In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Commercial Products
2.2. Bacteria Isolation and Identification
2.3. Acid and Bile Resistance Assay
2.4. Antibiotic-Susceptibility Assay
2.5. Antimicrobial Activity Assay
2.6. Enzymatic Activity Assay
2.7. Intracellular Cell-Free Extract Antioxidant Activity Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Probiotic Isolation, Enumeration, and Identification
3.2. Biological Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mpofu, A.; Linnemann, A.R.; Sybesma, W.; Kort, R.; Nout, M.J.R.; Smid, E.J. Development of a Locally Sustainable Functional Food Based on Mutandabota, a Traditional Food in Southern Africa. J. Dairy Sci. 2014, 97, 2591–2599. [Google Scholar] [CrossRef]
- Nourizadeh, R.; Sepehri, B.; Abbasi, A.; Sayyed, R.Z.; Khalili, L. Impact of Probiotics in Modulation of Gut Microbiome. In Microbiome-Gut-Brain Axis: Implications on Health; Springer: Singapore, 2022; pp. 401–409. [Google Scholar] [CrossRef]
- Furone, F.; Bellomo, C.; Carpinelli, M.; Nicoletti, M.; Hewa-Munasinghege, F.N.; Mordaa, M.; Mandile, R.; Barone, M.V.; Nanayakkara, M. The Protective Role of Lactobacillus Rhamnosus GG Postbiotic on the Alteration of Autophagy and Inflammation Pathways Induced by Gliadin in Intestinal Models. Front. Med. 2023, 10, 1085578. [Google Scholar] [CrossRef] [PubMed]
- Hemarajata, P.; Versalovic, J. Effects of Probiotics on Gut Microbiota: Mechanisms of Intestinal Immunomodulation and Neuromodulation. Ther. Adv. Gastroenterol. 2013, 6, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Mulè, S.; Parini, F.; Galla, R.; Ruga, S.; Rosso, G.; Brovero, A.; Molinari, C.; Uberti, F. The Influence of the Gut-Brain Axis on Anxiety and Depression: A Review of the Literature on the Use of Probiotics. J. Tradit. Complement. Med. 2024, 14, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Stavrakidis, K.K.S. Probiotics: Benefits on Skin Health and Therapeutical Potential. Ph.D. Thesis, University of Rijeka, Rijeka, Croatia, 2024. [Google Scholar]
- Shah, A.B.; Baiseitova, A.; Zahoor, M.; Ahmad, I.; Ikram, M.; Bakhsh, A.; Shah, M.A.; Ali, I.; Idress, M.; Ullah, R.; et al. Probiotic Significance of Lactobacillus Strains: A Comprehensive Review on Health Impacts, Research Gaps, and Future Prospects. Gut Microbes 2024, 16, 2431643. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Paritova, A.; Nurgaliyev, A.; Nurgaliyeva, G.; Abekeshev, N.; Abuova, A.; Zakirova, F.; Zwierzchowski, G.; Kuanchaleyev, Z.; Issabekova, S.; Kizatova, M.; et al. The Dietary Effects of Two Strain Probiotics (Leuconostoc Mesenteroides, Lactococcus Lactis) on Growth Performance, Immune Response and Gut Microbiota in Nile Tilapia (Oreochromis Niloticus). PLoS ONE 2024, 19, e0312580. [Google Scholar] [CrossRef]
- Scourboutakos, M.J.; Franco-Arellano, B.; Murphy, S.A.; Norsen, S.; Comelli, E.M.; L’Abbé, M.R. Mismatch between Probiotic Benefits in Trials versus Food Products. Nutrients 2017, 9, 400. [Google Scholar] [CrossRef]
- Mehrabani, M.; Ghaderian, S.M.H.; Khodaii, Z. Important Features of Probiotic Microorganisms in Pharmaceutical and Dairy Products. Int. J. Enteric Pathog. 2013, 1, 53–62. [Google Scholar] [CrossRef]
- Niazi Amraii, H.; Abtahi, H.; Jafari, P.; Mohajerani, H.R.; Fakhroleslam, M.R.; Akbari, N. In Vitro Study of Potentially Probiotic Lactic Acid Bacteria Strains Isolated From Traditional Dairy Products. Jundishapur J. Microbiol. 2014, 7, e10168. [Google Scholar] [CrossRef]
- Uddin, G.M.N.; Larsen, M.H.; Christensen, H.; Aarestrup, F.M.; Phu, T.M.; Dalsgaard, A. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. PLoS ONE 2015, 10, e0132338. [Google Scholar] [CrossRef]
