mikou, K.; El Ghadraoui, L.; Errachidi, F. Growth stimulation of two legumes (Vicia faba and Pisum sativum) using phosphate-solubilizing bacteria inoculation. Front. Microbiol. 2023, 14, 1212702. [Google Scholar] [CrossRef]
- Yang, F.; Liao, D.; Wu, X.; Gao, R.; Fan, Y.; Raza, M.A.; Yang, W. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017, 203, 16–23. [Google Scholar] [CrossRef]
- Chakraborty, J.; Palit, K.; Das, S. Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment—A case study on north-eastern coast of Bay of Bengal, India. In Microbial Biodegradation and Bioremediation, 2nd ed.; Das, S., Dash, H.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 81–107. ISBN 9780323854559. [Google Scholar] [CrossRef]
- Krzanowski, W. Principles of multivariate analysis. In A User’s Perspective; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Wei, X.; Fu, T.; He, G.; Zhong, Z.; Yang, M.; Lou, F.; He, T. Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage (Brassica campestris) grown in Karst area. Front. Microbiol. 2023, 14, 1241436. [Google Scholar] [CrossRef]
- Liu, R.; Yang, L.; Zhang, J.; Zhou, G.; Chang, D.; Chai, Q.; Cao, W. Maize and legume intercropping enhanced crop growth and soil carbon and nutrient cycling through regulating soil enzyme activities. Eur. J. Agron. 2024, 159, 127237. [Google Scholar] [CrossRef]
- Liszka, M.J.; Clark, M.E.; Schneider, E.; Clark, D.S. Nature versus nurture: Developing enzymes that function under extreme conditions. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 77–102. [Google Scholar] [CrossRef]
- Mukhtar, S.; Mehnaz, S.; Mirza, M.S.; Malik, K.A. Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola) for production of hydrolytic enzymes. Braz. J. Microbiol. 2019, 50, 85–97. [Google Scholar] [CrossRef]
- Yadav, S.K.; Srivastava, C.; Sabtharishi, S. Phosphine resistance and antioxidant enzyme activity in Trogoderma granarium Everts. J. Stored Prod. Res. 2020, 87, 101636. [Google Scholar] [CrossRef]
- Sly, L.I.; Stackebrandt, E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int. J. Syst. Evol. Microbiol. 1999, 49, 541–544. [Google Scholar] [CrossRef]
- Hördt, A.; López, M.G.; Meier-Kolthoff, J.P.; Schleuning, M.; Weinhold, L.-M.; Tindall, B.J.; Gronow, S.; Kyrpides, N.C.; Woyke, T.; Göker, M. Analysis of 1000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar] [CrossRef]
- Choi, Y.; Ganzorig, M.; Lee, K. Analysis of the Genomes and Adaptive Traits of Skermanella cutis sp. nov., a Human Skin Isolate, and the Type Strains Skermanella rosea and Skermanella mucosa. Microorganisms 2025, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Nakashimada, Y.; Harada, H. Isolation of Actinobacteria capable of degrading complex organic compounds in soil. Microb. Ecol. 2003, 45, 225–232. [Google Scholar]
- Singh, B.K.; Walker, A. Soil microbial diversity and enzyme activity: The role of Actinobacteria in organic matter breakdown. Soil Biol. Biochem. 2006, 38, 1186–1194. [Google Scholar]
March (Before Sowing) | June (Ripening) | October (3 Months After Green Manure) | |
---|---|---|---|
