Soil Native C/N Ratio Affects Diazotrophic Bacterial Composition and N Fixation by Regulating SOC Distribution in Soil Particles After Residue Incorporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Experimental Design, Soil Sampling, and Analysis
2.3. DNA Extraction and qPCR
2.4. Amplicon Sequencing
2.5. Statistical Analysis
3. Results
3.1. Soil Native C/N Affects SOC Distribution Under Residue Incorporation
3.2. Residue Incorporation Alters Soil Bacterial Composition
3.3. Residue Incorporation Affects Diazotrophic Bacterial Composition and Soil Biological N Fixation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, A.; Zhang, W.; Sheng, R.; Liu, Y.; Hou, H.; Liu, F.; Ma, G.; Wei, W.; Qin, H. Long-Term Partial Replacement of Mineral Fertilizer with in Situ Crop Residues Ensures Continued Rice Yields and Soil Fertility: A Case Study of a 27-Year Field Experiment in Subtropical China. Sci. Total Environ. 2021, 787, 147523. [Google Scholar] [CrossRef] [PubMed]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Xun, W.; Li, W.; Huang, T.; Ren, Y.; Xiong, W.; Miao, Y.; Ran, W.; Li, D.; Shen, Q.; Zhang, R. Long-Term Agronomic Practices Alter the Composition of Asymbiotic Diazotrophic Bacterial Community and Their Nitrogen Fixation Genes in an Acidic Red Soil. Biol. Fertil. Soils 2018, 54, 329–339. [Google Scholar] [CrossRef]
- Singh, P.; Naresh, R.; Shahi, U.; Tomar, S.; Singh, R.; Yadav, K.; Kumar, M.; Mishra, A.; Sharma, V.K.; Tiwari, R. Effects of Manure and Synthetic Fertilizer with Residue Returning on Soil Organic Carbon Storage; Interactions with Intra-Aggregate Pore Structure and Water Stable Aggregates in High Input Cropping System: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2877–2892. [Google Scholar] [CrossRef]
- Matisic, M.; Dugan, I.; Bogunovic, I. Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture 2024, 14, 643. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An Overview of Natural Soil Amendments in Agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Zhou, G.; Cao, W.; Bai, J.; Xu, C.; Zeng, N.; Gao, S.; Dou, F. Co-Incorporation of Rice Straw and Leguminous Green Manure Can Increase Soil Available Nitrogen (N) and Reduce Carbon and N Losses: An Incubation Study. Pedosphere 2020, 30, 661–670. [Google Scholar] [CrossRef]
- Nicolardot, B.; Recous, S.; Mary, B. Simulation of C and N Mineralisation during Crop Residue Decomposition: A Simple Dynamic Model Based on the C: N Ratio of the Residues. Plant Soil 2001, 228, 83–103. [Google Scholar] [CrossRef]
- Almagro, M.; Ruiz-Navarro, A.; Díaz-Pereira, E.; Albaladejo, J.; Martínez-Mena, M. Plant Residue Chemical Quality Modulates the Soil Microbial Response Related to Decomposition and Soil Organic Carbon and Nitrogen Stabilization in a Rainfed Mediterranean Agroecosystem. Soil Biol. Biochem. 2021, 156, 108198. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Marschner, P. Soil Respiration, Microbial Biomass and Nutrient Availability in Soil after Repeated Addition of Low and High C/N Plant Residues. Biol. Fertil. Soils 2016, 52, 165–176. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.; Sainju, U.M.; Zhao, F. Soil Carbon Fractions in Response to Straw Mulching in the Loess Plateau of China. Biol. Fertil. Soils 2018, 54, 423–436. [Google Scholar] [CrossRef]
