Prevalence and Distribution of Salmonella in Water Bodies in South America: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Subsection: Diversity and Clinical Relevance of Salmonella Serovars in Aquatic Environments Across South America
Host * | Diseases | |||||||
---|---|---|---|---|---|---|---|---|
Serovar | Other | GE | Other | Ref. | ||||
Agona | [45] | |||||||
Anatum | Birds | [46] | ||||||
Bareilly | [47] | |||||||
Braenderup | [47] | |||||||
Corvallis | [48] | |||||||
Derby | Birds | Septicemia | [33] | |||||
Dublin | Sheep | Abortion, Fever, Septicemia | [33] | |||||
Enteritidis | Wild rodents | Fever, Septicemia | [33] | |||||
Give | Ruminants | Splenic abscess | [49] | |||||
Heidelberg | [50] | |||||||
Infantis | [51] | |||||||
Javiana | Various animals | [52] | ||||||
Kentucky | [53] | |||||||
London | [53] | |||||||
Manhattan | [54] | |||||||
Mbandaka | [55] | |||||||
Meleagridis | [56] | |||||||
Montevideo | [57] | |||||||
Newport | [56] | |||||||
Ohio | Bone abscess | [58] | ||||||
Oranienburg | Various animals | [59] | ||||||
Paratyphi B | Fever, Septicemia | [33] | ||||||
Rissen | [60] | |||||||
Typhi | Fever, Septicemia | [33] | ||||||
Typhimurium | Horses | Fever, Septicemia | [33] |
3.2. Distribution of Salmonella in South American Bodies of Water
Country | Body of Water | Geographical Location | Species | Subspecies | Serovar | Ref. |
---|---|---|---|---|---|---|
Argentina | Canal | Maldonado | Salmonella spp. | [67] | ||
Downstream | Merlo | Salmonella spp. | [63] | |||
Lake | Argüello | Salmonella spp. | [68] | |||
River | Club de Regatas Beach | Salmonella spp. | [68] | |||
River | Río de la Plata | Salmonella spp. | [6] | |||
River | Luján | Salmonella enterica | enterica | Enteritidis | [64] | |
River | Luján | Salmonella spp. | [88] | |||
River | Negro | Salmonella spp. | [68] | |||
River | San Luis | Salmonella enterica | enterica | Enteritidis, Newport, Panama, Sandiego, Typhimurium | [66,89] | |
Stream | La choza | Salmonella spp. | [63] | |||
Stream | Napostá | Salmonella spp. | [67] | |||
Stream | Zaimán | Salmonella enterica | enterica | Abaetetuba, Saphra, Anatum, Newport, Saphra | [90] | |
Bolivia | River | Choqueyapu | Salmonella enterica | enterica | [71] | |
River | Jillusaya | Salmonella spp. | [69] | |||
River | La Paz | Salmonella enterica | enterica | O:4 | [91] | |
River | La Paz (Holguín) | Salmonella spp. | [69] | |||
River | La Paz (Mecapaca) | Salmonella spp. | [69] | |||
Brazil | Estuary | Ubicado en São Francisco do Conde | Salmonella spp. | [10] | ||
Estuary | Ubicado en Valença | Salmonella spp. | [10] | |||
Lake | Salmonella enterica | enterica | Ealing, Infantis, O:6,7, O:6,7:e,h:- | [92] | ||
River | Arrudas | Salmonella enterica | enterica | Typhimurium | [72] | |
River | Camboa Grande | Salmonella spp. | [93] | |||
River | Jaguaribe | Salmonella enterica | enterica | Madelia, Panama, Saintpaul | [16] | |
River | Jaguaribe | Salmonella enterica | houtenae | [16] | ||
River | Onça | Salmonella enterica | enterica | Typhimurium | [72] | |
River | São João | Salmonella spp. | [23] | |||
Surface water * | Rio de Janeiro and Paraíba | Salmonella enterica | diarizonae | 35:r:z, 38:(k):z35, 50:r:z, 61:l,v:z, P:k:z35 | [78] | |
Surface water * | Rio de Janeiro and Paraíba | Salmonella enterica | enterica | Abaetetuba, Adelaide, Agona, Albany, Anatum, Bovismorbificans, Braenderup, Brandenburg, Bulbay, Bullbay, Businga, Carrau, Cerro, Corvallis, Freetown, Gaminara, Grumpensis, Hadar, Heidelberg, Infantis, Inganda, Javiana, Jos, Kentucky, Kiambu, Lomita, Madelia, Mbandaka, Meleagridis, Miami, Michigan, Minnesota, Molade, Muenchen, Muenster, Newport, Ohio, Oran, Oranienburg, Oslo, Othmarschen, Panama, Pomona, Poona, Rhydyfelin, Rubislaw, Saintpaul, Sandiego, Santiago or Belem, Saphra, Schwarzengrund, Soerenga, Tucson, Typhimurium, Urbana | [78] | |
Surface water * | Rio de Janeiro and Paraíba | Salmonella enterica | houtenae | [1],53:g,z51:-, 16:z4,z32:-, 18:m,t:-, 21:z4,z23:-, 38:g,z51:-, 43:z4,z23:-, 43:z4,z24:-, 45:g,z51:-, 48:g,z51:-, 50:z4,z23:-, 6,7:z4,z24:- | [78] | |
Surface water * | Rio de Janeiro and Paraíba | Salmonella enterica | salamae | 42:r:- | [78] | |
Chile | Channel | Zanjon de la Aguada | Salmonella enterica | enterica | Typhi | [81] |
Municipality | Calera de Tango (rural) | Salmonella enterica | enterica | Mbandaka | [85] | |
Municipality | Colina (urban) | Salmonella enterica | enterica | Montevideo | [85] | |
Municipality | Isla Maipo (rural) | Salmonella enterica | enterica | Heidelberg, Infantis, Panama | [85] | |
Municipality | Isla Maipo (rural) | Salmonella sp. Group C2 | [85] | |||
Municipality | Isla Maipo (rural) | Salmonella sp. Group C3 | [85] | |||
Municipality | La Florida (urban) | Salmonella enterica | enterica | Enteritidis | [85] | |
Municipality | La Pintana (urban) | Salmonella enterica | enterica | Typhimurium | [85] | |
Municipality | Maria Pinto (rural) | Salmonella enterica | enterica | Anatum, Mbandaka, Typhimurium | [85] | |
Municipality | Melipilla (peri-urban) | Salmonella enterica | diarizonae | [85] | ||
