Efficacy of Molnupiravir in Reducing the Risk of Severe Outcomes in Patients with SARS-CoV-2 Infection: A Real-Life Full-Matched Case–Control Study (SAVALO Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection and Definitions
2.3. Propensity Score Matching
2.4. Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MNP | Molnupiravir |
ICU | Intensive care unit |
AIFA | Italian Medicines Agency |
MASS | Monoclonal antibody screening score |
PS | Propensity score |
IQR | Interquartile range |
COPD | Chronic obstructive pulmonary disease |
CKD | Chronic kidney disease |
References
- WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 14 August 2024).
- Paraskevis, D.; Gkova, M.; Mellou, K.; Gerolymatos, G.; Psalida, N.; Gkolfinopoulou, K.; Kostaki, E.G.; Loukides, S.; Kotanidou, A.; Skoutelis, A.; et al. Real-world Effectiveness of Molnupiravir and Nirmatrelvir/Ritonavir as Treatments for COVID-19 in Patients at High Risk. J. Infect. Dis. 2023, 228, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: A retrospective cohort study. Lancet. Infect. Dis. 2022, 22, 1681–1693. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R. Molnupiravir—A Step toward Orally Bioavailable Therapies for Covid-19. N. Engl. J. Med. 2022, 386, 592–593. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Al Ramahi, Y.M. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 739. [Google Scholar] [CrossRef] [PubMed]
- Karniadakis, I.; Mazonakis, N.; Tsioutis, C.; Papadakis, M.; Markaki, I.; Spernovasilis, N. Oral Molnupiravir and Nirmatrelvir/Ritonavir for the Treatment of COVID-19: A Literature Review with a Focus on Real-World Evidence. Infect. Dis. Rep. 2023, 15, 662–678. [Google Scholar] [CrossRef]
- FDA. Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults. 23 December 2021. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain (accessed on 14 August 2024).
- AIFA Recommendations on Medicines to be Used in Home Management of COVID-19 Cases. Vers. 7—Updated 09/02/2022. Available online: https://www.aifa.gov.it/documents/20142/1269602/EN_Raccomandazioni_AIFA_gestione_domiciliare_COVID-19_Vers7_09.02.2022.pdf (accessed on 14 August 2024).
- Razonable, R.R.; Ganesh, R.; Bierle, D.M. Clinical Prioritization of Antispike Monoclonal Antibody Treatment of Mild to Moderate COVID-19. Mayo Clin. Proc. 2022, 97, 26–30. [Google Scholar] [CrossRef]
- Thomas, L.; Li, F.; Pencina, M. Using Propensity Score Methods to Create Target Populations in Observational Clinical Research. JAMA 2020, 323, 466–467. [Google Scholar] [CrossRef]
- Eikenboom, A.M.; Le Cessie, S.; Waernbaum, I.; Groenwold, R.H.H.; de Boer, M.G.J. Quality of Conduct and Reporting of Propensity Score Methods in Studies Investigating the Effectiveness of Antimicrobial Therapy. Open Forum Infect. Dis. 2022, 9, ofac110. [Google Scholar] [CrossRef]
- Baek, S.; Park, S.H.; Won, E.; Park, Y.R.; Kim, H.J. Propensity score matching: A conceptual review for radiology researchers. Korean J. Radiol. 2015, 16, 286–296. [Google Scholar] [CrossRef]
- Hansen, B.B.; Klopfer, S.O. Optimal Full Matching and Related Designs via Network Flows. J. Comput. Graph. Stat. 2006, 15, 609–627. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Chen, W.C.; Lu, N.; Song, C.; Tiwari, R.; Xu, Y.; Yue, L.Q. Estimands in observational studies: Some considerations beyond ICH E9 (R1). Pharm Stat 2022, 21, 835–844. [Google Scholar] [CrossRef]
- Snowden, J.M.; Rose, S.; Mortimer, K.M. Implementation of G-computation on a simulated data set: Demonstration of a causal inference technique. Am. J. Epidemiol. 2011, 173, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.; Collins, G.S.; Spence, J.; Daurès, J.P.; Devereaux, P.J.; Landais, P.; Le Manach, Y. Double-adjustment in propensity score matching analysis: Choosing a threshold for considering residual imbalance. BMC Med. Res. Methodol. 2017, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Green, K.M.; Stuart, E.A. Examining moderation analyses in propensity score methods: Application to depression and substance use. J. Consult. Clin. Psychol. 2014, 82, 773–783. [Google Scholar] [CrossRef]
