Synthesis and Characterization of Silver Nanoparticles Stabilized with Biosurfactant and Application as an Antimicrobial Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Preparation of Inoculum
2.3. Biosurfactant Production
2.4. Biosurfactant Isolation
2.5. Synthesis of Silver Nanoparticles
2.6. Characterization of Silver Nanoparticles
2.7. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Analyses
2.8. Determination of Antimicrobial Activity of Silver Nanoparticles Stabilized with Biosurfactant
2.9. Biosurfactant Toxicity to Tenebrio molitor
3. Results and Discussion
3.1. Characterization of Silver Nanoparticles
3.2. Determination of Antimicrobial Activity
3.3. Biosurfactant Toxicity to Tenebrio molitor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laux, P.; Tentschert, J.; Riebeling, C.; Braeuning, A.; Creutzenberg, O.; Epp, A.; Fessard, V.; Haas, K.-H.; Haase, A.; Hund-Rinke, K.; et al. Nanomaterials: Certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018, 92, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Mufamadi, M. From lab to market: Strategies to nanotechnology commercialization in Africa. MRS Bull. 2019, 44, 421–422. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.P. Nanotecnologia no Setor Elétrico: Um Estudo Prospectivo. Master’s Dissertation, Instituto Nacional da Propriedade Industrial—INPI, Rio de Janeiro, Brazil, 24 March 2014. Available online: https://www.gov.br/inpi/pt-br/servicos/a-academia/arquivo/dissertacoes/SOARESAlexandrePinhel2014.pdf (accessed on 17 June 2023).
- Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Magdah, A.G.; Helmy, E.A.M.; Mabrouk, A.S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. BioNanoScience 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Ingle, A.P.; Saxena, S.; Moharil, M.; Rai, M.; Silva, S.S. Biosurfactants in nanotechnology. In Biosurfactants and Sustainability, 1st ed.; Franco Marcelino, P.R., Da Silva, S.S., Lopez, A.O., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2023; pp. 173–194. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Silva, M.C.S.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Durval, I.J.B.; Meira, H.M.; Veras, B.O.; Rufino, R.D.; Converti, A.; Sarubbo, L.A. Green synthesis of silver nanoparticles using a biosurfactant from Bacillus cereus UCP 1615 as stabilizing agent and its application as an antifungal agent. Fermentation 2021, 7, 233. [Google Scholar] [CrossRef]
- Marinho, P.S.d.S.; Silva, R.R.; Luna, J.M. Microbial biosurfactants and environmental applications: A narrative review. Res. Soc. Dev. 2022, 11, e103111234123. [Google Scholar] [CrossRef]
- Liu, K.; Sun, Y.; Cao, M.; Wang, J.; Lu, J.R.; Xu, H. Rational design, properties, and applications of biosurfactants: A short review of recent advances. Curr. Opin. Colloid. Interface 2020, 45, 57–67. [Google Scholar] [CrossRef]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant production: Emerging trends and promising strategies. J. Appl. Microbiol. 2019, 126, 2–13. [Google Scholar] [CrossRef]
- Reddy, A.S.; Chen, C.-Y.; Baker, S.C.; Chen, C.-C.; Jean, J.-S.; Fan, C.-W.; Chen, H.-R.; Wang, J.-C. Synthesis of silver nanoparticles using surfactin: A biosurfactant as stabilizing agent. Mater. Lett. 2009, 63, 1227–1230. [Google Scholar] [CrossRef]
- Biswas, M.; Raichur, A.M. Electrokinetic and rheological properties of nano zirconia in the presence of rhamnolipid biosurfactant. J. Am. Ceram. 2008, 91, 3197–3201. [Google Scholar] [CrossRef]
- Bauer, C.M.; Schmitz, C.; Landell, M.F.; Maraschin, M. Biosynthesis of fatty acids and biosurfactants by the yeast Yarrowia lipolytica with emphasis on metabolic networks and bioinformatics. Biotechnol. Res. Innov. J. 2022, 6, e2022001. [Google Scholar] [CrossRef]