Municipality | Melipilla (peri-urban) | Salmonella enterica | enterica | Agona, Corvallis, Newport | [85] | |
Municipality | Melipilla (rural) | Salmonella enterica | enterica | Corvallis, Enteritidis, Typhimurium | [85] | |
Municipality | Paine (rural) | Salmonella enterica | enterica | Brandenburg, Santiago, Typhimurium | [85] | |
Municipality | Paine (rural) | Salmonella sp. Group C4 | [85] | |||
Municipality | Peñaflor (peri-urban) | Salmonella enterica | enterica | Infantis, Panama | [85] | |
Municipality | Talagante (rural) | Salmonella enterica | enterica | Brandenburg, Senftenberg | [85] | |
Municipality | Talagante (peri-urban) | Salmonella enterica | enterica | Enteritidis, Give, Livingstone, Typhimurium | [85] | |
Municipality | Talagante (peri-urban) | Salmonella sp. Group C1 | [85] | |||
River | Claro | Salmonella spp. | [83] | |||
River | Lontue | Salmonella spp. | [83] | |||
River | Maipo | Salmonella spp. | [83] | |||
River | Mapocho | Salmonella enterica | enterica | Panama, Typhi | [14,81] | |
River | Mapocho | Salmonella spp. | [83] | |||
River | Mataquito | Salmonella spp. | [83] | |||
River | Santiago | Salmonella enterica | enterica | Agona, Anatum, Bareilly, Bredeney, Derby, Enteritidis, Infantis, Livingstone, London, Oranieburg, Paratyphi B, Senftenberg, Thompson, Typhimurium | [9] | |
River | Santiago | Salmonella sp. Group K | [9] | |||
Surface water * | Maule and MR * | Salmonella enterica | diarizonae | 16:z10:e,n,x,z15, 18:i:z, 18:k:z, 18:z10:e,n,x,z15, 48:i:z, 50:r:z, 58:k:z, 61:i:z, 65:(k):z | [78] | |
Surface water * | Maule and MR * | Salmonella enterica | enterica | Adelaide, Agona, Albany, Anatum, Bovismorbificans, Braenderup, Brandenburg, Cerro, Corvallis, Derby, Dublin, Edinburg, Enteritidis, Fresno, Give, Goldcoast, Hadar, Infantis, Javiana, Johannesburg, Kedougou, Kentucky, Livingstone, Manhattan, Mbandaka, Montevideo, Muenchen, Newport, Oranienburg, Panama, Paratyphi B, Rissen, Sandiego, Santiago or Belem, Schwarzengrund, Senftenberg, Soerenga, Stanley, Tennessee, Thompson, Typhimurium, Worthington | [78] | |
Surface water * | Maule and MR * | Salmonella enterica | houtenae | 40:z4,z24:-, 43:z4,z23:-, R:z4,z24:- | [78] | |
Colombia | Beach | Palmarito | Salmonella spp. | [87] | ||
Beach | Puerto Colombia | Salmonella spp. | [87] | |||
Beach | Salgar | Salmonella spp. | [87] | |||
Beach | Santa Veronica | Salmonella spp. | [87] | |||
River | Bogota | Salmonella spp. | [86] | |||
Peru | Beach | La Chira | Salmonella spp. | [94] | ||
River | Huatanay | Salmonella spp. | [17] | |||
River | Surco | Salmonella spp. | [94] | |||
Venezuela | Lagoon | Grande del Obispo | Salmonella spp. | [95] |
3.3. Factors Influencing the Development of Salmonella in Water Bodies
3.3.1. Influence of Temperature on Salmonella Survival and Growth
3.3.2. Precipitation and Its Impact on Salmonella Dispersal
3.3.3. Physicochemical Properties of Water and Salmonella Persistence
3.3.4. Human Activities and Salmonella Contamination in Water
3.4. Isolation, Identification, and Serotyping of Salmonella
3.5. Antimicrobial Susceptibility of Salmonella
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SC1 | Search Component 1 |
SC2 | Search Component 2 |
SC3 | Search Component 3 |
RM | Metropolitan Region |
MDR | multi-resistant organisms |
References
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef] [PubMed]
- Musie, W.; Gonfa, G. Fresh Water Resource, Scarcity, Water Salinity Challenges and Possible Remedies: A Review. Heliyon 2023, 9, e18685. [Google Scholar] [CrossRef] [PubMed]
- King, J.G.; Mace, A.C., Jr. Effects of Recreation on Water Quality. J. Water Pollut. Control Fed. 1974, 46, 2453–2459. [Google Scholar] [PubMed]
- Boutraa, T. Improvement of Water Use Efficiency in Irrigated Agriculture: A Review. J. Agron. 2009, 9, 1–8. [Google Scholar] [CrossRef]
- Mendoza, G.; Ennaanay, D.; Conte, M.; Walter, M.T.; Freyberg, D.; Wolny, S.; Hay, L.; White, S.; Nelson, E.; Solorzano, L. Water Supply as an Ecosystem Service for Hydropower and Irrigation. In Natural Capital; Oxford University Press: Oxford, UK, 2011; pp. 52–72. ISBN 9780199588992. [Google Scholar]
- Díaz, S.M.; Barrios, M.E.; Galli, L.; Cammarata, R.V.; Torres, C.; Fortunato, M.S.; García López, G.; Costa, M.; Sanguino Jorquera, D.G.; Oderiz, S.; et al. Microbiological Hazard Identification in River Waters Used for Recreational Activities. Environ. Res. 2024, 247, 118161. [Google Scholar] [CrossRef]
- Lu, W.; Sarkar, A.; Hou, M.; Liu, W.; Guo, X.; Zhao, K.; Zhao, M. The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China. Land 2022, 11, 80. [Google Scholar] [CrossRef]
- Ma, X.; Li, N.; Yang, H.; Li, Y. Exploring the Relationship between Urbanization and Water Environment Based on Coupling Analysis in Nanjing, East China. Environ. Sci. Pollut. Res. Int. 2022, 29, 4654–4667. [Google Scholar] [CrossRef]
- Cordano, A.M.; Virgilio, R. Relaciones Ecológicas de Salmonella En Chile. Bol. Oficina Sanit. Panam. 1976, 81, 44–49. [Google Scholar]
- Silveira, C.S.D.A.; Sousa, O.V.D.E.; Evangelista-Barreto, N.S. PROPAGATION OF ANTIMICROBIAL RESISTANT Salmonella spp. IN BIVALVE MOLLUSKS FROM ESTUARY AREAS OF BAHIA, BRAZIL. Rev. Caatinga 2016, 29, 450–457. [Google Scholar] [CrossRef]
- Oyedotun, T.D.T.; Ally, N. Environmental Issues and Challenges Confronting Surface Waters in South America: A Review. Environ. Chall. 2021, 3, 100049. [Google Scholar] [CrossRef]
- Billah, M.M.; Rahman, M.S. Salmonella in the Environment: A Review on Ecology, Antimicrobial Resistance, Seafood Contaminations, and Human Health Implications. J. Hazard. Mater. Adv. 2024, 13, 100407. [Google Scholar] [CrossRef]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J., 2nd; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H.; et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Cordano, A.M.; Virgilio, R. Evolution of Drug Resistance in Salmonella Panama Isolates in Chile. Antimicrob. Agents Chemother. 1996, 40, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging Contaminants: A One Health Perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.T.; Sousa, O.V.; Carvalho, E.M.R.; Hofer, E.; Vieira, R.H.S.F. Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil. J. Pathog. 2013, 2013, 685193. [Google Scholar] [CrossRef]
- Castillo De Loayza, D.; Maldonado, T.; Vilca, I. Identification and Quantification of Antibiotic Residues and Evaluation of Microbial Resistance to Antibiotics in Huatanay River Waters in Peru. Pollution 2023, 9, 1236–1250. [Google Scholar] [CrossRef]
- Liu, H.; Whitehouse, C.A.; Li, B. Presence and Persistence of Salmonella in Water: The Impact on Microbial Quality of Water and Food Safety. Front. Public Health 2018, 6, 159. [Google Scholar] [CrossRef]
- Zhang, Y.; Jewett, C.; Gilley, J.; Bartelt-Hunt, S.L.; Snow, D.D.; Hodges, L.; Li, X. Microbial Communities in the Rhizosphere and the Root of Lettuce as Affected by Salmonella-Contaminated Irrigation Water. FEMS Microbiol. Ecol. 2018, 94, fiy135. [Google Scholar] [CrossRef]
- Wang, R.; Guragain, M.; Chitlapilly Dass, S.; Palanisamy, V.; Bosilevac, J.M. Impact of Intense Sanitization on Environmental Biofilm Communities and the Survival of Salmonella Enterica at a Beef Processing Plant. Front. Microbiol. 2024, 15, 1338600. [Google Scholar] [CrossRef]
- Guillén, S.; Nadal, L.; Álvarez, I.; Mañas, P.; Cebrián, G. Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021, 10, 617. [Google Scholar] [CrossRef]
- Stephen, D.M.; Barnett, A.G. Effect of Temperature and Precipitation on Salmonellosis Cases in South-East Queensland, Australia: An Observational Study. BMJ Open 2016, 6, e010204. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.-S. São João River’s Microbiological Profile, Region of the Iguaçu National Park—Preliminary Analysis. 2015. Available online: https://www.researchgate.net/publication/276293648_Sao_Joao_River’s_microbiological_profile_region_of_the_Iguacu_National_Park_-_Preliminary_analysis (accessed on 20 December 2024).
- Ahmed, W.; Hamilton, K.; Toze, S.; Cook, S.; Page, D. A Review on Microbial Contaminants in Stormwater Runoff and Outfalls: Potential Health Risks and Mitigation Strategies. Sci. Total Environ. 2019, 692, 1304–1321. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.O.; Sant’Ana, A.S. Manure-Borne Pathogens as an Important Source of Water Contamination: An Update on the Dynamics of Pathogen Survival/transport as Well as Practical Risk Mitigation Strategies. Int. J. Hyg. Environ. Health 2020, 227, 113524. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Herbst, S.; Rechenburg, A.; Suk, J.E.; Höser, C.; Schreiber, C.; Kistemann, T. Climate Change Impact Assessment of Food- and Waterborne Diseases. Crit. Rev. Environ. Sci. Technol. 2012, 42, 857–890. [Google Scholar] [CrossRef]
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; et al. Over Half of Known Human Pathogenic Diseases Can Be Aggravated by Climate Change. Nat. Clim. Change 2022, 12, 869–875. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef]
- Quan, G.; Xia, P.; Zhao, J.; Zhu, C.; Meng, X.; Yang, Y.; Wang, Y.; Tian, Y.; Ding, X.; Zhu, G. Fimbriae and Related Receptors for Salmonella Enteritidis. Microb. Pathog. 2019, 126, 357–362. [Google Scholar] [CrossRef]
- Alessiani, A.; La Bella, G.; Donatiello, A.; Occhiochiuso, G.; Faleo, S.; Didonna, A.; D’Attoli, L.; Selicato, P.; Pedarra, C.; La Salandra, G.; et al. Occurrence of a New Variant of Salmonella Infantis Lacking Somatic Antigen. Microorganisms 2023, 11, 2274. [Google Scholar] [CrossRef]
- Fàbrega, A.; Vila, J. Salmonella Enterica Serovar Typhimurium Skills to Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef]
- Chen, H.-M.; Wang, Y.; Su, L.-H.; Chiu, C.-H. Nontyphoid Salmonella Infection: Microbiology, Clinical Features, and Antimicrobial Therapy. Pediatr. Neonatol. 2013, 54, 147–152. [Google Scholar] [CrossRef] [PubMed]
- McDonough, P.L.; Fogelman, D.; Shin, S.J.; Brunner, M.A.; Lein, D.H. Salmonella Enterica Serotype Dublin Infection: An Emerging Infectious Disease for the Northeastern United States. J. Clin. Microbiol. 1999, 37, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Gorski, L.; Jay-Russell, M.T.; Liang, A.S.; Walker, S.; Bengson, Y.; Govoni, J.; Mandrell, R.E. Diversity of Pulsed-Field Gel Electrophoresis Pulsotypes, Serovars, and Antibiotic Resistance among Salmonella Isolates from Wild Amphibians and Reptiles in the California Central Coast. Foodborne Pathog. Dis. 2013, 10, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-Analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Omwandho, C.O.A.; Kubota, T. Salmonella Enterica Serovar Enteritidis: A Mini-Review of Contamination Routes and Limitations to Effective Control. Jpn. Agric. Res. Q. 2010, 44, 7–16. [Google Scholar] [CrossRef]
- Rabsch, W.; Andrews, H.L.; Kingsley, R.A.; Prager, R.; Tschäpe, H.; Adams, L.G.; Bäumler, A.J. Salmonella Enterica Serotype Typhimurium and Its Host-Adapted Variants. Infect. Immun. 2002, 70, 2249–2255. [Google Scholar] [CrossRef]
- Zha, L.; Garrett, S.; Sun, J. Salmonella Infection in Chronic Inflammation and Gastrointestinal Cancer. Diseases 2019, 7, 28. [Google Scholar] [CrossRef]
- Verbrugghe, E.; Van Parys, A.; Leyman, B.; Boyen, F.; Haesebrouck, F.; Pasmans, F. HtpG Contributes to Salmonella Typhimurium Intestinal Persistence in Pigs. Vet. Res. 2015, 46, 118. [Google Scholar] [CrossRef]
- Walker, G.T.; Gerner, R.R.; Nuccio, S.-P.; Raffatellu, M. Murine Models of Salmonella Infection. Curr. Protoc. 2023, 3, e824. [Google Scholar] [CrossRef]
- Khanam, F.; Rajib, N.H.; Tonks, S.; Khalequzzaman, M.; Pollard, A.J.; Clemens, J.D.; Qadri, F.; STRATAA study team. Case Report: Salmonella Enterica Serovar Paratyphi B Infection in a Febrile Ill Child during Enhanced Passive Surveillance in an Urban Slum in Mirpur, Dhaka. Am. J. Trop. Med. Hyg. 2020, 103, 231–233. [Google Scholar] [CrossRef]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, H.-L.; Wang, C.; Tang, L.; Wang, X.; Yu, K.-J.; Liu, S.-L. Non-Contiguous Finished Genome Sequence and Description of Salmonella Enterica Subsp. Houtenae Str. RKS3027. Stand. Genom. Sci. 2013, 8, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; McCann, A.; Litrup, E.; Murphy, R.; Cormican, M.; Fanning, S.; Brown, D.; Guttman, D.S.; Brisse, S.; Achtman, M. Neutral Genomic Microevolution of a Recently Emerged Pathogen, Salmonella Enterica Serovar Agona. PLoS Genet. 2013, 9, e1003471. [Google Scholar] [CrossRef] [PubMed]
- Gunn, L.; Finn, S.; Hurley, D.; Bai, L.; Wall, E.; Iversen, C.; Threlfall, J.E.; Fanning, S. Molecular Characterization of Salmonella Serovars Anatum and Ealing Associated with Two Historical Outbreaks, Linked to Contaminated Powdered Infant Formula. Front. Microbiol. 2016, 7, 1664. [Google Scholar] [CrossRef]
- Chiou, C.-S.; Lin, J.-M.; Chiu, C.-H.; Chu, C.-H.; Chen, S.-W.; Chang, Y.-F.; Weng, B.-C.; Tsay, J.-G.; Chen, C.-L.; Liu, C.-H.; et al. Clonal Dissemination of the Multi-Drug Resistant Salmonella Enterica Serovar Braenderup, but Not the Serovar Bareilly, of Prevalent Serogroup C1 Salmonella from Taiwan. BMC Microbiol. 2009, 9, 264. [Google Scholar] [CrossRef]
- Ben Aissa, R.; Al-Gallas, N. Molecular Typing of Salmonella Enterica Serovars Enteritidis, Corvallis, Anatum and Typhimurium from Food and Human Stool Samples in Tunisia, 2001–2004. Epidemiol. Infect. 2008, 136, 468–475. [Google Scholar] [CrossRef]
- Girardin, F.; Mezger, N.; Hächler, H.; Bovier, P.A. Salmonella Serovar Give: An Unusual Pathogen Causing Splenic Abscess. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 272–274. [Google Scholar] [CrossRef]
- Aravena, C.; Valencia, B.; Villegas, A.; Ortega, M.; Fernández, R.A.; Araya, R.P.; Saavedra, A.; Del Campo, R. Caracterización de Cepas Clínicas Y Ambientales de Salmonella Enterica Subsp. Enterica Serovar Heidelberg Aisladas En Chile. Rev. Med. Chil. 2019, 147, 24–33. [Google Scholar] [CrossRef]
- Aviv, G.; Cornelius, A.; Davidovich, M.; Cohen, H.; Suwandi, A.; Galeev, A.; Steck, N.; Azriel, S.; Rokney, A.; Valinsky, L.; et al. Differences in the Expression of SPI-1 Genes Pathogenicity and Epidemiology between the Emerging Salmonella Enterica Serovar Infantis and the Model Salmonella Enterica Serovar Typhimurium. J. Infect. Dis. 2019, 220, 1071–1081. [Google Scholar] [CrossRef]
- Mukherjee, N.; Nolan, V.G.; Dunn, J.R.; Banerjee, P. Sources of Human Infection by Salmonella Enterica Serotype Javiana: A Systematic Review. PLoS ONE 2019, 14, e0222108. [Google Scholar] [CrossRef]
- Fang, L.; Lin, G.; Li, Y.; Lin, Q.; Lou, H.; Lin, M.; Hu, Y.; Xie, A.; Zhang, Q.; Zhou, J.; et al. Genomic Characterization of Salmonella Enterica Serovar Kentucky and London Recovered from Food and Human Salmonellosis in Zhejiang Province, China (2016-2021). Front. Microbiol. 2022, 13, 961739. [Google Scholar] [CrossRef] [PubMed]
- Canvas, M. Salmonella Manhattan (Salmonella enterica subsp. Enterica Serovar Manhattan). Available online: https://microbe-canvas.com/Bacteria/gram-negative-rods/facultative-anaerobic-3/catalase-negative-7/colistin-susceptible-2/salmonella-manhattan.html (accessed on 2 January 2025).
- Benevides, V.P.; Saraiva, M.M.S.; Nascimento, C.F.; Delgado-Suárez, E.J.; Oliveira, C.J.B.; Silva, S.R.; Miranda, V.F.O.; Christensen, H.; Olsen, J.E.; Berchieri Junior, A. Genomic Features and Phylogenetic Analysis of Antimicrobial-Resistant Salmonella Mbandaka ST413 Strains. Microorganisms 2024, 12, 312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, C.; Hsu, C.-H.; Tyson, G.H.; Strain, E.; Tate, H.; Tran, T.-T.; Abbott, J.; McDermott, P.F. Comparative Genomic Analysis of 450 Strains of Salmonella Enterica Isolated from Diseased Animals. Genes 2020, 11, 1025. [Google Scholar] [CrossRef] [PubMed]
- Bugarel, M.; Cook, P.W.; den Bakker, H.C.; Harhay, D.; Nightingale, K.K.; Loneragan, G.H. Complete Genome Sequences of Four Salmonella Enterica Strains (including Those of Serotypes Montevideo, Mbandaka, and Lubbock) Isolated from Peripheral Lymph Nodes of Healthy Cattle. Microbiol. Resour. Announc. 2019, 8, e01450-18. [Google Scholar] [CrossRef]
- Kato, H.; Ueda, A.; Tsukiji, J.; Sano, K.; Yamada, M.; Ishigatsubo, Y. Salmonella Enterica Serovar Ohio Septic Arthritis and Bone Abscess in an Immunocompetent Patient: A Case Report. J. Med. Case Rep. 2012, 6, 204. [Google Scholar] [CrossRef]
- Asakura, H.; Watarai, M.; Shirahata, T.; Makino, S.-I. Viable but Nonculturable Salmonella Species Recovery and Systemic Infection in Morphine-Treated Mice. J. Infect. Dis. 2002, 186, 1526–1529. [Google Scholar] [CrossRef]
- Zhou, A.; Li, J.; Xu, Z.; Ni, J.; Guo, J.; Yao, Y.-F.; Wu, W. Whole-Genome Comparative and Pathogenicity Analysis of Salmonella Enterica Subsp. Enterica Serovar Rissen. G3 2020, 10, 2159–2170. [Google Scholar] [CrossRef]
- García-Alonso, J.; Lercari, D.; Defeo, O. Río de La Plata: A Neotropical Estuarine System. In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–56. ISBN 9780128140031. [Google Scholar]
- Basualdo, J.; Pezzani, B.; De Luca, M.; Córdoba, A.; Apezteguía, M. Screening of the Municipal Water System of La Plata, Argentina, for Human Intestinal Parasites. Int. J. Hyg. Environ. Health 2000, 203, 177–182. [Google Scholar] [CrossRef]
- López, O.C.F.; Duverne, L.B.; Mazieres, J.O.; Salibián, A. Microbiological Pollution of Surface Water in the Upper-Middle Basin of the Reconquista River (Argentina): 2010-2011 Monitoring. Int. J. Environ. Health 2013, 6, 276. [Google Scholar] [CrossRef]
- Anselmo, R.J.; Barrios, H.A. Nuevos Perfiles Genéticos de Salmonella Enteritidis Identificados En Luján, Argentina. CIT Inform. Tecnol. 2012, 23, 87–94. [Google Scholar] [CrossRef]
- Fegan, N.; McAuley, C.M.; Gray, J.A.; Duffy, L.L.; Namvar, A.; Warriner, K. Current Trends in Zoonoses and Foodborne Pathogens Linked to the Consumption of Meat. In New Aspects of Meat Quality; Elsevier: Amsterdam, The Netherlands, 2022; pp. 717–754. ISBN 9780323858793. [Google Scholar]
- Pastor, A.; Varela, P.; Bianchi, V.; Durando, P. CALIDAD BACTERIOLÓGICA DEL AGUA DEL RÍO SAN JUAN EN ZONAS ALEDAÑAS A LA DESEMBOCADURA DEL ARROYO LOS TAPONES (SAN JUAN, ARGENTINA). Nat. Neotrop. 2015, 1, 7–24. [Google Scholar] [CrossRef]
- Streitenberger, M.E.; Baldini, M.D. APORTE DE LOS AFLUENTES A LA CONTAMINACIÓN FECAL DEL ESTUARIO DE BAHÍA BLANCA, ARGENTINA. Rev. Int. Contam. Ambient. 2016, 32, 243–248. [Google Scholar] [CrossRef]
- Merino, L.A.; Tracogna, M.F.; Lösch, L.S.; Alonso, J.M. Detection and Characterization of Salmonella spp. in Recreational Aquatic Environments in the Northeast of Argentina. Ambiente Agua—Interdiscip. J. Appl. Sci. 2013, 8, 18–26. [Google Scholar] [CrossRef]
- Poma, V.; Mamani, N.; Iñiguez, V. Impact of Urban Contamination of the La Paz River Basin on Thermotolerant Coliform Density and Occurrence of Multiple Antibiotic Resistant Enteric Pathogens in River Water, Irrigated Soil and Fresh Vegetables. Springerplus 2016, 5, 499. [Google Scholar] [CrossRef]
- Ginn, O.; Nichols, D.; Rocha-Melogno, L.; Bivins, A.; Berendes, D.; Soria, F.; Andrade, M.; Deshusses, M.A.; Bergin, M.; Brown, J. Antimicrobial Resistance Genes Are Enriched in Aerosols near Impacted Urban Surface Waters in La Paz, Bolivia. Environ. Res. 2021, 194, 110730. [Google Scholar] [CrossRef]
- Guzman-Otazo, J.; Gonzales-Siles, L.; Poma, V.; Bengtsson-Palme, J.; Thorell, K.; Flach, C.-F.; Iñiguez, V.; Sjöling, Å. Diarrheal Bacterial Pathogens and Multi-Resistant Enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS ONE 2019, 14, e0210735. [Google Scholar] [CrossRef]
- Santana, Y.X.; Souza, E.; Ferreira, M.D.D. Drug Resistance and Colicinogeny of Salmonella Typhimurium Strains Isolated from Sewage-Contamined Surface Water and Humans in Belo Horizonte. Brazil. Rev. Microbiol. 1989, 20, 41–49. [Google Scholar]
- Mahagamage, M.G.Y.L.; Pathirage, M.V.S.C.; Manage, P.M. Contamination Status of Salmonella spp., Shigella spp. and Campylobacter spp. in Surface and Groundwater of the Kelani River Basin, Sri Lanka. Water 2020, 12, 2187. [Google Scholar] [CrossRef]
- Kich, J.D.; Schwarz, P.; Eduardo Silva, L.; Coldebella, A.; Piffer, I.A.; Vizzoto, R.; Ribeiro de Itapema Cardoso, M. Development and Application of an Enzyme-Linked Immunosorbent Assay to Detect Antibodies against Prevalent Salmonella Serovars in Swine in Southern Brazil. J. Vet. Diagn. Investig. 2007, 19, 510–517. [Google Scholar] [CrossRef]
- Pereira, C.S.; Medeiros, L.M.; Costa, R.G.; Festivo, M.L.; dos Reis, E.M.F.; Seki, L.M.; Rodrigues, D. Phage Typing and Multidrug Resistance Profile in S. Typhimurium Isolated from Different Sources in Brazil from 1999 to 2004. Braz. J. Microbiol. 2007, 38, 385–390. [Google Scholar] [CrossRef]
- Kich, J.D.; Coldebella, A.; Morés, N.; Nogueira, M.G.; Cardoso, M.; Fratamico, P.M.; Call, J.E.; Fedorka-Cray, P.; Luchansky, J.B. Prevalence, Distribution, and Molecular Characterization of Salmonella Recovered from Swine Finishing Herds and a Slaughter Facility in Santa Catarina, Brazil. Int. J. Food Microbiol. 2011, 151, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Palhares, J.C.P.; Kich, J.D.; Bessa, M.C.; Biesus, L.L.; Berno, L.G.; Triques, N.J. Salmonella and Antimicrobial Resistance in an Animal-Based Agriculture River System. Sci. Total Environ. 2014, 472, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Moreno-Switt, A.I.; Reyes-Jara, A.; Delgado Suarez, E.; Adell, A.D.; Oliveira, C.J.B.; Bonelli, R.R.; Huang, X.; Brown, E.; Allard, M.; et al. A Multicenter Genomic Epidemiological Investigation in Brazil, Chile, and Mexico Reveals the Diversity and Persistence of Salmonella Populations in Surface Waters. MBio 2024, 15, e0077724. [Google Scholar] [CrossRef]
- Castañeda-Ruelas, G.M.; Burgeño-Román, A.; Jiménez-Edeza, M. Genetics and Physiology of Salmonella Houtenae Isolated from a River in Mexico Provides Insight into the Aquatic Habitat Influence on Its Adaptation and Pathogenesis. Infect. Genet. Evol. 2020, 83, 104326. [Google Scholar] [CrossRef]
- Chandry, P.S.; Gladman, S.; Moore, S.C.; Seemann, T.; Crandall, K.A.; Fegan, N. A Genomic Island in Salmonella Enterica Ssp. Salamae Provides New Insights on the Genealogy of the Locus of Enterocyte Effacement. PLoS ONE 2012, 7, e41615. [Google Scholar] [CrossRef]
- Sears, S.D.; Ferreccio, C.; Levine, M.M.; Cordano, A.M.; Monreal, J.; Black, R.E.; D’Ottone, K.; Rowe, B. The Use of Moore Swabs for Isolation of Salmonella Typhi from Irrigation Water in Santiago, Chile. J. Infect. Dis. 1984, 149, 640–642. [Google Scholar] [CrossRef]
- Ochoa Garza, J.A.; Gómez Urquijo, M.; Paredes Figueroa, M.G. The Integral Management of the Wastewater Treatment Sector in Mexico Using a Circular Economy Approach. Recycling 2024, 9, 84. [Google Scholar] [CrossRef]
- Toro, M.; Weller, D.; Ramos, R.; Diaz, L.; Alvarez, F.P.; Reyes-Jara, A.; Moreno-Switt, A.I.; Meng, J.; Adell, A.D. Environmental and Anthropogenic Factors Associated with the Likelihood of Detecting Salmonella in Agricultural Watersheds. Environ. Pollut. 2022, 306, 119298. [Google Scholar] [CrossRef]
- Borgias, S.; Bauer, C.J. Trajectory of a Divided River Basin: Law, Conflict, and Cooperation along Chile’s Maipo River. Water Policy 2018, 20, 127–145. [Google Scholar] [CrossRef]
- Martínez, M.C.; Retamal, P.; Rojas-Aedo, J.F.; Fernández, J.; Fernández, A.; Lapierre, L. Multidrug-Resistant Outbreak-Associated Salmonella Strains in Irrigation Water from the Metropolitan Region, Chile. Zoonoses Public Health 2017, 64, 299–304. [Google Scholar] [CrossRef]
- Henao-Herreño, L.X.; López-Tamayo, A.M.; Ramos-Bonilla, J.P.; Haas, C.N.; Husserl, J. Risk of Illness with Salmonella due to Consumption of Raw Unwashed Vegetables Irrigated with Water from the Bogotá River. Risk Anal. 2017, 37, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Soto-Varela, Z.E.; Rosado-Porto, D.; Bolívar-Anillo, H.J.; Pichón González, C.; Granados Pantoja, B.; Estrada Alvarado, D.; Anfuso, G. Preliminary Microbiological Coastal Water Quality Determination along the Department of Atlántico (Colombia): Relationships with Beach Characteristics. J. Mar. Sci. Eng. 2021, 9, 122. [Google Scholar] [CrossRef]
- Anselmo, R.J.; Viora, S.; Barrios, H.; Terragno, R.; Alcaín, A.; Caffer, M.I. Serotypes of Salmonella isolated from the Luján river, Argentina. Rev. Latinoam. Microbiol. 1999, 41, 77–82. [Google Scholar] [PubMed]
- Cortínez, I.D.; Velázquez, L.D.; Escudero, M.E.; Caffer, M.I.; Cobo, M.F.; Guzmán, A.D. Salmonella serotypes from surface waters in san luis, Argentina. Rev. Microbiol. 1995, 26, 180–185. [Google Scholar]
- Benassi, F.O.; Vázquez, M.; Eiguer, F. Salmonella: Su Incidencia En Aguas Del Arroyo Zaimán [Salmonella: Its Incidence in Waters of the Zaimán Arroyo. Rev. Argent. Microbiol. 1983, 15, 169–175. [Google Scholar] [PubMed]
