Enrichment, Isolation and Characterization of Heavy Metal-Tolerant Bacteria from Polar Lacustrine Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Activities
2.2. Setup of Enrichment Cultures
2.3. Isolation of HM-Tolerant Bacteria
2.4. Bacterial Growth at Increasing HM Concentrations
2.5. Screening for Multitolerance
2.6. Sequestration Rate of Heavy Metals
2.7. Identification of Bacterial Isolates
2.8. Statistical Analysis
3. Results
3.1. Bacterial Isolation
3.2. Bacterial Growth at Increasing HM Concentrations
3.3. Screening for Multitolerance
3.4. Statistical Results
3.5. Sequestration Rate of Heavy Metals
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhardwaj, L.K.; Sharma, S.; Ranjan, A.; Jindal, T. Persistent organic pollutants in lakes of Broknes peninsula at Larsemann Hills area, East Antarctica. Ecotoxicology 2019, 28, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, L.K.; Bharati, P. Noise monitoring and assessment at Larsemann Hills, East Antarctica. Indian J. Environ. Protect. 2022, 42, 1027–1033. [Google Scholar]
- Rajaram, R.; Ganeshkumar, A.; Emmanuel, C.P. Ecological risk assessment of metals in the Arctic environment with emphasis on Kongsfjorden Fjord and freshwater lakes of Ny-Ålesund, Svalbard. Chemosphere 2023, 310, 136737. [Google Scholar] [CrossRef] [PubMed]
- Bharti, P.K. Anthropogenic Activities and Global Climate Change. In Climate Change and Agriculture; Bharti, P.K., Chauhan, A., Eds.; Discovery Publishing House: New Delhi, India, 2012; pp. 1–22. [Google Scholar]
- Bharti, P.K.; Niyogi, U.K. Assessment of pollution in a freshwater lake at Fisher Island, Larsemann Hills over east Antarctica. Sci. Int. 2015, 3, 25–30. [Google Scholar]
- Kosek, K.; Polkowska, Ż. Determination of selected chemical parameters in surface water samples collected from the Revelva catchment (Hornsund fjord, Svalbard). Monatsh Chem. 2016, 147, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Nayak, G.N.; Khare, N. Sedimentary processes, metal enrichment and potential ecological risk of metals in lacustrine sediments of Svalbard, Arctic. Environ. Sci. Pollut. Res. 2023, 30, 106967–106981. [Google Scholar] [CrossRef]
- Sun, Q.; Chu, G.; Liu, J.; Gao, D. A 150-year Record of Heavy Metals in the Varved Sediments of Lake Bolterskardet, Svalbard. Arctic, Antarc. Alpine Res. 2006, 38, 436–445. [Google Scholar] [CrossRef]
- Kozak, K.; Polkowska, Ż.; Stachnik, Ł.; Luks, B.; Chmiel, S.; Ruman, M.; Lech, D.; Kozioł, K.; Tsakovski, S.; Simeonov, V. Arctic catchment as a sensitive indicator of the environmental changes: Distribution and migration of metals (Svalbard). Int. J. Environ. Sci. Technol. 2016, 13, 2779–2796. [Google Scholar] [CrossRef]
- Gopikrishna, V.G.; Kannan, V.M.; Binish, M.B.; Abdul Shukkur, M.; Krishnan, K.P.; Mohan, M. Mercury in the sediments of freshwater lakes in Ny-Ålesund, Arctic. Environ. Monit. Assess. 2020, 192, 538. [Google Scholar] [CrossRef] [PubMed]
- Joju, G.S.; Warrier, A.K.; Sali, A.S.Y.; Chaparro, M.A.E.; Mahesh, B.S.; Amrutha, K.; Balakrishna, K.; Mohan, R. An assessment of metal pollution in the surface sediments of an east Antarctic lake. Soil Sedim. Contam. Int. J. 2024, 33, 1674–1695. [Google Scholar] [CrossRef]
- Vincent, W.F.; Hobbie, J.E.; Laybourn-Parry, J. Introduction to the limnology of high-latitude lake and river ecosystems. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems; Vincent, W.F., Laybourn-Parry, J., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 1–24. [Google Scholar]
- Pal, A.; Bhattacharjee, S.; Saha, J.; Sarkar, M.; Mandal, P. Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview. Crit. Rev. Microbiol. 2021, 48, 327–355. [Google Scholar] [CrossRef] [PubMed]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, K.; Chandirika, J.U.; Vinothkanna, A.; Yin, H.; Liu, X.; Meng, D. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment—A review. Ecotoxicol. Environ. Saf. 2021, 226, 112863. [Google Scholar] [CrossRef] [PubMed]
- Chandrangsu, P.; Rensing, C.; Helmann, J.D. Metal homeostasis and resistance/tolerance in bacteria. Nat. Rev. Microbiol. 2017, 15, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, J.; Guo, Z.; Cheng, Y.; Wu, J. Heavy metals and bacterial community determine resistance genes distribution in agricultural soils surrounding long-term mining area. Appl. Soil Ecol. 2024, 202, 105581. [Google Scholar] [CrossRef]
- Tomova, I.; Stoilova-Disheva, M.; Vasileva-Tonkova, E. Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, East Antarctica. Polish Pol. Res. 2014, 35, 593–607. [Google Scholar] [CrossRef]
- Abdulrasheed, M.; Roslee, A.F.; Zakaria, N.N.; Zulkharnain, A.; Lee, G.L.Y.; Convey, P.; Napis, S.; Ahmad, S.A. Effects of heavy metals on diesel metabolism of psychrotolerant strains of Arthrobacter sp. from Antarctica. J. Environ. Biol. 2020, 41, 966–972. [Google Scholar] [CrossRef]
- Gran-Scheuch, A.; Ramos-Zuñiga, J.; Fuentes, E.; Bravo, D.; Pérez-Donoso, J.M. Effect of co-contamination by PAHs and heavy metals on bacterial communities of diesel contaminated soils of South Shetland Islands, Antarctica. Microorganisms 2020, 8, 1749. [Google Scholar] [CrossRef] [PubMed]
- González-Aravena, M.; Urtubia, R.; Del Campo, K.; Lavín, P.; Wong, C.M.V.L.; Cárdenas, C.A.; González-Rocha, G. Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin. Antarct. Sci. 2016, 28, 261–268. [Google Scholar] [CrossRef]
- Mangano, S.; Michaud, L.; Caruso, C.; Lo Giudice, A. Metal and antibiotic-resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biol. 2018, 37, 227–235. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Casella, P.; Bruni, V.; Michaud, L. Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology 2023, 22, 240–250. [Google Scholar] [CrossRef]
- Neethu, C.S.; Mujeeb Rahiman, K.M.; Saramma, A.V.; Mohamed Hatha, A.A. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic. Can. J. Microbiol. 2015, 61, 429–435. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Lo Giudice, A. Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ. Sci. Pollut. Res. 2018, 25, 4667–4677. [Google Scholar] [CrossRef]
- Centurion, V.B.; Delforno, T.P.; Lacerda-Júnior, G.V.; Duarte, A.W.F.; Silva, L.J.; Bellini, G.B.; Rosa, L.H.; Oliveira, V.M. Unveiling resistome profiles in the sediments of an Antarctic volcanic island. Environ. Pollut. 2019, 255, 113240. [Google Scholar] [CrossRef] [PubMed]
- Caputo, S.; Papale, M.; Rizzo, C.; Giannarelli, S.; Conte, A.; Moscheo, F.; Graziano, M.; Aspholm, P.E.; Onor, M.; De Domenico, E.; et al. Heavy metal resistance in bacteria from contaminated Arctic sediment is driven by heavy metal local inputs. Arch. Environ. Contamin. Toxicol. 2019, 77, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Rappazzo, A.C.; Papale, M.; Rizzo, C.; Conte, A.; Giannarelli, S.; Onor, M.; Abete, C.; Cefali, P.; De Domenico, E.; Michaud, L.; et al. Heavy metal tolerance and polychlorinated biphenyl oxidation in bacterial communities inhabiting the Pasvik River and the Varanger Fjord area (Arctic Norway). Mar. Pollut. Bullet. 2019, 141, 535–549. [Google Scholar] [CrossRef] [PubMed]
- García-Laviña, C.X.; Morel, M.A.; García-Gabarrot, G.; Castro-Sowinski, S. Phenotypic and resistome analysis of antibiotic and heavy metal resistance in the Antarctic bacterium Pseudomonas sp. AU10. Braz. J. Microbiol. 2023, 54, 2903–2913. [Google Scholar] [CrossRef] [PubMed]
- Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Kiran, G.S.; Ravji, T.R.; Natarajaseenivasan, K.; Hema, T.A. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 2009, 83, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Blasi, B.; Poyntner, C.; Rudavsky, T.; Prenafeta-Boldú, F.X.; de Hoog, S.; Tafer, H.; Sterflinger, K. Pathogenic yet environmentally friendly? Black fungal candidates for bioremediation of pollutants. Geomicrobiol. J. 2016, 33, 308–317. [Google Scholar] [CrossRef]
- Tomasello, B.; Bellia, F.; Naletova, I.; Magrì, A.; Tabbì, G.; Attanasio, F.; Tomasello, M.F.; Cairns, W.R.; Fortino, M.; Pietropaolo, A.; et al. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem. Neurosci. 2024, 15, 1755–1769. [Google Scholar] [CrossRef] [PubMed]
- Turetta, C.; Feltracco, M.; Barbaro, E.; Spolaor, A.; Barbante, C.; Gambaro, A. A year-round measurement of water-soluble trace and rare earth elements in Arctic aerosol: Possible inorganic tracers of specific events. Atmosphere 2021, 12, 694. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Ccorahua-Santo, R.; Eca, A.; Abanto, M.; Guerra, G.; Ramírez, P. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Res. Microbiol. 2017, 68, 482–492. [Google Scholar] [CrossRef]
- Kümmerli, R. Iron acquisition strategies in pseudomonads: Mechanisms, ecology, and evolution. Biometals 2023, 36, 777–797. [Google Scholar] [CrossRef] [PubMed]
- Zahri, K.N.M.; Gomez-Fuentes, C.; Sabri, S.; Zulkharnain, A.; Khalil, K.A.; Lim, S.; Ahmad, S.A. Evaluation of heavy metal tolerance level of the Antarctic bacterial community in biodegradation of waste canola oil. Sustainability 2021, 13, 10749. [Google Scholar] [CrossRef]
- Centurion, V.B.; Silva, J.B.; Duarte, A.W.F.; Rosa, L.H.; Oliveira, L.M. Comparing resistome profiles from anthropogenically impacted and non-impacted areas of two South Shetland Islands—Maritime Antarctica. Environ. Pollut. 2022, 304, 119219. [Google Scholar] [CrossRef] [PubMed]
- Heir, E.; Moen, B.; Åsli, A.W.; Sunde, M.; Langsrud, S. Antibiotic resistance and phylogeny of Pseudomonas spp. isolated over three decades from chicken meat in the Norwegian food chain. Microorganisms 2021, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Yiyang, Y.; Taiyu, L.; Yinxin, Z.; Huirong, L.; Wei, L. Microbial diversity in colored snow of Ny-Ålesund Arctic. Chin. J. Polar Res. 2023, 35, 405. [Google Scholar]
- Romaniuk, K.; Ciok, A.; Decewicz, P.; Uhrynowski, W.; Budzik, K.; Nieckarz, M.; Pawlowska, J.; Zdanowski, M.K.; Bartosik, D.; Dziewit, L. Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol. 2018, 41, 319–1333. [Google Scholar] [CrossRef]
- Blake, R.C.; Choate, D.M.; Bardhan, S.; Revis, N.; Barton, L.L.; Zocco, T.G. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem. 1993, 12, 1365–1376. [Google Scholar] [CrossRef]
- Malla, M.A.; Dubey, A.; Yadav, S.; Kumar, A.; Hashem, A.; Abd Allah, E.F. Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front. Microbiol. 2018, 9, 1132. [Google Scholar] [CrossRef]
- Prieto-Fernández, F.; Lambert, S.; Kujala, K. Assessment of microbial communities from cold mine environments and subsequent enrichment, isolation and characterization of putative antimony- or copper-metabolizing microorganisms. Front. Microbiol. 2024, 15, 1386120. [Google Scholar] [CrossRef] [PubMed]
- Marcoleta, A.E.; Arros, P.; Varas, M.A.; Costa, J.; Rojas-Salgado, J.; Berríos-Pastén, C.; Tapia-Fuentes, S.; Silva, D.; Fierro, J.; Canales, N.; et al. The highly diverse Antarctic Peninsula soil microbiota as a source of novel resistance genes. Sci. Total Environ. 2022, 810, 152003. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-L.; Lu, X.-Z.; Yu, W.-G. A new Beta-agarase from marine bacterium Janthinobacterium sp. SY12. Microbiol. Biotechnol. 2008, 24, 2659–2664. [Google Scholar] [CrossRef]
- Yin, H.; Niu, J.; Ren, Y.; Cong, J.; Zhang, X.; Fan, F.; Xiao, Y.; Zhang, X.; Deng, J.; Xie, M.; et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 2015, 5, 14266. [Google Scholar] [CrossRef] [PubMed]
- Butrimienė, R.; Kalnaitytė, A.; Januškaitė, E.; Bagdonas, S.; Jurgelėnė, Ž.; Butkauskas, D.; Virbickas, T.; Montvydienė, D.; Kazlauskienė, N.; Skrodenytė-Arbačiauskienė, V. Interactions of semiconductor cd-based quantum dots and cd 2+ with gut bacteria isolated from wild Salmo trutta fry. Peer J. 2022, 10, e14025. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xi, J.; Ke, J.; Wang, Y.; Chen, X.; Zhang, Z.; Lin, Y. Deciphering soil amendments and actinomycetes for remediation of cadmium (Cd) contaminated farmland. Ecotoxicol. Environ. Saf. 2023, 249, 114388. [Google Scholar] [CrossRef] [PubMed]
- Darham, S.; Syed-Muhaimin, S.N.; Subramaniam, K.; Zulkharnain, A.; Shaharuddin, N.A.; Khalil, K.A.; Ahmad, S.A. Optimisation of various physicochemical variables affecting molybdenum bioremediation using Antarctic bacterium, Arthrobacter sp. strain AQ5-05. Water 2021, 13, 2367. [Google Scholar] [CrossRef]
- Mechirackal, B.B.; Sruthy, S.; Rupesh, K.S.; Kottekkattu, P.K.; Mahesh, M. Mercuric reductase gene (merA) activity in a mercury tolerant sulphate reducing bacterium isolated from the Kongsfjorden, Arctic. Polar Sci. 2021, 30, 100745. [Google Scholar]
- Karmacharya, J.; Shrestha, P.; Han, S.R.; Park, H.; Oh, T.J. Complete genome sequencing of polar Arthrobacter sp. PAMC25284, copper tolerance potential unraveled with genomic analysis. Int. J. Microbiol. 2022, 1162938. [Google Scholar] [CrossRef]
- Singh, K.N.; Narzary, D. Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India). Environ. Sci. Pollut. Res. 2021, 28, 63111–63126. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-K.; Park, Y.-J.; Kim, M. Complete genome sequence of a plant growth-promoting bacterium Pseudarthrobacter sp. NIBRBAC000502772, isolated from shooting range soil in the Republic of Korea. Korean J. Microbiol. 2020, 56, 390–393. [Google Scholar]
Polar Area | Lake | Lake ID | Coordinates | Physical–Chemical Parameters | ||||
---|---|---|---|---|---|---|---|---|
Temp. | pH | O2 | Cond. | Main | ||||
(°C) | (%) | (uS/cm) | Features | |||||
Ny-Ålesund (Arctic Norway) | Solvannet | L1 | 78°55.552′ N–11°56.327′ E | 6.2 | 8.17 | 98.0 | 395 | A/A |
Glacier | L2 | 78°55.044′ N–11°47.442′ E | 8.7 | 7.66 | 98.2 | 151 | G | |
Knudsenheia | L3 | 78°56.680′ N–11°51.579′ E | 8.8 | 8.36 | 105.3 | 2620 | B | |
Storvatnet | L4 | 78°55.453′ N–11°52.728′ E | 7.9 | 8.07 | 103.2 | 243 | A/A | |
Livingston Island (Antarctica) | Sofia | LS-1 | 62°40′12.19″ S–60°23′17.90″ W | 0.3 | 5.2 | 69.4 | 26.5 | G |
Argentina | LA | 62°40′22.39″ S–60°24′18.12″ W | 1.4 | 5.7 | 68.1 | 64.6 | A/A | |
Deception Island (Antarctica) | Crater | LC | 62°59′00.68″ S–60°40′20.41″ W | 3.7 | 5.5 | 86.0 | 6.64 | A/A |
Zapatilla | LZ | 62°59′00.24″ S–60°40′29.07″ W | 6.8 | 5.6 | 76.5 | 55.6 | Water supply | |
Extremadura | LE | 62°55′12.2″ S–60°39′47.0″ W | 4.1 | 7.2 | 94.8 | 448 | B | |
Telefon | LT | 62°55′39.9″ S–60°41′21.3″ W | 5.4 | 6 | - | 507 | B | |
Ballaneros | LB | 62°58′51.1″ S–60°34′27.1″ W | 4.1 | 4.7 | 67.9 | 480 | B |
Lake of Origin | Isolate | Fe (mg L−1) | |
---|---|---|---|
2500 | 5000 | ||
Arctic Lakes | |||
Lake Solvannet (L1) | Pseudomonas sp. S1A-14 | + | + |
Lake Glacier (L2) | S2A-1 (not identified) | + | + |
S2A-2 (not identified) | + | + | |
Carnobacterium sp. S2A-4 | + | (+) | |
S2A-5 (not identified) | + | (+) | |
Janthinobacterium sp. S2A-6 | (+) | (+) | |
Janthinobacterium sp. S2A-7 | + | + | |
Pseudomonas sp. S2A-8 | ++ | + | |
Lake Knudsenheia (L3) | Pseudomonas sp. S3A-2 | + | + |
Pseudomonas sp. S3A-11 | + | + | |
Lake Storvatnet (L4) | Pseudomonas sp. S4A-1 | (+) | (+) |
S4A-2 (not identified) | + | + | |
Pseudomonas sp. S4A-4 | + | + | |
Pseudomonas sp. S4A-7 | + | (+) | |
Pseudomonas sp. S4A-10 | + | + | |
Antarctic Lakes | |||
Lake Ballaneros (LB) | ABA-4 (not identified) | (+) | (+) |
Arthrobacter sp. ABA-13 | (+) | (+) | |
Lake Argentina (LA) | Pseudarthrobacter sp. AAA-2 | ++ | + |
