Diagnostic Advances in Leptospirosis: A Comparative Analysis of Paraclinical Tests with a Focus on PCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Process
2.3. Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Overview of Included Studies
3.2. Risk of Bias Assessment
3.3. The Role and Clinical Application of PCR Testing in Leptospirosis
3.3.1. PCR Performance in Early Diagnosis
3.3.2. Comparison with Other Diagnostic Tests
3.3.3. Combined Testing Strategy
3.4. Comparative Utility of Blood and Urine Samples for PCR Testing
3.5. Descriptive Analysis of the Sensitivity and Specificity of PCR Testing
3.6. PCR Techniques in Leptospirosis: Methods and Key Markers
3.7. The Impact of Geographical Region on Test Selection for Leptospirosis Diagnosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haake, D.A.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adler, B.; de la Peña Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol. 2010, 140, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Bierque, E.; Thibeaux, R.; Girault, D.; Soupé-Gilbert, M.E.; Goarant, C. A systematic review of Leptospira in water and soil environments. PLoS ONE 2020, 15, e0227055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barragan, V.; Olivas, S.; Keim, P.; Pearson, T. Critical Knowledge Gaps in Our Understanding of Environmental Cycling and Transmission of Leptospira spp. Appl. Environ. Microbiol. 2017, 83, e01190-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yanagihara, Y.; Villanueva, S.Y.A.M.; Nomura, N.; Ohno, M.; Sekiya, T.; Handabile, C.; Shingai, M.; Higashi, H.; Yoshida, S.I.; Masuzawa, T.; et al. Leptospira Is an Environmental Bacterium That Grows in Waterlogged Soil. Microbiol. Spectr. 2022, 10, e0215721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sayanthi, Y.; Susanna, D. Pathogenic Leptospira contamination in the environment: A systematic review. Infect. Ecol. Epidemiol. 2024, 14, 2324820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N.; Gilman, R.H.; Willig, M.R.; Gotuzzo, E.; et al. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 2003, 3, 757–771. [Google Scholar] [CrossRef] [PubMed]
- Inada, R.; Ido, Y.; Hoki, R.; Kaneko, R.; Ito, H. The etiology, mode of infection, and specific therapy of weil’s disease (spirochaetosis icterohaemorrhagica). J. Exp. Med. 1916, 23, 377–402. [Google Scholar] [CrossRef]
- Kobayashi, Y. Discovery of the causative organism of Weil’s disease: Historical view. J. Infect. Chemother. 2001, 7, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Karpagam, K.B.; Ganesh, B. Leptospirosis: A neglected tropical zoonotic infection of public health importance-an updated review. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.C.; Jancloes, M.; Buss, D.F.; Aldighieri, S.; Bertherat, E.; Najera, P.; Galan, D.I.; Durski, K.; Espinal, M.A. Leptospirosis: A silent epidemic disease. Int. J. Environ. Res. Public Health 2013, 10, 7229–7234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajapakse, S. Leptospirosis: Clinical aspects. Clin. Med. 2022, 22, 14–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soo, Z.M.P.; Khan, N.A.; Siddiqui, R. Leptospirosis: Increasing importance in developing countries. Acta Trop. 2020, 201, 105183. [Google Scholar] [CrossRef] [PubMed]