- Ohno, A.; Marui, A.; Castro, E.S.; Reyes, A.A.; Elio-Calvo, D.; Kasitani, H.; Ishii, Y.; Yamaguchi, K. Enteropathogenic Bacteria in the La Paz River of Bolivia. Am. J. Trop. Med. Hyg. 1997, 57, 438–444. [Google Scholar] [CrossRef]
- Corrêa, F.E.L.; da Silva Dantas, F.G.; Grisolia, A.B.; Crispim, B.d.A.; Oliveira, K.M.P. Identification of Class 1 and 2 Integrons from Clinical and Environmental Salmonella Isolates. J. Infect. Dev. Ctries. 2014, 8, 1518–1524. [Google Scholar] [CrossRef]
- de Lima Grisi, T.C.S.; Gorlach-Lira, K. The Abundance of Some Pathogenic Bacteria in Mangrove Habitats of Paraiba Do Norte Estuary and Crabmeat Contamination of Mangrove Crab Ucides Cordatus. Braz. Arch. Biol. Technol. 2010, 53, 227–234. [Google Scholar] [CrossRef]
- Plenge, O.; Fernando, R.; Reyes, J.; Carlos, R. Presencia de Bacterias Patógenas En Las Aguas de La Desembocadura Del Río Surco Y La Playa La Chira; Junio: Lima, Perú, 2009. [Google Scholar]
- González, M.; Crucita, B.; Vásquez-Suárez, A. Calidad Microbiológica de La Ostra Crassostrea Rhizophorae Y Aguas de Extracción, Estado Sucre, Venezuela. Rev. Científica 2009, 19, 659–666. [Google Scholar]
- Gonzalez Pedraza, J.; Pereira Sanandres, N.; Soto Varela, Z.; Hernández Aguirre, E.; Villarreal Camacho, J. Aislamiento Microbiológico de Salmonella spp. Y Herramientas Moleculares Para Su Detección. Salud Uninorte 2014, 30, 73–94. [Google Scholar] [CrossRef]
- Rychlik, I.; Barrow, P.A. Salmonella Stress Management and Its Relevance to Behaviour during Intestinal Colonisation and Infection. FEMS Microbiol. Rev. 2005, 29, 1021–1040. [Google Scholar] [CrossRef] [PubMed]
- Andino, A.; Hanning, I. Salmonella Enterica: Survival, Colonization, and Virulence Differences among Serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef]
- Elpers, L.; Deiwick, J.; Hensel, M. Effect of Environmental Temperatures on Proteome Composition of Salmonella Enterica Serovar Typhimurium. Mol. Cell. Proteom. 2022, 21, 100265. [Google Scholar] [CrossRef]
- Akil, L.; Ahmad, H.A.; Reddy, R.S. Effects of Climate Change on Salmonella Infections. Foodborne Pathog. Dis. 2014, 11, 974–980. [Google Scholar] [CrossRef]
- Silva, R.R.; Moraes, C.A.; Bessan, J.; Vanetti, M.C.D. Validation of a Predictive Model Describing Growth of Salmonella in Enteral Feeds. Braz. J. Microbiol. 2009, 40, 149–154. [Google Scholar] [CrossRef]
- Bell, R.L.; Kase, J.A.; Harrison, L.M.; Balan, K.V.; Babu, U.; Chen, Y.; Macarisin, D.; Kwon, H.J.; Zheng, J.; Stevens, E.L.; et al. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Aström, J.; Petterson, S.; Bergstedt, O.; Pettersson, T.J.R.; Stenström, T.A. Evaluation of the Microbial Risk Reduction due to Selective Closure of the Raw Water Intake before Drinking Water Treatment. J. Water Health 2007, 5 (Suppl. S1), 81–97. [Google Scholar] [CrossRef]
- D’Souza, R.M.; Becker, N.G.; Hall, G.; Moodie, K.B.A. Does Ambient Temperature Affect Foodborne Disease? Epidemiology 2004, 15, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bi, P.; Hiller, J.E. Climate Variations and Salmonella Infection in Australian Subtropical and Tropical Regions. Sci. Total Environ. 2010, 408, 524–530. [Google Scholar] [CrossRef]
- Awad, D.A.; Masoud, H.A.; Hamad, A. Climate Changes and Food-Borne Pathogens: The Impact on Human Health and Mitigation Strategy. Clim. Change 2024, 177, 1–25. [Google Scholar] [CrossRef]
- Jung, A.-V.; Le Cann, P.; Roig, B.; Thomas, O.; Baurès, E.; Thomas, M.-F. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change. Int. J. Environ. Res. Public Health 2014, 11, 4292–4310. [Google Scholar] [CrossRef] [PubMed]
- Brookes, J.D.; Hipsey, M.R.; Burch, M.D.; Regel, R.H.; Linden, L.G.; Ferguson, C.M.; Antenucci, J.P. Relative Value of Surrogate Indicators for Detecting Pathogens in Lakes and Reservoirs. Environ. Sci. Technol. 2005, 39, 8614–8621. [Google Scholar] [CrossRef] [PubMed]
- Wyer, M.D.; Kay, D.; Watkins, J.; Davies, C.; Kay, C.; Thomas, R.; Porter, J.; Stapleton, C.M.; Moore, H. Evaluating Short-Term Changes in Recreational Water Quality during a Hydrograph Event Using a Combination of Microbial Tracers, Environmental Microbiology, Microbial Source Tracking and Hydrological Techniques: A Case Study in Southwest Wales, UK. Water Res. 2010, 44, 4783–4795. [Google Scholar] [CrossRef]
- Steele, M.; Odumeru, J. Irrigation Water as Source of Foodborne Pathogens on Fruit and Vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef]
- Wilkes, G.; Edge, T.A.; Gannon, V.P.J.; Jokinen, C.; Lyautey, E.; Neumann, N.F.; Ruecker, N.; Scott, A.; Sunohara, M.; Topp, E.; et al. Associations among Pathogenic Bacteria, Parasites, and Environmental and Land Use Factors in Multiple Mixed-Use Watersheds. Water Res. 2011, 45, 5807–5825. [Google Scholar] [CrossRef]