- Hu, F.H.; Jia, Y.J.; Zhao, D.Y.; Fu, X.L.; Zhang, W.Q.; Tang, W.; Hu, S.Q.; Wu, H.; Ge, M.W.; Du, W.; et al. Clinical outcomes of the severe acute respiratory syndrome coronavirus 2 Omicron and Delta variant: Systematic review and meta-analysis of 33 studies covering 6 037 144 coronavirus disease 2019-positive patients. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2023, 29, 835–844. [Google Scholar] [CrossRef]
- Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Rahman, N.M.; Hayward, G.; Richards, D.B.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial. Lancet 2023, 401, 281–293. [Google Scholar] [CrossRef]
- Harris, V.; Holmes, J.; Gbinigie-Thompson, O.; Rahman, N.M.; Richards, D.B.; Hayward, G.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Health outcomes 3 months and 6 months after molnupiravir treatment for COVID-19 for people at higher risk in the community (PANORAMIC): A randomised controlled trial. Lancet Infect. Dis. 2025, 25, 68–79. [Google Scholar] [CrossRef]
- Bajema, K.L.; Berry, K.; Streja, E.; Rajeevan, N.; Li, Y.; Mutalik, P.; Yan, L.; Cunningham, F.; Hynes, D.M.; Rowneki, M.; et al. Effectiveness of COVID-19 Treatment With Nirmatrelvir-Ritonavir or Molnupiravir Among U.S. Veterans: Target Trial Emulation Studies With One-Month and Six-Month Outcomes. Ann. Intern. Med. 2023, 176, 807–816. [Google Scholar] [CrossRef]
- Yip, T.C.; Lui, G.C.; Lai, M.S.; Wong, V.W.; Tse, Y.K.; Ma, B.H.; Hui, E.; Leung, M.K.W.; Chan, H.L.; Hui, D.S.; et al. Impact of the Use of Oral Antiviral Agents on the Risk of Hospitalization in Community Coronavirus Disease 2019 Patients (COVID-19). Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2023, 76, e26–e33. [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of Molnupiravir in High-Risk Patients: A Propensity Score Matched Analysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2023, 76, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Richmond DiBello, J.; Raziano, V.T.; Liu, X.; Puenpatom, A.; Peebles, K.; Khan, N.F.; Hill, D.D. Molnupiravir Use Among Patients with COVID-19 in Real-World Settings: A Systematic Literature Review. Infect. Dis. Ther. 2024, 13, 1177–1198. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Hirsch, M. Treating Acute Covid-19—Final Chapters Still Unwritten. N. Engl. J. Med. 2024, 390, 1234–1236. [Google Scholar] [CrossRef] [PubMed]
- Italian Medicines Agency (AIFA). Sospensione di Utilizzo del Medicinale Lagevrio® (Molnupiravir). Available online: https://www.aifa.gov.it/-/sospensione_utilizzo_lagevrio_molnupiravir (accessed on 14 August 2024).
- European Medicines Agency. Refusal of the Marketing Authorisation for Lagevrio (Molnupiravir). EMA/82948/2023 Rev.1 EMEA/H/C/005789. Available online: https://www.ema.europa.eu/en/documents/smop-initial/questions-and-answers-refusal-marketing-authorisation-lagevrio-molnupiravir_en.pdf (accessed on 14 August 2024).
- CDC—COVID-19. Clinical Course: Progression, Management, and Treatment. 13 June 2024. Available online: https://www.cdc.gov/covid/hcp/clinical-care/management-and-treatment.html (accessed on 14 August 2024).
- WHO Guidelines Approved by the Guidelines Review Committee. In Therapeutics and COVID-19: Living Guideline; World Health Organization: Geneva, Switzerland, 2022.
Molnupiravir | No Therapy | p-Value | |
---|---|---|---|
n | 146 | 1236 | |
Male Sex (n, %) | 77 (52.7) | 551 (44.6) | 0.074 |
Age (median [IQR]) | 70.00 [59.00, 79.00] | 57.00 [46.75, 68.00] | <0.001 |
Vaccination (%) | 138 (94.5) | 1142 (92.4) | 0.446 |
Diabetes (%) | 13 (8.9) | 115 (9.3) | 0.995 |
Hypertension (%) | 52 (35.6) | 245 (20.6) | <0.001 |
Chronic heart disease (%) | 60 (41.1) | 200 (16.2) | <0.001 |