- Picardeau, M. Diagnosis and epidemiology of leptospirosis. Méd. Mal. Infect. 2013, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, T.; Ohnishi, M.; Koizumi, N. Diagnosis of acute leptospirosis. Expert Rev. Anti-Infect. Ther. 2011, 9, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N. Laboratory Diagnosis of Leptospirosis. Methods Mol. Biol. 2020, 2134, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Goris, M.G.; Hartskeerl, R.A. Leptospirosis serodiagnosis by the microscopic agglutination test. Curr. Protoc. Microbiol. 2014, 32, 12E-5. [Google Scholar] [CrossRef] [PubMed]
- Jayasundara, D.; Gamage, C.; Senavirathna, I.; Warnasekara, J.; Matthias, M.A.; Vinetz, J.M.; Agampodi, S. Optimizing the microscopic agglutination test (MAT) panel for the diagnosis of Leptospirosis in a low resource, hyper-endemic setting with varied microgeographic variation in reactivity. PLoS Neglected Trop. Dis. 2021, 15, e0009565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinto, G.V.; Senthilkumar, K.; Rai, P.; Kabekkodu, S.P.; Karunasagar, I.; Kumar, B.K. Current methods for the diagnosis of leptospirosis: Issues and challenges. J. Microbiol. Methods 2022, 195, 106438. [Google Scholar] [CrossRef] [PubMed]
- Levett, P.N.; Morey, R.E.; Galloway, R.L.; Turner, D.E.; Steigerwalt, A.G.; Mayer, L.W. Detection of pathogenic leptospires by real-time quantitative PCR. J. Med. Microbiol. 2005, 54 Pt 1, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Sandai, D.A.; Musa, S.; Hoe, C.H.; Riadzi, M.; Lau, K.L.; Tang, T.H. Rapid diagnosis of leptospirosis by multiplex PCR. Malays. J. Med.Sci. MJMS 2012, 19, 9–16. [Google Scholar] [PubMed] [PubMed Central]
- Bal, A.E.; Gravekamp, C.; Hartskeerl, R.A.; De Meza-Brewster, J.; Korver, H.; Terpstra, W.J. Detection of leptospires in urine by PCR for early diagnosis of leptospirosis. J. Clin. Microbiol. 1994, 32, 1894–1898. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Philip, N.; Affendy, N.B.; Masri, S.N.; Yuhana, M.Y.; Than, L.T.L.; Sekawi, Z.; Neela, V.K. Combined PCR and MAT improves the early diagnosis of the biphasic illness leptospirosis. PLoS ONE 2020, 15, e0239069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ooteman, M.C.; Vago, A.R.; Koury, M.C. Evaluation of MAT, IgM ELISA and PCR methods for the diagnosis of human leptospirosis. J. Microbiol. Methods 2006, 65, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hayden, J.A.; van der Windt, D.A.; Cartwright, J.L.; Côté, P.; Bombardier, C. Assessing bias in studies of prognostic factors. Ann. Intern. Med. 2013, 158, 280–286. [Google Scholar] [CrossRef] [PubMed]
- De Abreu Fonseca, C.; Teixeira de Freitas, V.L.; Caló Romero, E.; Spinosa, C.; Arroyo Sanches, M.C.; Da Silva, M.V.; Shikanai-Yasuda, M.A. Polymerase Chain Reaction in Comparison with Serological Tests for Ear Ly Diagnosis of Human Leptospirosis. Trop. Med. Int. Health 2006, 11, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Mullan, S. Polymerase Chain Reaction: An Important Tool for Early Diagnosis of Leptospirosis Cases. J. Clin. Diagn. Res. 2016, 10, DC08. [Google Scholar] [CrossRef]
- Perwez, K.; VB, S.; Arun Kumar, N.; Asif Hussain, M. Leptospirosis in Febrile Patients: Diagnosis by Serology and Polymeras e Chain Reaction. J. Biol. Life Sci. 2019, 2, E2. [Google Scholar] [CrossRef]
- Shekatkar, S.B.; Harish, B.N.; Parija, S.C. Diagnosis of Leptospirosis by Polymerase Chain Reaction. Int. J. Pharma. Bio. Sci. 2010, 13, 1–6. [Google Scholar]
- Riediger, I.N.; Stoddard, R.A.; Ribeiro, G.S.; Nakatani, S.M.; Moreira, S.D.R.; Skraba, I.; Biondo, A.W.; Reis, M.G.; Hoffmaster, A.R.; Vinetz, J.M.; et al. Rapid, Actionable Diagnosis of Urban Epidemic Leptospirosis Using a Pa Thogenic Leptospira lipL32-Based Real-Time PCR Assay. PLoS Negl. Trop. Dis. 2017, 11, e0005940. [Google Scholar] [CrossRef]