- Kim, J.H.; Baik, S.H. Probiotic Properties of Lactobacillus Strains with High Cinnamoyl Esterase Activity Isolated from Jeot-Gal, a High-Salt Fermented Seafood. Ann. Microbiol. 2019, 69, 407–417. [Google Scholar] [CrossRef]
- Jeong, C.H.; Sohn, H.; Hwang, H.; Lee, H.J.; Kim, T.W.; Kim, D.S.; Kim, C.S.; Han, S.G.; Hong, S.W. Comparison of the Probiotic Potential between Lactiplantibacillus Plantarum Isolated from Kimchi and Standard Probiotic Strains Isolated from Different Sources. Foods 2021, 10, 2125. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Dardis, C.; Garrote, G.L.; Abraham, A.G. Health-Promoting Properties of Lacticaseibacillus Paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Nasr, N.M.; Abd-Alhalim, L.R. Characterization and Identification of Lactobacillus Rhamnosus and Enterococcus Durans as Probiotic Potential Isolated from Selected Dairy Products in Egypt. J. Umm Al-Qura Univ. Appl. Sci. 2024, 10, 168–177. [Google Scholar] [CrossRef]
- Cai, H.; Rodríguez, B.T.; Zhang, W.; Broadbent, J.R.; Steele, J.L. Genotypic and Phenotypic Characterization of Lactobacillus Casei Strains Isolated from Different Ecological Niches Suggests Frequent Recombination and Niche Specificity. Microbiology 2007, 153, 2655–2665. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, W.; Zhao, L.; Li, Y.; He, W.; Ding, K.; Cao, P. Characterization and Assessment of Native Lactic Acid Bacteria from Broiler Intestines for Potential Probiotic Properties. Microorganisms 2024, 12, 749. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Y.; Wang, X.; Yang, Y. Secretory Leukocyte Protease Inhibitor Suppresses HPV E6-Expressing HNSCC Progression by Mediating NF-ΚB and Akt Pathways. Cancer Cell Int. 2019, 19, 220. [Google Scholar] [CrossRef]
- Paventi, G.; Di Martino, C.; Crawford, T.W.; Iorizzo, M. Enzymatic Activities of Lactiplantibacillus Plantarum: Technological and Functional Role in Food Processing and Human Nutrition. Food Biosci. 2024, 61, 104944. [Google Scholar] [CrossRef]
- He, K.; Cheng, H.; McClements, D.J.; Xu, Z.; Meng, M.; Zou, Y.; Chen, G.; Chen, L. Utilization of Diverse Probiotics to Create Human Health Promoting Fatty Acids: A Review. Food Chem. 2024, 458, 140180. [Google Scholar] [CrossRef]
- Fan, Y.; Shang, Y.; Li, F.; Liu, J.; Wang, D.; Zhang, Y.; Yu, X.; Wang, W. Effects of Cholesterol-Lowering Probiotic Fermentation on the Active Components and in Vitro Hypolipidemic Activity of Sea Buckthorn Juice. J. Food Sci. 2024, 89, 6308–6320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, R.; Rana, S. Bioactive Peptides: A Review. Int. J. Bioautomation 2011, 15, 223–250. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef]
- Gurung, N.; Ray, S.; Bose, S.; Rai, V. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed Res. Int. 2013, 2013, 329121. [Google Scholar] [CrossRef]
- Champagne, C.P.; Ross, R.P.; Saarela, M.; Hansen, K.F.; Charalampopoulos, D. Recommendations for the Viability Assessment of Probiotics as Concentrated Cultures and in Food Matrices. Int. J. Food Microbiol. 2011, 149, 185–193. [Google Scholar] [CrossRef]
- Sahadeva, R.P.K.; Leong, S.F.; Chua, K.H.; Tan, C.H.; Chan, H.Y.; Tong, E.V.; Wong, S.Y.W.; Chan, H.K. Survival of Commercial Probiotic Strains to PH and Bile. Int. Food Res. J. 2011, 18, 1515–1522. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing Supplement M100S; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2016; ISBN 1-56238-923-8. [Google Scholar]