- Khan, M.T.; Aleinikovienė, J.; Butkevičienė, L.-M. Innovative Organic Fertilizers and Cover Crops: Perspectives for Sustainable Agriculture in the Era of Climate Change and Organic Agriculture. Agronomy 2024, 14, 2871. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Luo, G. Regulation of Soil C–N–P Stoichiometry by Intercropping Mitigates Microbial Resource Limitations and Contributes to Maize Productivity. Plant Soil 2024, 498, 21–38. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W. Soil Carbon Sequestration to Mitigate Climate Change: A Critical Re-examination to Identify the True and the False. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice Residue-Management Options and Effects on Soil Properties and Crop Productivity. J. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Zhang, Y.; Hu, T.; Wang, H.; Jin, H.; Liu, Q.; Chen, Z.; Xie, Z. Nitrogen Content and C/N Ratio in Straw Are the Key to Affect Biological Nitrogen Fixation in a Paddy Field. Plant Soil 2022, 481, 535–546. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Müller, C.; Cai, Z. Temporal Variations of Crop Residue Effects on Soil N Transformation Depend on Soil Properties as Well as Residue Qualities. Biol. Fertil. Soils 2018, 54, 659–669. [Google Scholar] [CrossRef]
- Sun, L.; Xun, W.; Huang, T.; Zhang, G.; Gao, J.; Ran, W.; Li, D.; Shen, Q.; Zhang, R. Alteration of the Soil Bacterial Community during Parent Material Maturation Driven by Different Fertilization Treatments. Soil Biol. Biochem. 2016, 96, 207–215. [Google Scholar] [CrossRef]
- Xun, W.; Li, W.; Xiong, W.; Ren, Y.; Liu, Y.; Miao, Y.; Xu, Z.; Zhang, N.; Shen, Q.; Zhang, R. Diversity-Triggered Deterministic Bacterial Assembly Constrains Community Functions. Nat. Commun. 2019, 10, 3833. [Google Scholar] [CrossRef]
- Shao, J.; Miao, Y.; Liu, K.; Ren, Y.; Xu, Z.; Zhang, N.; Feng, H.; Shen, Q.; Zhang, R.; Xun, W. Rhizosphere Microbiome Assembly Involves Seed-Borne Bacteria in Compensatory Phosphate Solubilization. Soil Biol. Biochem. 2021, 159, 108273. [Google Scholar] [CrossRef]
- Xun, W.; Yan, R.; Ren, Y.; Jin, D.; Xiong, W.; Zhang, G.; Cui, Z.; Xin, X.; Zhang, R. Grazing-Induced Microbiome Alterations Drive Soil Organic Carbon Turnover and Productivity in Meadow Steppe. Microbiome 2018, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Zhu, Y.; Sanders, I.; Kinkel, D.B.; Purdy, K.J.; Trimmer, M. Direct Biological Fixation Provides a Freshwater Sink for N2O. Nat. Commun. 2023, 14, 6775. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized Metabolic Functions of Keystone Taxa Sustain Soil Microbiome Stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.-D.; Lal, R.; Zhang, H.-L.; Chen, F. Changes in Soil Organic Carbon and Nitrogen as Affected by Tillage and Residue Management under Wheat–Maize Cropping System in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Chen, S.; Xu, C.; Yan, J.; Zhang, X.; Zhang, X.; Wang, D. The Influence of the Type of Crop Residue on Soil Organic Carbon Fractions: An 11-Year Field Study of Rice-Based Cropping Systems in Southeast China. Agric. Ecosyst. Environ. 2016, 223, 261–269. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Xun, W.; Huang, X.; Huang, Q.; Ran, W.; Shen, B.; Zhang, R.; Shen, Q. Influence of Straw Incorporation with and without Straw Decomposer on Soil Bacterial Community Structure and Function in a Rice-Wheat Cropping System. Appl. Microbiol. Biotechnol. 2017, 101, 4761–4773. [Google Scholar] [CrossRef]