- Agampodi, S.B.; Matthias, M.A.; Moreno, A.C.; Vinetz, J.M. Utility of Quantitative Polymerase Chain Reaction in Leptospirosis Dia Gnosis: Association of Level of Leptospiremia and Clinical Manifestati Ons in Sri Lanka. Clin. Infect. Dis. 2012, 54, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Sreevalsan, T.; Chandra, R. Relevance of Polymerase Chain Reaction in Early Diagnosis of Leptospir Osis. Indian J. Crit. Care Med. 2024, 28, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Engelberts, M.F.M.; Boer, K.R.; Ahmed, N.; Hartskeerl, R.A. Development and Validation of a Real-Time PCR for Detection of Pathoge Nic Leptospira Species in Clinical Materials. PLoS ONE 2009, 4, e7093. [Google Scholar] [CrossRef] [PubMed]
- Agampodi, S.B.; Dahanayaka, N.J.; Nöckler, K.; Anne, M.-S.; Vinetz, J.M. Redefining Gold Standard Testing for Diagnosing Leptospirosis: Further Evidence from a Well-Characterized, Flood-Related Outbreak in Sri Lan Ka. Am. Soc. Trop. Med. Hyg. 2016, 95, 531–536. [Google Scholar] [CrossRef]
- Waggoner, J.J.; Balassiano, I.; Mohamed-Hadley, A.; Vital-Brazil, J.M.; Sahoo, M.K.; Pinsky, B.A. Reverse-Transcriptase PCR Detection of Leptospira: Absence of Agreement with Single-Specimen Microscopic Agglutination Testing. PLoS ONE 2015, 10, e0132988. [Google Scholar] [CrossRef]
- Katz, A.R. Quantitative Polymerase Chain Reaction: Filling the Gap for Early Lept Ospirosis Diagnosis. Clin. Infect. Dis. 2012, 54, 1256–1258. [Google Scholar] [CrossRef]
- Smythe, L.D.; Smith, I.L.; Smith, G.A.; Dohnt, M.F.; Symonds, M.L.; Barnett, L.J.; McKay, D.B. A Quantitative PCR (TaqMan) Assay for Pathogenic Leptospira Spp. BMC Infect. Dis. 2002, 2, 1–7. [Google Scholar] [CrossRef]
- Bourhy, P.; Bremont, S.; Zinini, F.; Giry, C.; Picardeau, M. Comparison of Real-Time PCR Assays for Detection of Pathogenic Leptospira Spp. in Blood and Identification of Variations in Target Sequences. J. Clin. Microbiol. 2011, 49, 2154–2160. [Google Scholar] [CrossRef]
- Blanco, R.M.; Romero, E.C. Evaluation of Nested Polymerase Chain Reaction for the Early Detection of Leptospira Spp. DNA in Serum Samples from Patients with Leptospiro Sis. Diagn. Microbiol. Infect. Dis. 2014, 78, 343–346. [Google Scholar] [CrossRef]
- Wangroongsarb, P.; Yaseang, S.; Petkanjanapong, W.; Naigowit, P.; Hagiwara, T.; Kawabata, H.; Koizumi, N. Applicability of Polymerase Chain Reaction to Diagnosis of Leptospirosis. J. Trop. Med. Parasitol. 2005, 28, 43–47. [Google Scholar]
- Yang, B.; de Vries, S.G.; Ahmed, A.; Visser, B.J.; Nagel, I.M.; Spijker, R.; Grobusch, M.P.; Hartskeerl, R.A.; Goris, M.G.; Leeflang, M.M. Nucleic acid and antigen detection tests for leptospirosis. Cochrane Database Syst. Rev. 2019, 8, CD011871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fraune, C.K.; Schweighauser, A.; Francey, T. Evaluation of the diagnostic value of serologic microagglutination testing and a polymerase chain reaction assay for diagnosis of acute leptospirosis in dogs in a referral center. J. Am. Vet. Med. Assoc. 2013, 242, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.A.; Heseltine, J.C.; Creevy, K.E. The Evaluation of the Diagnostic Value of a PCR Assay When Compared to a Serologic Micro-Agglutination Test for Canine Leptospirosis. Front. Vet. Sci. 2022, 9, 815103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esteves, L.M.; Bulhões, S.M.; Branco, C.C.; Carreira, T.; Vieira, M.L.; Gomes-Solecki, M.; Mota-Vieira, L. Diagnosis of Human Leptospirosis in a Clinical Setting: Real-Time PCR High Resolution Melting Analysis for Detection of Leptospira at the Onset of Disease. Sci. Rep. 2018, 8, 9213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, P.D.; Gravekamp, C.; Carrington, D.G.; van de Kemp, H.; Hartskeerl, R.A.; Edwards, C.N.; Everard, C.O.; Terpstra, W.J.; Levett, P.N. Evaluation of the polymerase chain reaction for early diagnosis of leptospirosis. J. Med. Microbiol. 1995, 43, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Merien, F.; Baranton, G.; Perolat, P. Comparison of polymerase chain reaction with microagglutination test and culture for diagnosis of leptospirosis. J. Infect. Dis. 1995, 172, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, P.; Díaz, C.A.; Dalmau, E.A.; Quintero, G.M. A comparison between polymerase chain reaction (PCR) and traditional techniques for the diagnosis of leptospirosis in bovines. J. Microbiol. Methods 2011, 84, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yokota, M.; Tatsumi, N.; Nathalang, O.; Yamada, T.; Tsuda, I. Effects of heparin on polymerase chain reaction for blood white cells. J. Clin. Lab. Anal. 1999, 13, 133–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vieira, M.L.; Persson, S.; Lopes-Ferreira, M.; Romero, E.C.; Kirchgatter, K.; Nascimento, A.L.T.O.; Herwald, H. Heparin-Binding Protein Release Is Strongly Induced by Leptospira Species and Is a Candidate for an Early Diagnostic Marker of Human Leptospirosis. J. Infect. Dis. 2019, 219, 996–1006. [Google Scholar] [CrossRef] [PubMed]
Study ID | Study Design | Region | Participants | Diagnosis Test | Sensitivity of PCR | Specificity of PCR | Laboratory Tests | Biological Samples | PCR Technique Used | Target Gene/Protein |
---|---|---|---|---|---|---|---|---|---|---|
Fonseca 2006 [27] | case-control | Brazil | 124 | PCR | 62% | 100% | MAT, IgM ELISA, SAT, PCR | Blood | Conventional PCR | lipL32 |
Mullan 2016 [28] | prospective observational | South Gujarat, India | 207 | PCR | 52% | 79% | Rapid leptocheck test, IgM ELISA, MAT, Leptospira culture, PCR | Blood | Conventional PCR | 16S rRNA |
Perwez 2011 [29] | cross-sectional observational | India | 100 | PCR | 80% | 90% | IgM ELISA, PCR, | Blood | Conventional PCR | flaB |
Shekatkar 2010 [30] | observational | India | 100 | - | - | - | MAT, IgM ELISA, PCR | Blood | PCR | 16S rRNA |
Riediger 2017 [31] | prospective case-control | Brazil | 150 | PCR | 60.60% | 98.00% | PCR targeting lipL32 | Blood | PCR targeting lipL32 | lipL32 |
Agampodi 2012 [32] | observational | Sri Lanka | 381 | PCR | 51.00% | - | qPCR targeting 16s RNA gene | Blood | qPCR | 16S rRNA |
Sreevalsan 2024 [33] | multi-site observational | India | 67 | PCR | 90% | - | IgM ELISA, PCR, | Blood | Conventional PCR | lipL32 |
Ahmed 2009 [34] | prospective observational | Netherlands | 133 | rtPCR | 100% | 93-100% | PCR | Blood, urine | rtPCR | lipL32 |
Levett 2005 [20] | retrospective observational | USA | - | rtPCR | - | - | real-time PCR targeting lipL32 | Blood, Urine | rtPCR | lipL32 |
Agampodi 2016 [35] | observational | Sri Lanka | 96 | qPCR | 74.20% | - | qPCR, two ELISA, MAT | Blood | qPCR | 16S rRNA |
Waggoner 2015 [36] | placebo-controlled trial | Brazil | 818 | PCR | 81% | 99% | LEPTO-MD, rtPCR | Blood | LEPTO-MD, rtPCR | lipL32 |
Katz 2012 [37] | case-control study prospective cohort study | - | - | qPCR | - | - | qPCR, MAT | Blood | qPCR | 16S rRNA |
Smythe 2002 [38] | prospective observational | Australia | - | PCR | - | - | qPCR | Blood, Urine | qPCR | 16S rRNA |
Bourhy 2011 [39] | cross-sectional observational | France | - | qPCR | - | - | qPCR | Blood | qPCR | 16S rRNA |
Blanco 2014 [40] | retrospective observational | Brazil | 521 | Nested PCR | 95.70% | - | MAT, nested PCR | Blood | Nested PCR | 16S rDNA |
Philip 2020 [23] | retrospective observational | Central Malaysia | 165 | PCR | - | - | MAT, qPCR targeting the lipL32, nested PCR targeting 16S rDNA | Blood | qPCR, Nested PCR | lipL32, 16S rDNA |
Wangroongsarb 2005 [41] | prospective observational | Thaliand | 93 | PCR | 80% | 96.20% | PCR targeting 16SrRNA, MAT, culture | Blood | PCR targeting 16S rRNA | 16S rRNA |
Study ID | Diagnostic Methods Compared | PCR Sensitivity (%) | PCR Specificity (%) | Key Findings and Observations |
---|---|---|---|---|
Agampodi et al. [32] | PCR, IgG ELISA, MAT | 74 | - | PCR most sensitive in acute phase (74%), vs. IgG ELISA (35.5%) and MAT (12%). Detected cases missed by MAT (10/40 PCR+ vs. 5/40 MAT+). Suggests complementary use. |
Perwez et al. [29] | PCR, IgM ELISA | 80 | 90 | PCR detected Leptospira DNA in 34/100 samples, IgM ELISA in 35/100 (28 overlap). Effective in early stages before IgM detectable. |
Mullan et al. [28] | PCR, MAT, Rapid Leptocheck, IgM ELISA | 52 | 79 | Moderate sensitivity but high specificity vs. MAT. Useful for ruling in leptospirosis when combined with other tests. |
Smythe et al. [38] | PCR, MAT | - | High (pathogenic-specific) | Higher detection rate in urine vs. MAT. Specific to pathogenic Leptospira (no amplification in non-pathogenic strains). |
Wangroongsarb et al. [41] | PCR, MAT, Culture | 80 | 96.2 | Faster turnaround (hours) vs. culture/MAT. Effective early diagnostic tool. |
Philip et al. [23] | PCR, MAT | - | - | PCR advantageous for early diagnosis before serological response detectable. |
Blanco et al. [40] | Nested PCR, MAT | 95.7 | - | Emphasized PCR’s early detection capability vs. MAT, especially pre-antibody development. |
Descriptive Statistics | Sensitivity of PCR | Specificity of PCR |
---|---|---|
MAX | 100% | 100% |
MIN | 51% | 79% |
MEDIAN | 74.2% | 96.2% |
AVERAGE | 75% | 93.85% |
ST DEV | 0.200 | 0.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurariu, E.; Prodan-Barbulescu, C.; Mateescu, D.-M.; Tutac, P.; Sorop, V.-B.; Susan, M.; Varga, N.-I. Diagnostic Advances in Leptospirosis: A Comparative Analysis of Paraclinical Tests with a Focus on PCR. Microorganisms 2025, 13, 667. https://doi.org/10.3390/microorganisms13030667
Ciurariu E, Prodan-Barbulescu C, Mateescu D-M, Tutac P, Sorop V-B, Susan M, Varga N-I. Diagnostic Advances in Leptospirosis: A Comparative Analysis of Paraclinical Tests with a Focus on PCR. Microorganisms. 2025; 13(3):667. https://doi.org/10.3390/microorganisms13030667
Chicago/Turabian StyleCiurariu, Elena, Catalin Prodan-Barbulescu, Diana-Maria Mateescu, Paul Tutac, Virgiliu-Bogdan Sorop, Monica Susan, and Norberth-Istvan Varga. 2025. "Diagnostic Advances in Leptospirosis: A Comparative Analysis of Paraclinical Tests with a Focus on PCR" Microorganisms 13, no. 3: 667. https://doi.org/10.3390/microorganisms13030667
APA StyleCiurariu, E., Prodan-Barbulescu, C., Mateescu, D.-M., Tutac, P., Sorop, V.-B., Susan, M., & Varga, N.-I. (2025). Diagnostic Advances in Leptospirosis: A Comparative Analysis of Paraclinical Tests with a Focus on PCR. Microorganisms, 13(3), 667. https://doi.org/10.3390/microorganisms13030667