- Kamel, H.M.; Armanious, W.; Morgan, S.; Kotb, E.E.Z. Exploring Antimicrobial Activity of Lactobacillus Spp. (Probiotics) Isolated from Raw Cow’s Milk against Staphylococcus Aureus Causing Bovine Mastitis. J. Appl. Vet. Sci. 2021, 6, 60–69. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Guidance on the Characterisation of Microorganisms Used as Feed Additives or as Production Organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef]
- Rahmati-Joneidabad, M.; Alizadeh Behbahani, B.; Taki, M.; Hesarinejad, M.A.; Said Toker, O. Evaluation of the Probiotic, Anti-Microbial, Anti-Biofilm, and Safety Properties of Levilactobacillus Brevis Lb13H. LWT 2024, 207, 116636. [Google Scholar] [CrossRef]
- Reid, G. How Science Will Help Shape Future Clinical Applications of Probiotics. Clin. Infect. Dis. 2008, 46 (Suppl. 2), S62–S66. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Gionchetti, P.; Rizzello, F.; Morselli, C.; Poggioli, G.; Tambasco, R.; Calabrese, C.; Brigidi, P.; Vitali, B.; Straforini, G.; Campieri, M. High-Dose Probiotics for the Treatment of Active Pouchitis. Dis. Colon. Rectum 2007, 50, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Whorwell, P.J.; Altringer, L.; Morel, J.; Bond, Y.; Charbonneau, D.; O’Mahony, L.; Kiely, B.; Shanahan, F.; Quigley, E.M.M. Efficacy of an Encapsulated Probiotic Bifidobacterium Infantis 35624 in Women with Irritable Bowel Syndrome. Am. J. Gastroenterol. 2006, 101, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich-Wyder, M.T.; Arias-Roth, E.; Jakob, E. Cheese Yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef]
- Cogan, T.M. Bacteria, Beneficial|Brevibacterium Linens, Brevibacterium Aurantiacum and Other Smear Microorganisms. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 395–400. [Google Scholar] [CrossRef]
- Gori, K.; Ryssel, M.; Arneborg, N.; Jespersen, L. Isolation and Identification of the Microbiota of Danish Farmhouse and Industrially Produced Surface-Ripened Cheeses. Microb. Ecol. 2013, 65, 602–615. [Google Scholar] [CrossRef]
- Irlinger, F.; Monnet, C. Temporal Differences in Microbial Composition of Époisses Cheese Rinds during Ripening and Storage. J. Dairy Sci. 2021, 104, 7500–7508. [Google Scholar] [CrossRef]
- Yaman, H.; Aykas, D.P.; Rodriguez-Saona, L.E. Monitoring Turkish White Cheese Ripening by Portable FT-IR Spectroscopy. Front. Nutr. 2023, 10, 1107491. [Google Scholar] [CrossRef]
- Bockelmann, W. Cheese: Smear-Ripened Cheeses. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 753–766. [Google Scholar] [CrossRef]
- Mounier, J.; Goerges, S.; Gelsomino, R.; Vancanneyt, M.; Vandemeulebroecke, K.; Hoste, B.; Brennan, N.M.; Scherer, S.; Swings, J.; Fitzgerald, G.F.; et al. Sources of the Adventitious Microflora of a Smear-Ripened Cheese. J. Appl. Microbiol. 2006, 101, 668–681. [Google Scholar] [CrossRef]
- Merchán, A.V.; Ruiz-Moyano, S.; Vázquez Hernández, M.; Benito, M.J.; Aranda, E.; Rodríguez, A.; Martín, A. Characterization of Autochthonal Yeasts Isolated from Spanish Soft Raw Ewe Milk Protected Designation of Origin Cheeses for Technological Application. J. Dairy Sci. 2022, 105, 2931–2947. [Google Scholar] [CrossRef]
- Viljoen, B.C.; Knox, A.M.; De Jager, P.H.; Lourens-Hattingh, A. Development of Yeast Populations during Processing and Ripening of Blue Veined Cheese. Food Technol. Biotechnol. 2003, 41, 291–297. [Google Scholar]
- Grumet, L.; Tromp, Y.; Stiegelbauer, V. The Development of High-Quality Multispecies Probiotic Formulations: From Bench to Market. Nutrients 2020, 12, 2453. [Google Scholar] [CrossRef] [PubMed]
