Effects of Feeding Fermented Cassava Leaves on Intestinal Morphology, Cecal Microbiota, and Metabolome in Hybrid Geese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurement of Growth Performance
2.3. Measurement of Intestinal Morphology
2.4. Determination of Cecal Microbiota
2.5. Determination of Cecal Metabolites
2.6. Statistical Analyses
3. Results
3.1. Effects of Fermented Cassava Leaves on Growth Performance
3.2. Effects of Fermented Cassava Leaves on Intestinal Morphology
3.3. Effects of Fermented Cassava Leaves on the Cecal Microbiome
3.4. Effects of Fermented Cassava Leaves on the Cecal Metabolome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Yang, H.; Sun, Q.; Xu, X.; Yang, Z.; Wang, Z. Effects of cottonseed meal on performance, gossypol residue, liver function, lipid metabolism, and cecal microbiota in geese. J. Anim. Sci. 2023, 101, skad020. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Wei, L.; Lin, Q.; Zhang, Z. Effects of Feeding Fermented Medicago sativa (Plus Soybean and DDGS) on Growth Performance, Blood Profiles, Gut Health, and Carcass Characteristics of Lande (Meat) Geese. Front. Physiol. 2022, 13, 902802. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Zhang, Y.; Ni, H.; Xiao, Q.; Yin, Y.; Ren, J.; Zhao, P.; Zhang, Z.; Li, X.; Li, Y.; et al. Optimization of Fermented Maize Stover for the Fattening Phase of Geese: Effect on Production Performance and Gut Microflora. Animals 2024, 14, 433. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, X.; Xiong, Y.; Cao, J.; Nussio, L.G.; Ni, K.; Lin, Y.; Wang, X.; Yang, F. Dietary Paper Mulberry Silage Supplementation Improves the Growth Performance, Carcass Characteristics, and Meat Quality of Yangzhou Goose. Animals 2024, 14, 359. [Google Scholar] [CrossRef]
- Xue, J.J.; Huang, X.F.; Liu, Z.L.; Chen, Y.; Zhang, Y.K.; Luo, Y.; Wang, B.W.; Wang, Q.G.; Wang, C. Effects of citric acid supplementation on growth performance, intestinal morphology and microbiota, and blood parameters of geese from 1 to 28 days of age. Poult. Sci. 2023, 102, 102343. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, B.; Xi, Y.; Huan, H.; Li, M.; Yu, J.; Zhu, H.; Dai, Z.; Ying, S.; Zhou, W.; et al. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult. Sci. 2019, 98, 4673–4684. [Google Scholar] [CrossRef]
- Deng, C.; Zhai, Y.; Yang, X.; Chen, Z.; Li, Q.; Hao, R. Effects of grape seed procyanidins on antioxidant function, barrier function, microbial community, and metabolites of cecum in geese. Poult. Sci. 2023, 102, 102878. [Google Scholar] [CrossRef]
- Xi, Y.; Ying, S.; Shao, C.; Zhu, H.; Yan, J.; Shi, Z. Metabolomic profiling of goslings with visceral gout reveals a distinct metabolic signature. Br. Poult. Sci. 2020, 61, 258–265. [Google Scholar] [CrossRef]
- Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Sholihin; Srean, P.; Sheela, M.N.; Becerra López-Lavalle, L.A.; Utsumi, Y.; Lu, C.; et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed. Sci. 2020, 70, 145–166. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Pan, X.; Xu, T.; Zhang, Z.; Zi, X.; Jiang, Y. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing. Sci. Rep. 2017, 7, 45697. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Xu, T.; Zi, X. Effect of cassava foliage on the performance, carcass characteristics and gastrointestinal tract development of geese. Poult. Sci. 2019, 98, 2133–2138. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zi, X.; Tang, J.; Xu, T.; Gu, L.; Zhou, H. Effects of cassava foliage on feed digestion, meat quality, and antioxidative status of geese. Poult. Sci. 2020, 99, 423–429. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Lv, R.; Zhang, L.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023, 11, 2320. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Wen, T.; Xie, P.; Yang, S.; Niu, G.; Liu, X.; Ding, Z.; Xue, C.; Liu, Y.X.; Shen, Q.; Yuan, J. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. Imeta 2022, 1, e32. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, Z.; Mahmood, T.; Mercier, Y.; Jin, Y.; Huang, X.; Li, K.; Wang, S.; Xia, W.; Wang, S.; et al. Dietary supplementation with 2-hydroxy-4-methyl(thio) butanoic acid and DL-methionine improves productive performance, egg quality and redox status of commercial laying ducks. Anim. Nutr. 2023, 14, 101–110. [Google Scholar] [CrossRef]
- Liu, H.W.; Zhou, D.W. Influence of pasture intake on meat quality, lipid oxidation, and fatty acid composition of geese. J. Anim. Sci. 2013, 91, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Gao, Y.; Ye, H.; Wang, W.; Lin, Z.; Yang, H.; Huang, S.; Yang, L. Effects of dietary fiber and grit on performance, gastrointestinal tract development, lipometabolism, and grit retention of goslings. J. Integr. Agric. 2014, 13, 2731–2740. [Google Scholar] [CrossRef]
- Fang, S.; Liu, J.; Wei, S.; Yang, G.; Chen, X.; Tong, Y.; Guo, P. The integrated analysis of digestive physiology and gastrointestinal microbiota structure in Changle goose. Poult. Sci. 2023, 102, 102588. [Google Scholar] [CrossRef]
- Wu, M.; McNulty, N.P.; Rodionov, D.A.; Khoroshkin, M.S.; Griffin, N.W.; Cheng, J.; Latreille, P.; Kerstetter, R.A.; Terrapon, N.; Henrissat, B.; et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 2015, 350, aac5992. [Google Scholar] [CrossRef]
- Beller, Z.W.; Wesener, D.A.; Seebeck, T.R.; Guruge, J.L.; Byrne, A.E.; Henrissat, S.; Terrapon, N.; Henrissat, B.; Rodionov, D.A.; Osterman, A.L.; et al. Inducible CRISPR-targeted “knockdown” of human gut Bacteroides in gnotobiotic mice discloses glycan utilization strategies. Proc. Natl. Acad. Sci. USA 2023, 120, e2311422120. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.; Xu, S.; Zhao, L.; Han, X.; Xu, X.; Zhao, N.; Hu, L.; Luo, C.; Wang, X.; et al. Multi-omics reveal the gut microbiota-mediated severe foraging environment adaption of small wild ruminants in the Three-River-Source National Park, China. Integr. Zool. 2024, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Huang, Y.; Li, A.; Mi, Q.; Wang, K.; Chen, L.; Zhao, Z.; Zhang, Q.; Bai, X.; Pan, H. Effects of different energy levels in low-protein diet on liver lipid metabolism in the late-phase laying hens through the gut-liver axis. J. Anim. Sci. Biotechnol. 2024, 15, 98. [Google Scholar] [CrossRef]
- Ward, W.O.; Swartz, C.D.; Hanley, N.M.; Whitaker, J.W.; Franzén, R.; DeMarini, D.M. Mutagen structure and transcriptional response: Induction of distinct transcriptional profiles in Salmonella TA100 by the drinking-water mutagen MX and its homologues. Environ. Mol. Mutagen. 2010, 51, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yao, J.; Tu, T.; Yao, B.; Zhang, J. Heterotrophic and autotrophic production of L-isoleucine and L-valine by engineered Cupriavidus necator H16. Bioresour. Technol. 2024, 398, 130538. [Google Scholar] [CrossRef]
- Kiess, A.S.; Cleveland, B.M.; Wilson, M.E.; Klandorf, H.; Blemings, K.P. Protein-induced alterations in murine hepatic alpha-aminoadipate delta-semialdehyde synthase activity are mediated posttranslationally. Nutr. Res. 2008, 28, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Stroobant, V.; Lamosa, P.; Kapanda, C.N.; Lambert, D.M.; Muccioli, G.G.; Poupaert, J.H.; Opperdoes, F.; Van Schaftingen, E. Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase. J. Biol. Chem. 2010, 285, 29826–29833. [Google Scholar] [CrossRef]
- Lodder-Gadaczek, J.; Becker, I.; Gieselmann, V.; Wang-Eckhardt, L.; Eckhardt, M. N-acetylaspartylglutamate synthetase II synthesizes N-acetylaspartylglutamylglutamate. J. Biol. Chem. 2011, 286, 16693–16706. [Google Scholar] [CrossRef]