- Csutak, O.E.; Nicula, N.O.; Lungulescu, E.M.; Marinescu, V.; Corbu, V.M. Yarrowia lipolytica CMGB32 biosurfactants produced using n-hexadecane: Developing strategies for environmental remediation. Appl. Sci. 2024, 14, 3048. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Meira, H.M.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Biosurfactant production from Candida lipolytica in bioreactor and evaluation of its toxicity for application as a bioremediation agent. Process. Biochem. 2017, 54, 20–27. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; Campos-Takaki, G.M.; Ferreira, S.R.; Sarubbo, L.A. Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chem. Eng. 2012, 27, 61–66. [Google Scholar] [CrossRef]
- Shatila, F.; Uyar, E.; Yalçın, H.T. Screening of biosurfactant production by Yarrowia lipolytica strains and evaluation of their antibiofilm and anti-adhesive activities against Salmonella enterica ser. enteritidis biofilms. Microbiology 2021, 90, 839–847. [Google Scholar] [CrossRef]
- Rufino, R.D.; Luna, J.M.; Sarubbo, L.A.; Rodrigues, L.R.M.; Teixeira, J.A.C.; Campos-Takaki, D.G. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Colloids Surf. B Biointerfaces 2011, 84, 1–5. [Google Scholar] [CrossRef]
- Lima, B.G.; Santos, J.C.; Silva, R.R.; Caldas, M.C.F.; Meira, H.M.; Rufino, R.D.; Sarubbo, L.A.; Luna, J.M. Sustainable Production of Biosurfactant Grown in Medium with Industrial Waste and Use for Removal of Oil from Soil and Seawater. Surfaces 2024, 7, 537–549. [Google Scholar] [CrossRef]
- Pinto, M.I.S.; Campos Guerra, J.M.; Meira, H.M.; Sarubbo, L.A.; Luna, J.M. A biosurfactant from Candida bombicola: Its synthesis, characterization, and its application as a food emulsions. Foods 2022, 11, 561. [Google Scholar] [CrossRef]
- Le, A.T.; Tam, L.T.; Tam, P.D.; Huy, P.T.; Huy, T.Q.; Hieu, N.V.; Kudrinskiy, A.A.; Krutyakov, Y.A. Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater. Sci. Eng. C 2010, 30, 910–916. [Google Scholar] [CrossRef]
- Habiba, K.; Bracho-Rincon, D.P.; Gonzalez-Feliciano, J.A.; Villalobos-Santos, J.C.; Makarov, V.I.; Ortiz, D.; Avalos, J.A.; Gonzalez, C.I.; Weiner, B.R.; Morell, G. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl. Mater. Today 2015, 1, 80–87. [Google Scholar] [CrossRef]
- Silva, T.F.; Cavalcanti Filho, J.R.N.; Barreto Fonsêca, M.M.L.; Santos, N.M.D.; Barbosa da Silva, A.C.; Zagmignan, A.; Nascimento da Silva, L.C. Products derived from Buchenavia tetraphylla leaves have in vintro activity and protect Tenebrio molitor larvae Escherichia coli induced injury. Pharmaceuticals 2020, 13, 46. [Google Scholar] [CrossRef]
- Tyagi, P.K.; Mishra, R.; Khan, F.; Gupta, D.; Gola, D. Antifungal effects of silver nanoparticles against various plant pathogenic fungi and its safety evaluation on Drosophila melanogaster. Biointerface Res. Appl. Chem. 2020, 10, 6587–6596. [Google Scholar] [CrossRef]
- Elakkiya, V.T.; Kumar, P.S.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Govindarajan, M. Swift production of rhamnolipid biosurfactant, biopolymer and synthesis of biosurfactant-wrapped silver nanoparticles and its enhanced oil recovery. Saudi J. Biol. Sci. 2020, 27, 1892–1899. [Google Scholar] [CrossRef]
- Xie, Y.; Ye, R.; Liu, H. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 2006, 279, 175–178. [Google Scholar] [CrossRef]
- Kiran, G.S.; Sabarathnam, B.; Selvin, J. Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Microbiol. Immunol. 2010, 59, 432–438. [Google Scholar] [CrossRef]
- Soukupová, J.; Kvítek, L.; Panácek, A.; Nevecná, T.; Zboril, R. Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater. Chem. