Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Culture Conditions
2.2. Gene Deletion of Ugd
2.3. Complementation of the Ugd Deletion Mutant
2.4. Cellulose Degradation and Cell Molity Assay
2.5. Detection of Endoglucanases by Zymography
2.6. Extraction of Proteins Fractions and Western Blot Analysis
2.7. Analysis of Monosaccharide Components
2.8. Enrichment of Glycoproteins
2.9. Protein Expression in Escherichia coli
2.10. Extraction of LPS
2.11. Disk Diffusion Susceptibility Assay
3. Results
3.1. Bioinformatic Analysis and Deletion of Ugd
3.2. Growth of the ∆Ugd Mutant Was Defective in PY6 Medium
3.3. Deletion of Ugd Resulted in Defects in Cellulose Degradation and Cell Motility
3.4. Ugd Was Involved in Protein Glycosylation in C. hutchinsonii
3.5. The Effect of Ugd Deletion on Monosaccharide Components of Glycoproteins
3.6. Ugd Was Involved in the Glycosylation and Location of Cel9A
3.7. Ugd Is Important for the Synthesis of LPS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichler, J. Protein glycosylation. Curr. Biol. 2019, 29, R229–R231. [Google Scholar] [CrossRef] [PubMed]
- Linton, D.; Allan, E.; Karlyshev, A.V. Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol. 2002, 43, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.W.; Hsieh, K.S.; Hung, J.S. Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins. Gut Microbes 2022, 14, 2130650. [Google Scholar] [CrossRef]
- Schirm, M.; Arora, S.K.; Verma, A. Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa. J. Bacteriol. 2004, 186, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Grass, S.; Lichti, C.F.; Townsend, R.R. The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog. 2010, 6, e1000919. [Google Scholar] [CrossRef]
- Schirm, M.; Kalmokoff, M.; Aubry, A. Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. J. Bacteriol. 2004, 186, 6721–6727. [Google Scholar] [CrossRef]
- Valiente, E.; Bouche, L.; Hitchen, P. Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation. J. Biol. Chem. 2016, 291, 25450–25461. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, F.; Yang, T. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat. Commun. 2014, 5, 4339. [Google Scholar] [CrossRef]
- Fletcher, C.M.; Coyne, M.J.; Villa, O.F. A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 2009, 137, 321–331. [Google Scholar] [CrossRef]
- Kishi, M.; Hasegawa, Y.; Nagano, K. Identification and characterization of novel glycoproteins involved in growth and biofilm formation by Porphyromonas gingivalis. Mol. Oral Microbiol. 2012, 27, 458–470. [Google Scholar] [CrossRef]
- Qi, F.F.; Zhang, W.X.; Zhang, F.J. Deciphering the Effect of the Different N-Glycosylation Sites on the Secretion, Activity, and Stability of Cellobiohydrolase I from Trichoderma reesei. Appl. Environ. Microbiol. 2014, 80, 3962–3971. [Google Scholar] [CrossRef] [PubMed]
- Song, W.X.; Zhuang, X.K.; Tan, Y.H. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. Eng. Microbiol. 2022, 2, 100038. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.S.; Huang, Q.; Tan, R.H. Glycosyltransferase-Related Protein GtrA Is Essential for Localization of Type IX Secretion System Cargo Protein Cellulase Cel9A and Affects Cellulose Degradation in Cytophaga hutchinsonii. Appl. Environ. Microbiol. 2022, 88, e01076-22. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.S.; Tan, Y.H.; Song, W.X. Cytophaga hutchinsonii Glycosylation of a Cargo Protein C-Terminal Domain Recognized by the Type IX Secretion System in Affects Protein Secretion and Localization. Appl. Environ. Microbiol. 2022, 88, e01606-21. [Google Scholar] [CrossRef]
- Ji, X.F.; Wang, Y.; Zhang, C. Novel outer membrane protein involved in cellulose and cellooligosaccharide degradation by Cytophaga hutchinsonii. Appl. Environ. Microbiol. 2014, 80, 4511–4518. [Google Scholar] [CrossRef]
- Taillefer, M.; Arntzen, M.O.; Henrissat, B. Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling. Msystems 2018, 3, e00240-18. [Google Scholar] [CrossRef]
- Gao, L.J.; Guan, Z.W.; Gao, P. Cytophaga hutchinsonii gldN, Encoding a Core Component of the Type IX Secretion System, Is Essential for Ion Assimilation, Cellulose Degradation, and Cell Motility. Appl. Environ. Microbiol. 2020, 86, e00242-20. [Google Scholar] [CrossRef]
- Gao, L.J.; Tan, Y.H.; Zhang, W.C. Cytophaga hutchinsonii SprA and SprT Are Essential Components of the Type IX Secretion System Required for Ca2+ Acquisition, Cellulose Degradation, and Cell Motility. Front. Microbiol. 2021, 12, 628555. [Google Scholar] [CrossRef]
- Zhao, D.; Song, W.X.; Wang, S. Identification of the Type IX Secretion System Component, PorV (CHU_3238), Involved in Secretion and Localization of Proteins in Cytophaga hutchinsonii. Front. Microbiol. 2021, 12, 742673. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Zhu, Y.T.; Brendel, C.J. Diverse C-Terminal Sequences Involved in Protein Secretion. J. Bacteriol. 2017, 199, e00884-16. [Google Scholar] [CrossRef]
- Seers, C.A.; Slakeski, N.; Veith, P.D. The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J. Bacteriol. 2006, 188, 6376–6386. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.; Sato, K.; Yukitake, H. Por Secretion System-Dependent Secretion and Glycosylation of Hemin-Binding Protein 35. PLoS ONE 2011, 6, e21372. [Google Scholar] [CrossRef] [PubMed]
- Egger, S.; Chaikuad, A.; Kavanagh, K.L. UDP-glucose dehydrogenase: Structure and function of a potential drug target. Biochem. Soc. Trans. 2010, 38, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Sterky, F.; Amini, B. Molecular cloning and characterization of a cDNA encoding poplar UDP-glucose dehydrogenase, a key gene of hemicellulose/pectin formation. BBA-Gene Struct. Expr. 2002, 1576, 53–58. [Google Scholar] [CrossRef]
- Mainprize, I.L.; Bean, J.D.; Bouwman, C. The UDP-glucose Dehydrogenase of K-12 Displays Substrate Inhibition by NAD That Is Relieved by Nucleotide Triphosphates. J. Biol. Chem. 2013, 288, 23064–23074. [Google Scholar] [CrossRef]
- Sato, K.; Kido, N.; Murakami, Y. Lipopolysaccharide biosynthesis-related genes are required for colony pigmentation of Porphyromonas gingivalis. Microbiology 2009, 155, 1282–1293. [Google Scholar] [CrossRef]
- Cahill, S.M.; Arbatsky, N.P.; Shashkov, A.S. Elucidation of the K32 Capsular Polysaccharide Structure and Characterization of the KL32 Gene Cluster of Acinetobacter baumannii LUH5549. Biochemistry 2020, 85, 241–247. [Google Scholar] [CrossRef]
- Ariyakumar, D.S.; Nishiguchi, M.K. Characterization of two host-specific genes, mannose-sensitive hemagglutinin (mshA) and uridyl phosphate dehydrogenase (UDPDH) that are involved in the Vibrio fischeri-Euprymna tasmanica mutualism. FEMS Microbiol. Lett. 2009, 299, 65–73. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.Q.; Cao, J. FLP-FRT-based method to obtain unmarked deletions of CHU_3237 (porU) and large genomic fragments of Cytophaga hutchinsonii. Appl. Environ. Microbiol. 2014, 80, 6037–6045. [Google Scholar] [CrossRef]
- Ben Guerrero, E.; Arneodo, J.; Campanha, R.B. Prospection and Evaluation of (Hemi) Cellulolytic Enzymes Using Untreated and Pretreated Biomasses in Two Argentinean Native Termites. PLoS ONE 2015, 10, e0136573. [Google Scholar] [CrossRef]
- Zhong, M.Y.; Yan, Y.; Yuan, H.S. Astragalus mongholicus polysaccharides ameliorate hepatic lipid accumulation and inflammation as well as modulate gut microbiota in NAFLD rats. Food Funct. 2022, 13, 7287–7301. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.H.; Kim, J.Y.; Yoo, J.S. Quantitative Mass Spectrometric Analysis of Glycoproteins Combined with Enrichment Methods. Mass Spectrom. Rev. 2015, 34, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.R.; Goldberg, J.B. Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction. JoVE-J. Vis. Exp. 2012, 63, e3916. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Wang, S. A Disulfide Oxidoreductase (CHU_1165) Is Essential for Cellulose Degradation by Affecting Outer Membrane Proteins in Cytophaga hutchinsonii. Appl. Environ. Microbiol. 2020, 86, e02789-19. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Bruce, D.C.; Challacombe, J.F. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl. Environ. Microbiol. 2007, 73, 3536–3546. [Google Scholar] [CrossRef]
- Goumenou, A.; Delaunay, N.; Pichon, V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front. Mol. Biosci. 2021, 8, 746822. [Google Scholar] [CrossRef]
- Li, S.; Meng, J.; Xu, F. IgG Glycosylation Profiling of Peripheral Artery Diseases with Lectin Microarray. J. Clin. Med. 2022, 11, 5727. [Google Scholar] [CrossRef]
- Gabarrini, G.; Heida, R.; van Ieperen, N. Dropping anchor: Attachment of peptidylarginine deiminase A-LPS to secreted outer membrane vesicles of Porphyromonas gingivalis. Sci. Rep. 2018, 8, 8949. [Google Scholar] [CrossRef]
- Sperandeo, P.; Martorana, A.M.; Polissi, A. Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria. Subcell. Biochem. 2019, 92, 9–37. [Google Scholar] [CrossRef]
- Barbier, P.; Rochat, T.; Mohammed, H.H. The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2020, 86, e00799-20. [Google Scholar] [CrossRef]
- Kharade, S.S.; McBride, M.J. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J. Bacteriol. 2014, 196, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhu, Y.T.; LaFrentz, B.R. The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium columnare. Appl. Environ. Microbiol. 2017, 83, e01769-17. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Y.F.; Scott, N.E.; Molinaro, A. A general protein glycosylation machinery conserved in species improves bacterial fitness and elicits glycan immunogenicity in humans. J. Biol. Chem. 2019, 294, 13248–13268. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.T.; Han, L.L.; Hefferon, K.L. Periplasmic Cytophaga hutchinsonii Endoglucanases Are Required for Use of Crystalline Cellulose as the Sole Source of Carbon and Energy. Appl. Environ. Microbiol. 2016, 82, 4835–4845. [Google Scholar] [CrossRef]
Strains, Plasmids | Description a | References or Source |
---|---|---|
Strains | ||
C. hutchinsonii strains | ||
ATCC 33406 | Wild type | Laboratory preservation |
Δugd strain | Deletion mutant of chu_3394 | This study |
Cugd strain | Complementation of Δugd mutant with pTSK3328-3394 | This study |
WTGFP-Cel9ACTD strain | WT containing promoter2708-signal peptide2708-GFP-CTDCel9A | [13] |
ΔugdGFP-Cel9ACTD strain | Δ3394 containing promoter2708-signal peptide2708-GFP-CTDCel9A | This study |
E. coli strains | ||
DH5α | Strain used for plasmid replication | Purchased from Tsingke (Beijing, China) |
W3110 (DE3) | Strain used for protein expression | Purchased from WEIDI (Shanghai, China) |
Plasmids | ||
Sjhc | Gene deletion template plasmid carrying Cm flanked by two MCS; Apr (Cmr) | This study |
Sjhc-3394 | Gene deletion template plasmid carrying chu_3394-targeting cassette; Apr (Cmr) | This study |
pTSK3328-C3394 | Plasmid constructed from pTSK3328 used for complementation of Δugd; Apr (Emr) | This study |
pBAD24 | Expression vector; Apr | Laboratory preservation |
pBAD24-GFP-CTDCel9A | Plasmid constructed from pBAD24 for expression of GFP-CTDCel9A; Apr | This study |
Primers | Sequence a (5′-3′) | Purpose |
---|---|---|
3394H1F | CGGGATCCGTAATTTAAGACGGTAAGAAGCACG | Cloning 3394H1 |
3394H1R | AACTGCAGCCGTTACTAAACCAACGTATCCC | |
3394H2F | ACGAGCTCCTGATCGTTACCGAATGGTCTGA | Cloning 3394H2 |
3394H2R | GCTCTAGAATCTTTGCGGCTTCTGCTACTTT | |
3394H1UF | CGGATACCAGTGCCATACAACAA | Deletion validation of chu_3394 |
3394UR | CTGAGGAGCATCTATACCAACCA | |
C3394F | GCGTCGACCTACAGGAAATTCCTGTACTTCATCCCATTTC | Cloning C3394 |
C3394R | ACGAGCTCTTATTCTGCTTTTAGTCCGATGCAGTAGTAATC | |
EM3328H1F | TTAGCATGCTCTGTTGAGCAGGTTCTACTGGG | Cloning fragment 3328H1-EM-C3394-3328H2 |
EM3328H2R | ATAGGATCCTCTATAATTGGCTGACCGACACG | |
EM3328UF | AGTAAGCGGTATGTGTGAAATGTGC | Complementation validation of chu_3394 |
EM3328UR | GTTGCCTTCTTTGATTATGCCGTC | |
C3394RYZ | GGTTAAGTAGCATTATAATGGAATACGTTG | |
CM-R | GTTTTATCCGGCCTTTATTCACATT | Deletion validation of chu_3394 with primer 3394H1UF |
PB-GFPF | CGCCCGGGATGAAAAAAGTTTTACTTTCTTTATCAATGC | Cloning GFP-CTDCel9A expressed in Escherichia coli |
PB-GFPR | AGGTCGACTTAGTATTTAATGATATTCATCG | |
PB-YZF | CGCAACTCTCTACTGTTTCTCC | Validation GFP-CTDCel9A expression in Escherichia coli |
PB-YZR | CAGACCGCTTCTGCGTTCTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Geng, S.; Qi, Q.; Lu, X. Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii. Microorganisms 2025, 13, 395. https://doi.org/10.3390/microorganisms13020395
Song W, Geng S, Qi Q, Lu X. Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii. Microorganisms. 2025; 13(2):395. https://doi.org/10.3390/microorganisms13020395
Chicago/Turabian StyleSong, Wenxia, Shaoqi Geng, Qingsheng Qi, and Xuemei Lu. 2025. "Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii" Microorganisms 13, no. 2: 395. https://doi.org/10.3390/microorganisms13020395
APA StyleSong, W., Geng, S., Qi, Q., & Lu, X. (2025). Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii. Microorganisms, 13(2), 395. https://doi.org/10.3390/microorganisms13020395