- Niezen-Koning, K.E.; Wanders, R.J.; Nagel, G.T.; Sewell, A.C.; Heymans, H.S. Measurement of short-chain acyl-CoA dehydrogenase (SCAD) in cultured skin fibroblasts with hexanoyl-CoA as a competitive inhibitor to eliminate the contribution of medium-chain acyl-CoA dehydrogenase. Clin. Chim. Acta 1994, 229, 99–106. [Google Scholar] [CrossRef]
- Stout, J.M.; Boubakir, Z.; Ambrose, S.J.; Purves, R.W.; Page, J.E. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J. 2012, 71, 353–365. [Google Scholar] [CrossRef]
- van der Werf, M.J.; van den Tweel, W.J.; Hartmans, S. Purification and Characterization of Maleate Hydratase from Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 1993, 59, 2823–2829. [Google Scholar] [CrossRef]
- Yadav, M.K.; Sehrawat, N.; Kumar, S.; Sharma, A.K.; Singh, M.; Kumar, A. Malic acid: Fermentative production and applications. Phys. Sci. Rev. 2022, 9, 187–199. [Google Scholar] [CrossRef]
- Sun, L.; Shu, H.; Kou, Y.; Dang, H.; Ai, C. Beneficial effects of the butanoic acid derivative tributyrin on the growth, immunity and intestinal health of large mouth bass (Micropterus salmoides). Aquaculture 2024, 590, 741007. [Google Scholar] [CrossRef]
- Foulon, V.; Sniekers, M.; Huysmans, E.; Asselberghs, S.; Mahieu, V.; Mannaerts, G.P.; Van Veldhoven, P.P.; Casteels, M. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: A revised pathway for the alpha-oxidation of straight chain fatty acids. J. Biol. Chem. 2005, 280, 9802–9812. [Google Scholar] [CrossRef]
- Stack, T.M.M.; Gerlt, J.A. Discovery of novel pathways for carbohydrate metabolism. Curr. Opin. Chem. Biol. 2021, 61, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nan, X.; Zhao, Y.; Jiang, L.; Wang, H.; Hua, D.; Zhang, F.; Wang, Y.; Liu, J.; Yao, J.; et al. Dietary supplementation with inulin improves lactation performance and serum lipids by regulating the rumen microbiome and metabolome in dairy cows. Anim. Nutr. 2021, 7, 1189–1204. [Google Scholar] [CrossRef] [PubMed]
Items | CON | FCL | Fermented Cassava Leaves |
---|---|---|---|
Ingredient (%) | |||
Corn | 59.5 | 55.5 | |
Soybean meal | 20 | 15 | |
Wheat | 6 | 7 | |
Wheat bran | 11 | 12 | |
Fermented cassava leaves | 0 | 7 | |
Limestone powder | 2 | 2 | |
Calcium hydrogen phosphate | 0.2 | 0.2 | |
DL-Met | 0.3 | 0.3 | |
NaCl | 0.2 | 0.2 | |
Premix compound a | 0.8 | 0.8 | |
Total | 100 | 100 | |
Nutrient composition b | |||
Metabolizable energy (MJ/kg) | 11.78 | 11.83 | |
Crude protein (%) | 15.72 | 15.63 | 20.45 |
Crude fiber (%) | 5.24 | 5.33 | 18.21 |
Neutral detergent fiber (%) | 20.55 | 26.18 | 31.24 |
Acid detergent fiber (%) | 12.06 | 17.23 | 22.90 |
Calcium (%) | 0.9 | 0.9 | 1 |
Phosphorus (%) | 0.45 | 0.45 | 0.4 |
Lysine (%) | 0.94 | 0.89 | 1 |
Methionine (%) | 0.56 | 0.5 | 0.1 |
HCN (mg/kg DM) | 0 | 1.7 | 24.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Xu, T.; Zi, X.; Lv, R.; Gu, L. Effects of Feeding Fermented Cassava Leaves on Intestinal Morphology, Cecal Microbiota, and Metabolome in Hybrid Geese. Microorganisms 2025, 13, 660. https://doi.org/10.3390/microorganisms13030660
Li M, Xu T, Zi X, Lv R, Gu L. Effects of Feeding Fermented Cassava Leaves on Intestinal Morphology, Cecal Microbiota, and Metabolome in Hybrid Geese. Microorganisms. 2025; 13(3):660. https://doi.org/10.3390/microorganisms13030660
Chicago/Turabian StyleLi, Mao, Tieshan Xu, Xuejuan Zi, Renlong Lv, and Lihong Gu. 2025. "Effects of Feeding Fermented Cassava Leaves on Intestinal Morphology, Cecal Microbiota, and Metabolome in Hybrid Geese" Microorganisms 13, no. 3: 660. https://doi.org/10.3390/microorganisms13030660
APA StyleLi, M., Xu, T., Zi, X., Lv, R., & Gu, L. (2025). Effects of Feeding Fermented Cassava Leaves on Intestinal Morphology, Cecal Microbiota, and Metabolome in Hybrid Geese. Microorganisms, 13(3), 660. https://doi.org/10.3390/microorganisms13030660