Pseudarthrobacter sp. AAA-4 | + | (+) | |
Lake Zapatilla (LZ) | Pseudarthrobacter sp. AZA-2 | ++ | + |
AZA-3 (not identified) | ++ | (+) | |
Pseudarthrobacter sp. AZA-4 | ++ | + | |
Subtercola sp. AZA-8 | ++ | (+) | |
Subtercola sp. AZA-9 | + | (+) | |
Lake Telefon (LT) | Arthrobacter sp. ATA-13 | (+) | (+) |
Polar Area | ID Strain | Cu (mg L−1) | Hg (mg L−1) | ||||
---|---|---|---|---|---|---|---|
1000 | 2500 | 5000 | 100 | 250 | 500 | ||
Arctic | Pseudomonas sp. S1A-14 | − | − | − | + | + | (+) |
S2A-1 (not identified) | − | − | − | − | − | − | |
S2A-2 (not identified) | − | − | − | − | − | − | |
Carnobacterium sp. S2A-4 | − | − | − | − | − | − | |
S2A-5 (not identified) | − | − | − | + | (+) | (+) | |
Janthinobacterium sp. S2A-6 | − | − | − | − | − | − | |
Janthinobacterium sp. S2A-7 | − | − | − | + | + | − | |
Pseudomonas sp. S2A-8 | (+) | − | − | + | (+) | − | |
Pseudomonas sp. S3A-2 | − | − | − | + | (+) | − | |
Pseudomonas sp. S3A-11 | (+) | − | − | + | + | − | |
Pseudomonas sp. S4A-1 | − | − | − | + | + | − | |
S4A-2 (not identified) | − | − | − | + | + | − | |
Pseudomonas sp. S4A-4 | − | − | − | + | + | − | |
Pseudomonas sp. S4A-7 | − | − | − | + | + | − | |
Pseudomonas sp. S4A-10 | − | − | − | + | + | − | |
Antarctica | ABA-4 (not identified) | (+) | (+) | (+) | (+) | (+) | − |
Arthrobacter sp. ABA-13 | − | − | − | + | + | − | |
Pseudarthrobacter sp. AAA-2 | − | − | − | + | + | − | |
Pseudarthrobacter sp. AAA-4 | − | − | − | + | (+) | − | |
Pseudarthrobacter sp. AZA-2 | − | − | − | + | (+) | − | |
AZA-3 (not identified) | − | − | − | + | (+) | − | |
Pseudarthrobacter sp. AZA-4 | − | − | − | + | (+) | − | |
Subtercola sp. AZA-8 | (+) | (+) | − | (+) | (+) | (+) | |
Subtercola sp. AZA-9 | − | − | − | − | − | − | |
Arthrobacter sp. ATA-13 | − | − | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rappazzo, A.C.; Marchetta, A.; Rizzo, C.; Azzaro, M.; Cairns, W.R.L.; Lo Giudice, A.; Papale, M. Enrichment, Isolation and Characterization of Heavy Metal-Tolerant Bacteria from Polar Lacustrine Sediments. Microorganisms 2025, 13, 389. https://doi.org/10.3390/microorganisms13020389
Rappazzo AC, Marchetta A, Rizzo C, Azzaro M, Cairns WRL, Lo Giudice A, Papale M. Enrichment, Isolation and Characterization of Heavy Metal-Tolerant Bacteria from Polar Lacustrine Sediments. Microorganisms. 2025; 13(2):389. https://doi.org/10.3390/microorganisms13020389
Chicago/Turabian StyleRappazzo, Alessandro C., Alessia Marchetta, Carmen Rizzo, Maurizio Azzaro, Warren R. L. Cairns, Angelina Lo Giudice, and Maria Papale. 2025. "Enrichment, Isolation and Characterization of Heavy Metal-Tolerant Bacteria from Polar Lacustrine Sediments" Microorganisms 13, no. 2: 389. https://doi.org/10.3390/microorganisms13020389
APA StyleRappazzo, A. C., Marchetta, A., Rizzo, C., Azzaro, M., Cairns, W. R. L., Lo Giudice, A., & Papale, M. (2025). Enrichment, Isolation and Characterization of Heavy Metal-Tolerant Bacteria from Polar Lacustrine Sediments. Microorganisms, 13(2), 389. https://doi.org/10.3390/microorganisms13020389