- Kailasapathy, K.; Chin, J. Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus acidophilus and Bifidobacterium Spp. Immunol. Cell Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- Champagne, C.P.; Gomes da Cruz, A.; Daga, M. Strategies to Improve the Functionality of Probiotics in Supplements and Foods. Curr. Opin. Food Sci. 2018, 22, 160–166. [Google Scholar] [CrossRef]
- Tang, W.; Li, C.; He, Z.; Pan, F.; Pan, S.; Wang, Y. Probiotic Properties and Cellular Antioxidant Activity of Lactobacillus Plantarum MA2 Isolated from Tibetan Kefir Grains. Probiotics Antimicrob. Proteins 2018, 10, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, R.; Shah, N.P. Selective and Differential Enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in Yoghurt—A Review. Int. J. Food Microbiol. 2011, 149, 194–208. [Google Scholar] [CrossRef]
- Rutella, G.S.; Tagliazucchi, D.; Solieri, L. Survival and Bioactivities of Selected Probiotic Lactobacilli in Yogurt Fermentation and Cold Storage: New Insights for Developing a Bi-Functional Dairy Food. Food Microbiol. 2016, 60, 54–61. [Google Scholar] [CrossRef]
- Seyirt, S.; Şanlı, P.; Uymaz Tezel, B. Antibiotic Resistance in Probiotic Microorganisms. Turk. J. Agric. Food Sci. Technol. 2023, 11, 746–757. [Google Scholar] [CrossRef]
- Stojanov, S.; Plavec, T.V.; Zupančič, Š.; Berlec, A. Modified Vaginal Lactobacilli Expressing Fluorescent and Luminescent Proteins for More Effective Monitoring of Their Release from Nanofibers, Safety and Cell Adhesion. Microb. Cell Factories 2024, 23, 333. [Google Scholar] [CrossRef]
Product Code | Type | Total Plate Count a | Identified Probiotic Species * | MALDI-TOF Reliability Score | Conformity b |
---|---|---|---|---|---|
P1 | Probiotic supplement | 4.3 × 1011 CFU/g | Lacticaseibacillus rhamnosus | 2.37 | Yes |
P2 | Probiotic supplement | 4.1 × 1011 CFU/g | Lactiplantibacillus plantarum | 2.48 | Yes |
P3 | Probiotic supplement | 8.2 × 1010 CFU/g | Lactiplantibacillus plantarum Lacticaseibacillus paracasei | 2.25 2.29 | Yes |
P4 | Probiotic supplement | 1.4 × 1010 CFU/g | Lacticaseibacillus paracasei | 2.18 | Yes |
P5 | Probiotic supplement | 7.1 × 1011 CFU/g | Lacticaseibacillus rhamnosus Lactiplantibacillus plantarum | 2.38 2.20 | Yes |
F1 | Yogurt | 3.1 × 108 CFU/g | Lactobacillus delbrueckii subsp. bulgaricus | 2.05 | NI |
F2 | Yogurt | 2.9 × 109 CFU/g | Lactobacillus delbrueckii subsp. bulgaricus | 2.30 | NI |
F3 | Yogurt | 2.6 × 108 CFU/g | Lactobacillus delbrueckii subsp. bulgaricus | 2.09 | NI |
F4 | Yogurt | 2.7 × 108 CFU/g | Lactobacillus acidophilus | 2.02 | NI |
F5 | Yogurt | 2.8 × 108 CFU/g | Lactobacillus acidophilus | 2.26 | NI |
F6 | Yogurt | 1.2 × 108 CFU/g | Lactobacillus delbrueckii subsp. bulgaricus | 2.16 | NI |
F7 | Yogurt | 3.4 × 107 CFU/g | Lactobacillus delbrueckii | 2.27 | NI |
F8 | Yogurt | 5.5 × 106 CFU/g | Lactobacillus acidophilus | 2.02 | NI |
F9 | Organic cheese | 7.52 × 108 CFU/g | Lactiplantibacillus plantarum Lactobacillus delbrueckii subsp. bulgaricus | 2.13 2.09 | NI |
F10 | Organic cheese | 4.2 × 106 CFU/g | Lactiplantibacillus plantarum | 2.28 | NI |
F11 | Cheese | 5.7 × 105 CFU/g | Lactiplantibacillus pentosus Lactiplantibacillus plantarum | 2.22 2.28 | NI |
F12 | Cheese | 3.9 × 105 CFU/g | Lactiplantibacillus plantarum Leuconostoc mesenteroides | 2.20 2.37 | NI |
Origin | Strain ID | Species | Acid Tolerance | Bile Resistance | ||||
---|---|---|---|---|---|---|---|---|
pH 2 | pH 2.5 | pH 3 | 0.3% | 1% | 2% | |||
Probiotic Supplement | 7M3 | L. acidophilus | + | + | + | − | − | − |
7M2 | L. acidophilus | + | + | + | + | + | + | |
ATCC 8014 | L. plantarum | + | + | + | + | + | − | |