- Wanjugi, P.; Harwood, V.J. The Influence of Predation and Competition on the Survival of Commensal and Pathogenic Fecal Bacteria in Aquatic Habitats: Biotic Stressors Affect FIB and Pathogen Survival. Environ. Microbiol. 2013, 15, 517–526. [Google Scholar] [CrossRef]
- Grzymajło, K.; Dutkiewicz, A.; Czajkowska, J.; Carolak, E.; Aleksandrowicz, A.; Waszczuk, W. Salmonella Adhesion Is Decreased by Hypoxia due to Adhesion and Motility Structure Crosstalk. Vet. Res. 2023, 54, 99. [Google Scholar] [CrossRef]
- Reis, J.O.; Cavalcante, C.B.; Nunes, N.B.; Neto, A.C.; Machado, M.A.M.; Porto, Y.D.; Castro, V.S.; Figueiredo, E.E.d.S. Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population. Microbiol. Res. 2024, 15, 342–353. [Google Scholar] [CrossRef]
- McAllister, T.A.; Topp, E. Role of Livestock in Microbiological Contamination of Water: Commonly the Blame, but Not Always the Source. Anim. Front. 2012, 2, 17–27. [Google Scholar] [CrossRef]
- Islam, M.; Morgan, J.; Doyle, M.P.; Phatak, S.C.; Millner, P.; Jiang, X. Fate of Salmonella Enterica Serovar Typhimurium on Carrots and Radishes Grown in Fields Treated with Contaminated Manure Composts or Irrigation Water. Appl. Environ. Microbiol. 2004, 70, 2497–2502. [Google Scholar] [CrossRef]
- Singh, N.; Poonia, T.; Siwal, S.S.; Srivastav, A.L.; Sharma, H.K.; Mittal, S.K. Challenges of Water Contamination in Urban Areas. In Urban Water Crisis and Management—Strategies for Sustainable Development; Elsevier: Amsterdam, The Netherlands, 2022; pp. 173–202. ISBN 9780323918381. [Google Scholar]
- Rose, J.B.; Huffman, D.E.; Riley, K.; Farrah, S.R.; Lukasik, J.O.; Hamann, C.L. Reduction of Enteric Microorganisms at the Upper Occoquan Sewage Authority Water Reclamation Plant. Water Environ. Res. 2001, 73, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Howard, I.; Espigares, E.; Lardelli, P.; Martín, J.L.; Espigares, M. Evaluation of Microbiological and Physicochemical Indicators for Wastewater Treatment. Environ. Toxicol. 2004, 19, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Stec, J.; Kosikowska, U.; Mendrycka, M.; Stępień-Pyśniak, D.; Niedźwiedzka-Rystwej, P.; Bębnowska, D.; Hrynkiewicz, R.; Ziętara-Wysocka, J.; Grywalska, E. Opportunistic Pathogens of Recreational Waters with Emphasis on Antimicrobial Resistance-A Possible Subject of Human Health Concern. Int. J. Environ. Res. Public Health 2022, 19, 7308. [Google Scholar] [CrossRef] [PubMed]
- Benassi, F.O.; Martínez Vázquez, F.; Eiguer, T.; Bendersky, S.; Martos, M.A. Isolation of new serovars of Salmonella in streams of water. Rev. Argent. Microbiol. 1985, 17, 149–155. [Google Scholar]
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European Regulations on the Use of Antibiotics in Veterinary Medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
- Gehring, R.; Mochel, J.P.; Schmerold, I. Understanding the Background and Clinical Significance of the WHO, WOAH, and EMA Classifications of Antimicrobials to Mitigate Antimicrobial Resistance. Front. Vet. Sci. 2023, 10, 1153048. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Ma, L.; Zhang, G.; Li, C.; Zhang, C.; Li, Y.; Zeng, X.; Li, Y.; Dong, N. Valnemulin Restores Colistin Sensitivity against Multidrug-Resistant Gram-Negative Pathogens. Commun. Biol. 2024, 7, 1122. [Google Scholar] [CrossRef]
- Guo, X.; Chen, H.; Tong, Y.; Wu, X.; Tang, C.; Qin, X.; Guo, J.; Li, P.; Wang, Z.; Liu, W.; et al. A Review on the Antibiotic Florfenicol: Occurrence, Environmental Fate, Effects, and Health Risks. Environ. Res. 2024, 244, 117934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, M.S.G.; Palharini, R.S.A.; Monteiro, F.F.; Ayala, S.; Undurraga, E.A. Prevalence and Distribution of Salmonella in Water Bodies in South America: A Systematic Review. Microorganisms 2025, 13, 489. https://doi.org/10.3390/microorganisms13030489
Reyes MSG, Palharini RSA, Monteiro FF, Ayala S, Undurraga EA. Prevalence and Distribution of Salmonella in Water Bodies in South America: A Systematic Review. Microorganisms. 2025; 13(3):489. https://doi.org/10.3390/microorganisms13030489
Chicago/Turabian StyleReyes, Makarena Sofia Gonzalez, Rayana Santos Araujo Palharini, Felipe Ferreira Monteiro, Salvador Ayala, and Eduardo A. Undurraga. 2025. "Prevalence and Distribution of Salmonella in Water Bodies in South America: A Systematic Review" Microorganisms 13, no. 3: 489. https://doi.org/10.3390/microorganisms13030489
APA StyleReyes, M. S. G., Palharini, R. S. A., Monteiro, F. F., Ayala, S., & Undurraga, E. A. (2025). Prevalence and Distribution of Salmonella in Water Bodies in South America: A Systematic Review. Microorganisms, 13(3), 489. https://doi.org/10.3390/microorganisms13030489