COPD (%) | 18 (12.3) | 84 (6.8) | 0.024 |
CKD (%) | 11 (7.5) | 24 (1.9) | <0.001 |
Obesity (%) | 23 (15.8) | 145 (11.7) | 0.203 |
Liver disease (%) | 4 (2.7) | 14 (1.1) | 0.217 |
Neurological disease (%) | 6 (4.1) | 46 (3.7) | 0.998 |
Immunodeficiency (%) | 71 (48.6) | 80 (6.5) | <0.001 |
Comorbidity score (median [IQR]) | 1.00 [1.00, 1.00] | 0.00 [0.00, 1.00] | <0.001 |
MASS (median [IQR]) | 5.00 [3.00, 6.75] | 1.00 [0.00, 3.00] | <0.001 |
Predominant variant (%) | <0.001 | ||
| 0 (0.0) | 123 (10.0) | |
| 18 (12.3) | 212 (17.2) | |
| 128 (87.7) | 271 (21.9) | |
| 0 (0.0) | 627 (50.7) | |
| 0 (0.0) | 3 (0.2) |
Molnupiravir | No Therapy | p-Value | |
---|---|---|---|
n | 146 | 1236 | |
Hospital admission (%) | 3 (2.1) | 20 (1.6) | 0.962 |
ICU admission (%) | 0 (0.0) | 1 (0.1) | 1.000 |
Death (%) | 1 (0.7) | 15 (1.2) | 0.876 |
Composite outcome (%) | 3 (2.1) | 31 (2.5) | 0.959 |
Point Estimate (OR) | Standard Error | 95% Confidence Interval | p-Value | |
---|---|---|---|---|
Composite outcome | 0.353 | 6.2 | 0.155–0.805 | 0.013 |
Hospital admission | 0.744 | 0.4 | 0.132–4.18 | 0.737 |
ICU admission | * | * | * | * |
Death | 0.958 | 0.3 | 0.701–1.31 | 0.787 |
Vaccination | No Vaccination | p-Value | |
---|---|---|---|
n | 1280 | 102 | |
Hospital admission (%) | 21 (1.6) | 2 (2.0) | 1.000 |
ICU admission (%) | 1 (0.1) | 0 (0.0) | 1.000 |
Death (%) | 8 (0.6) | 8 (7.8) | <0.001 |
Composite outcome (%) | 26 (2.0) | 8 (7.8) | 0.001 |
Vaccination | Point Estimate (OR) | Standard Error | 95% Confidence Interval | p-Value | p Subgroup | |
---|---|---|---|---|---|---|
Composite outcome | Yes | 0.596 | 1.0 | 0.126–2.82 | 0.514 | <0.001 |
No | 1.67 × 10−7 | 80.6 | 8.63 × 10−9–3.23 × 10−6 | <0.001 | ||
Hospital admission | Yes | 0.609 | 0.9 | 0.127–2.93 | 0.536 | <0.001 |
No | 2.29 × 10−5 | 84.5 | 3.17 × 10−6–1.66 × 10−4 | <0.001 | ||
ICU admission | Yes | 1.60 × 10−7 | 175.8 | 2.19 × 10−8–1.17 × 10−6 | <0.001 | <0.001 |
No | 1.75 | * | 1.75–1.75 | <0.001 | ||
Death | Yes | 9.46 | 3.2 | 0.621–1.44 × 102 | 0.106 | <0.001 |
No | 2.26 × 10−8 | 101.7 | 1.17 × 10−9–4.38 × 10−7 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, I.; Scotto, R.; Scirocco, M.M.; Di Brizzi, F.; Cuccurullo, F.; Silvitelli, M.; Ametrano, L.; Alfè, F.A.; Pietroluongo, D.; Irace, I.; et al. Efficacy of Molnupiravir in Reducing the Risk of Severe Outcomes in Patients with SARS-CoV-2 Infection: A Real-Life Full-Matched Case–Control Study (SAVALO Study). Microorganisms 2025, 13, 669. https://doi.org/10.3390/microorganisms13030669
Gentile I, Scotto R, Scirocco MM, Di Brizzi F, Cuccurullo F, Silvitelli M, Ametrano L, Alfè FA, Pietroluongo D, Irace I, et al. Efficacy of Molnupiravir in Reducing the Risk of Severe Outcomes in Patients with SARS-CoV-2 Infection: A Real-Life Full-Matched Case–Control Study (SAVALO Study). Microorganisms. 2025; 13(3):669. https://doi.org/10.3390/microorganisms13030669
Chicago/Turabian StyleGentile, Ivan, Riccardo Scotto, Maria Michela Scirocco, Francesco Di Brizzi, Federica Cuccurullo, Maria Silvitelli, Luigi Ametrano, Francesco Antimo Alfè, Daria Pietroluongo, Irene Irace, and et al. 2025. "Efficacy of Molnupiravir in Reducing the Risk of Severe Outcomes in Patients with SARS-CoV-2 Infection: A Real-Life Full-Matched Case–Control Study (SAVALO Study)" Microorganisms 13, no. 3: 669. https://doi.org/10.3390/microorganisms13030669
APA StyleGentile, I., Scotto, R., Scirocco, M. M., Di Brizzi, F., Cuccurullo, F., Silvitelli, M., Ametrano, L., Alfè, F. A., Pietroluongo, D., Irace, I., Chiariello, M., De Felice, N., Severino, S., Viceconte, G., Schiano Moriello, N., Maraolo, A. E., Buonomo, A. R., Giaccone, A., & on behalf of Federico II COVID Team. (2025). Efficacy of Molnupiravir in Reducing the Risk of Severe Outcomes in Patients with SARS-CoV-2 Infection: A Real-Life Full-Matched Case–Control Study (SAVALO Study). Microorganisms, 13(3), 669. https://doi.org/10.3390/microorganisms13030669