M16 | L. rhamnosus | + | + | + | + | + | + | |
Md3-5 | L. paracasei | + | + | + | + | + | + | |
M1 | Enterococcus faecium | + | + | + | + | + | + | |
M11 | L. helveticus | + | + | + | + | + | + | |
M5 | L. zeae | + | + | + | + | + | + | |
M9 | Enterococcus mundtii | + | + | + | + | + | + | |
51M | L. fermentum | + | + | + | + | + | + | |
M33 | L. delbrueckii subsp. bulgaricus | − | − | + | + | − | − | |
Yogurt | Y56 | L. delbrueckii subsp. bulgaricus | + | + | + | + | + | + |
7M6 | L. rhamnosus | − | − | + | + | − | − | |
Cheese | 94m | L. plantarum | + | + | + | − | − | − |
45m | L. delbrueckii subsp. bulgaricus | + | + | + | + | − | − | |
fC6 | Leuconostoc mesenteroides | − | − | − | − | − | − | |
M278 | L. pentosus | + | + | + | + | + | + |
Origin | Strain | Species | Antibiotic Susceptibility | ||
---|---|---|---|---|---|
Erythromycin 15 | Clindamycin 2 | Gentamycin 10 | |||
Probiotic Supplement | 7M3 | L. acidophilus | + | + | + |
7M2 | L. acidophilus | + | + | + | |
ATCC 8014 | L. plantarum | + | + | + | |
M16 | L. rhamnosus | − | + | + | |
Md3-5 | L. paracasei | + | + | + | |
M1 | Enterococcus faecium | + | + | + | |
M11 | L. helveticus | − | + | + | |
M5 | L. zeae | − | + | + | |
M9 | Enterococcus mundtii | + | + | + | |
51M | L. fermentum | + | + | + | |
Yogurt | M33 | L. delbrueckii subsp. bulgaricuss | + | − | − |
Y56 | L. delbrueckii subsp. bulgaricus | − | + | + | |
7M6 | L. rhamnosus | + | + | + | |
Cheese | 94m | L. plantarum | + | + | + |
45m | L. delbrueckii subsp. bulgaricuss | + | + | + | |
fC6 | Leuconostoc mesenteroides | + | + | + | |
M278 | L. pentosus | + | + | + |
Origin | Strain | Species | Hemolytic Activity | Protease Activity | Lipase Activity | Esterase Activity |
---|---|---|---|---|---|---|
Probiotic Supplement | 7M3 | L. acidophilus | γ-hemolysis | + | − | − |
7M2 | L. acidophilus | γ-hemolysis | + | − | − | |
ATCC 8014 | L. plantarum | α-hemolysis | + | − | − | |
M16 | L. rhamnosus | γ-hemolysis | − | − | − | |
Md3-5 | L. paracasei | α-hemolysis | + | − | − | |
M1 | Enterococcus faecium | α-hemolysis | − | + | + | |
M11 | L. helveticus | γ-hemolysis | − | − | − | |
M5 | L. rhamnosus | γ-hemolysis | + | − | − | |
M9 | Enterococcus mundtii | γ-hemolysis | − | − | − | |
51M | L. fermentum | α-hemolysis | − | − | − | |
Yogurt | M33 | L. delbrueckii subsp. bulgaricuss | γ-hemolysis | − | − | − |
Y56 | L. delbrueckii subsp. bulgaricus | γ-hemolysis | − | − | − | |
7M6 | L. rhamnosus | γ-hemolysis | + | − | − | |
cheese | 94m | L. plantarum | γ-hemolysis | − | − | − |
45m | L. delbrueckii subsp. bulgaricuss | γ-hemolysis | + | − | − | |
fC6 | Leuconostoc mesenteroides | α-hemolysis | − | + | + | |
M278 | L. pentosus | γ-hemolysis | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelidkazeran, E.; Bouri Yildiz, M.; Sahin, F. In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources. Microorganisms 2025, 13, 970. https://doi.org/10.3390/microorganisms13050970
Kelidkazeran E, Bouri Yildiz M, Sahin F. In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources. Microorganisms. 2025; 13(5):970. https://doi.org/10.3390/microorganisms13050970
Chicago/Turabian StyleKelidkazeran, Elmira, Meriam Bouri Yildiz, and Fikrettin Sahin. 2025. "In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources" Microorganisms 13, no. 5: 970. https://doi.org/10.3390/microorganisms13050970
APA StyleKelidkazeran, E., Bouri Yildiz, M., & Sahin, F. (2025). In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources. Microorganisms, 13(5), 970. https://doi.org/10.3390/microorganisms13050970