Bulk soil | S1 | S2 | S6 |
Rhizosphere soil | S3 (oats) S4 (intercropping) | S5 (green manure) |
Clay (%) | pH (H2O) | EC (μS/cm−1) | Total N (mg/kg) | N-NH4 (mg/kg) | N-NO3 (mg/kg) | Total P (P2O5, mg/kg) | Total K (K2O, mg/kg) | Organic C (g/kg) | |
---|---|---|---|---|---|---|---|---|---|
S1 | 31.25 ± 1.12 | 7.78 ab | 189.38 a | 20.51 a | 12.20 a | 8.30 a | 2.53 b | 150.20 a | 9.3 b |
S2 | - | 7.81 a | 143.95 c | 11.20 d | 6.40 e | 4.80 d | 3.56 a | 97.50 c | 7.55 b |
S3 | - | 7.67 c | 126.15 d | 16.20 c | 9.29 cd | 6.91 bc | 3.77 a | 105.25 c | 11.28 a |
S4 | - | 7.72 bc | 181.75 b | 19.47 ab | 11.33 ab | 8.15 ab | 2.34 b | 131.68 b | 8.80 b |
S5 | - | 7.66 d | 114.88 e | 17.05 bc | 10.48 bc | 8.55 a | 3.93 a | 128.28 b | 12.45 a |
S6 | - | 7.79 ab | 191.00 a | 15.83 c | 8.98 d | 6.85 c | 2.14 b | 127.08 b | 8.55 b |
Prokaryotes | RawPE | Combined | Qualified | Nochime | GC, % | Q20, % | Q30, % | Efficiency, % |
---|---|---|---|---|---|---|---|---|
S1 | 130,849 | 129,701 | 127,816 | 104,967 | 55.98 | 98.27 | 94.31 | 80.22 |
S2 | 139,942 | 138,856 | 136,603 | 116,898 | 55.67 | 98.27 | 94.31 | 83.53 |
S3 | 143,740 | 142,454 | 139,950 | 119,471 | 56.82 | 98.15 | 94.09 | 83.12 |
S4 | 128,339 | 127,264 | 125,098 | 104,163 | 56.64 | 98.22 | 94.24 | 81.16 |
S5 | 136,358 | 135,040 | 132,479 | 113,834 | 57.08 | 98.05 | 93.86 | 83.48 |
S6 | 135,771 | 134,592 | 132,188 | 111,853 | 56.35 | 98.09 | 93.89 | 82.38 |
Observed_Species | Shannon | Simpson | Chao1 | ACE | Goods_Coverage | PD_Whole_Tree | |
---|---|---|---|---|---|---|---|
S1 | 3307 d | 9.109 e | 0.990 b | 3550.099 f | 3553.298 e | 0.995 a | 252.180 bc |
S2 | 3483 c | 9.351 d | 0.994 ab | 3676.867 e | 3712.133 d | 0.995 a | 253.491 bc |
S3 | 3513 c | 9.591 b | 0.995 a | 3802.227 c | 3793.272 c | 0.995 a | 246.634 c |
S4 | 4003 a | 9.590 b | 0.994 ab | 4286.903 a | 4424.361 a | 0.993 a | 285.315 a |
S5 | 3486 c | 9.438 c | 0.994 ab | 3706.513 d | 3719.565 d | 0.995 a | 257.743 b |
S6 | 3663 b | 9.758 a | 0.996 a | 3867.099 b | 3910.527 b | 0.995 a | 279.505 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petkova, M.; Shilev, S.; Popova, V.; Neykova, I.; Minev, N. Intercropping of Oats with Vetch Conducts to Improve Soil Bacteriome Diversity and Structure. Microorganisms 2025, 13, 977. https://doi.org/10.3390/microorganisms13050977
Petkova M, Shilev S, Popova V, Neykova I, Minev N. Intercropping of Oats with Vetch Conducts to Improve Soil Bacteriome Diversity and Structure. Microorganisms. 2025; 13(5):977. https://doi.org/10.3390/microorganisms13050977
Chicago/Turabian StylePetkova, Mariana, Stefan Shilev, Vanya Popova, Ivelina Neykova, and Nikolay Minev. 2025. "Intercropping of Oats with Vetch Conducts to Improve Soil Bacteriome Diversity and Structure" Microorganisms 13, no. 5: 977. https://doi.org/10.3390/microorganisms13050977
APA StylePetkova, M., Shilev, S., Popova, V., Neykova, I., & Minev, N. (2025). Intercropping of Oats with Vetch Conducts to Improve Soil Bacteriome Diversity and Structure. Microorganisms, 13(5), 977. https://doi.org/10.3390/microorganisms13050977