- Buyanovsky, G.; Aslam, M.; Wagner, G. Carbon Turnover in Soil Physical Fractions. Soil Sci. Soc. Am. J. 1994, 58, 1167–1173. [Google Scholar] [CrossRef]
- Martin, T.; Sprunger, C.D. A Meta-Analysis of Nematode Community Composition across Soil Aggregates: Implications for Soil Carbon Dynamics. Appl. Soil Ecol. 2021, 168, 104143. [Google Scholar] [CrossRef]
- Saidy, A.; Smernik, R.; Baldock, J.A.; Kaiser, K.; Sanderman, J. The Sorption of Organic Carbon onto Differing Clay Minerals in the Presence and Absence of Hydrous Iron Oxide. Geoderma 2013, 209, 15–21. [Google Scholar] [CrossRef]
- Smith, A.; Marín-Spiotta, E.; De Graaff, M.; Balser, T. Microbial Community Structure Varies across Soil Organic Matter Aggregate Pools during Tropical Land Cover Change. Soil Biol. Biochem. 2014, 77, 292–303. [Google Scholar] [CrossRef]
- Baisden, W.; Amundson, R.; Cook, A.; Brenner, D. Turnover and Storage of C and N in Five Density Fractions from California Annual Grassland Surface Soils. Glob. Biogeochem. Cycles 2002, 16, 64-1–64-16. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, Q.; Zhang, Z.; Hallett, P.D. Combined Turnover of Carbon and Soil Aggregates Using Rare Earth Oxides and Isotopically Labelled Carbon as Tracers. Soil Biol. Biochem. 2017, 109, 81–94. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Mueller, C.W.; Höschen, C.; Ivanov, P.; Kögel-Knabner, I. The Role of Clay Content and Mineral Surface Area for Soil Organic Carbon Storage in an Arable Toposequence. Biogeochemistry 2021, 156, 401–420. [Google Scholar] [CrossRef]
- Yang, X.; Kong, Y.; Guo, E.; Chen, X.; Li, L. Organic Acid Regulation of Inorganic Phosphorus Release from Mollisols with Different Organic Matter Contents. Soil Use Manag. 2022, 38, 576–583. [Google Scholar] [CrossRef]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; ur Rehman, S.; Oetting, J.N. Unraveling the Potential of Microbes in Decomposition of Organic Matter and Release of Carbon in the Ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral Protection of Soil Carbon Counteracted by Root Exudates. Nat. Clim. Change 2015, 5, 588–595. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.; Collins, D.; Dougherty, W.J.; Singh, B.K. Carbon and Nutrient Mineralisation Dynamics in Aggregate-Size Classes from Different Tillage Systems after Input of Canola and Wheat Residues. Soil Biol. Biochem. 2018, 116, 22–38. [Google Scholar] [CrossRef]
- Wen, L.; Liao, B.; Liu, G.; Tang, H.; Yang, S.; Wen, H.; Qin, J. The Adsorption and Aging Process of Cadmium and Chromium in Soil Micro-aggregates. Environ. Toxicol. Chem. 2022, 41, 975–990. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the Unknown: Disentangling the Complexities of the Soil Microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Du, Y.; Yu, A.; Chi, Y.; Wang, Z.; Han, X.; Liu, K.; Fan, Q.; Hu, X.; Che, R.; Liu, D. Organic Carbon Decomposition Temperature Sensitivity Positively Correlates with the Relative Abundance of Copiotrophic Microbial Taxa in Cropland Soils. Appl. Soil Ecol. 2024, 204, 105712. [Google Scholar] [CrossRef]
- Kuźniar, A.; Włodarczyk, K.; Jurczyk, S.; Maciejewski, R.; Wolińska, A. Ecological Diversity of Bacterial Rhizomicrobiome Core during the Growth of Selected Wheat Cultivars. Biology 2023, 12, 1067. [Google Scholar] [CrossRef]
- Song, H.; Chang, Z.; Hu, X.; Li, Y.; Duan, C.; Yang, L.; Wang, H.; Li, T. Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields. Land 2024, 13, 1296. [Google Scholar] [CrossRef]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial Biomass, Fungal and Bacterial Residues, and Their Relationships to the Soil Organic Matter C/N/P/S Ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Wang, B.; Hu, H.; Huang, S.; Yuan, H.; Wang, Y.; Zhao, T.; Gong, Z.; Xu, X. Simultaneous Nitrate and Sulfate Biotransformation Driven by Different Substrates: Comparison of Carbon Sources and Metabolic Pathways at Different C/N Ratios. RSC Adv. 2023, 13, 19265–19275. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Wemheuer, B.; Korolkow, V.; Wemheuer, F.; Nacke, H.; Schöning, I.; Schrumpf, M.; Daniel, R. Driving Forces of Soil Bacterial Community Structure, Diversity, and Function in Temperate Grasslands and Forests. Sci. Rep. 2016, 6, 33696. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Gao, J.; Wang, Q.; Huang, Z.; Zhuang, G. SOC Bioavailability Significantly Correlated with the Microbial Activity Mediated by Size Fractionation and Soil Morphology in Agricultural Ecosystems. Environ. Int. 2024, 186, 108588. [Google Scholar] [CrossRef]
- Xun, W.; Zhao, J.; Xue, C.; Zhang, G.; Ran, W.; Wang, B.; Shen, Q.; Zhang, R. Significant Alteration of Soil Bacterial Communities and Organic Carbon Decomposition by Different Long-term Fertilization Management Conditions of Extremely Low-productivity Arable Soil in S Outh C Hina. Environ. Microbiol. 2016, 18, 1907–1917. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Song, W.; Wen, S.; Wang, B.; Zhu, C.; Shen, R. Impact of 25 Years of Inorganic Fertilization on Diazotrophic Abundance and Community Structure in an Acidic Soil in Southern China. Soil Biol. Biochem. 2017, 113, 240–249. [Google Scholar] [CrossRef]
- Tu, Q.; He, Z.; Wu, L.; Xue, K.; Xie, G.; Chain, P.; Reich, P.B.; Hobbie, S.E.; Zhou, J. Metagenomic Reconstruction of Nitrogen Cycling Pathways in a CO2-Enriched Grassland Ecosystem. Soil Biol. Biochem. 2017, 106, 99–108. [Google Scholar] [CrossRef]
- Mikkelson, K.M.; Lozupone, C.A.; Sharp, J.O. Altered Edaphic Parameters Couple to Shifts in Terrestrial Bacterial Community Structure Associated with Insect-Induced Tree Mortality. Soil Biol. Biochem. 2016, 95, 19–29. [Google Scholar] [CrossRef]
- Long, X.-E.; Yao, H.; Huang, Y.; Wei, W.; Zhu, Y.-G. Phosphate Levels Influence the Utilisation of Rice Rhizodeposition Carbon and the Phosphate-Solubilising Microbial Community in a Paddy Soil. Soil Biol. Biochem. 2018, 118, 103–114. [Google Scholar] [CrossRef]
Treatments b | Clay a | Silt | Sand | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fraction Amount (%) | TN c (g kg−1) | SOC d (g kg−1) | C/N e | Fraction Amount (%) | TN (g kg−1) | SOC (g kg−1) | C/N | Fraction Amount (%) | TN (g kg−1) | SOC (g kg−1) | C/N | |
CS_PM | 34.9 (2.2) | 0.19 (0.02) a | 4.55 (0.08) a | 24.1 (2.1) c | 64.0 (1.2) | 0.12 (0.03) a | 2.48 (0.04) a | 21.5 (2.2) b | 1.1 (0.2) | 0.07 (0.03) a | 1.65 (0.03) a | 26.9 (5.2) a |
CS_L | 0.81 (0.05) d | 8.18 (0.11) d | 10.1 (0.5) a | 0.24 (0.06) b | 3.32 (0.06) b | 14.4 (3.4) a | 0.09 (0.01) a | 2.21 (0.04) b | 24.7 (2.3) a | |||
CS_M | 0.61 (0.06) c | 7.31 (0.10) c | 12.0 (1.1) b | 0.26 (0.05) b | 3.98 (0.05) c | 15.6 (2.8) a | 0.09 (0.01) a | 2.65 (0.03) c | 29.6 (3.9) a | |||
CS_H | 0.52 (0.03) b | 6.08 (0.15) b | 11.7 (0.3) b | 0.31 (0.07) b | 4.46 (0.08) d | 14.8 (3.2) a | 0.12 (0.02) b | 2.97 (0.05) d | 25.1 (3.8) a | |||
GS_PM | 12.7 (1.5) | 0.14 (0.02) a | 3.52 (0.06) a | 25.4 (3.2) c | 45.1 (1.4) | 0.07 (0.02) a | 1.86 (0.03) a | 28.0 (7.9) b | 42.2 (3.1) | 0.02 (0.01) a | 0.41 (0.01) a | 24.8 (13.5) a |
GS_L | 1.35 (0.11) d | 13.07 (0.16) d | 9.7 (0.7) a | 0.25 (0.07) b | 3.95 (0.07) b | 16.6 (4.5) a | 0.03 (0.01) a | 0.65 (0.01) b | 23.3 (7.8) a | |||
GS_M | 1.1 (0.03) c | 11.66 (0.22) c | 10.6 (0.2) b | 0.31 (0.01) b | 5.24 (0.10) c | 16.9 (0.2) a | 0.04 (0.01) b | 1.16 (0.02) c | 30.2 (7.2) a | |||
GS_H | 0.79 (0.08) b | 8.79 (0.24) b | 11.2 (0.8) b | 0.39 (0.04) c | 6.91 (0.13) d | 17.8 (1.5) a | 0.06 (0.02) b | 1.53 (0.03) d | 27.5 (9.1) a | |||
PS_PM | 10.6 (0.5) | 0.56 (0.04) a | 4.32 (0.08) a | 7.7 (0.4) a | 74.4 (1.7) | 0.38 (0.03) b | 2.02 (0.03) a | 5.3 (0.3) a | 15.0 (2.3) | 0.25 (0.04) b | 1.44 (0.02) a | 5.8 (0.8) a |
PS_L | 0.82 (0.06) b | 8.12 (0.22) b | 9.9 (0.5) b | 0.33 (0.05) ab | 4.89 (0.10) d | 15.0 (1.9) b | 0.16 (0.02) a | 3.49 (0.07) d | 22.0 (2.3) b | |||
PS_M | 0.96 (0.07) c | 9.74 (0.18) c | 10.1 (0.6) b | 0.29 (0.04) a | 4.54 (0.08) c | 15.8 (1.9) b | 0.15 (0.02) a | 3.24 (0.06) c | 21.8 (2.5) b | |||
PS_H | 1.06 (0.09) d | 10.47 (0.15) d | 9.9 (0.7) b | 0.26 (0.08) a | 3.79 (0.07) b | 15.5 (4.7) b | 0.13 (0.03) a | 2.71 (0.05) b | 21.5 (4.7) b |
Soil Property | Clay a | Silt | Sand | |||
---|---|---|---|---|---|---|
TN b | SOC c | TN | SOC | TN | SOC | |
nifH gene d | 0.762 ** | 0.819 ** | 0.424 * | 0.557 * | −0.184 | 0.216 |
diazotrophic bacteria e | 0.885 ** | 0.903 ** | 0.341 | 0.475 * | −0.232 | 0.169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, P.; Zhao, D.; Yang, S.; Chen, J.; Chen, Z.; Cao, L. Soil Native C/N Ratio Affects Diazotrophic Bacterial Composition and N Fixation by Regulating SOC Distribution in Soil Particles After Residue Incorporation. Microorganisms 2025, 13, 1104. https://doi.org/10.3390/microorganisms13051104
Duan P, Zhao D, Yang S, Chen J, Chen Z, Cao L. Soil Native C/N Ratio Affects Diazotrophic Bacterial Composition and N Fixation by Regulating SOC Distribution in Soil Particles After Residue Incorporation. Microorganisms. 2025; 13(5):1104. https://doi.org/10.3390/microorganisms13051104
Chicago/Turabian StyleDuan, Pengfei, Di Zhao, Shuqiong Yang, Jibao Chen, Zhaojin Chen, and Lingling Cao. 2025. "Soil Native C/N Ratio Affects Diazotrophic Bacterial Composition and N Fixation by Regulating SOC Distribution in Soil Particles After Residue Incorporation" Microorganisms 13, no. 5: 1104. https://doi.org/10.3390/microorganisms13051104
APA StyleDuan, P., Zhao, D., Yang, S., Chen, J., Chen, Z., & Cao, L. (2025). Soil Native C/N Ratio Affects Diazotrophic Bacterial Composition and N Fixation by Regulating SOC Distribution in Soil Particles After Residue Incorporation. Microorganisms, 13(5), 1104. https://doi.org/10.3390/microorganisms13051104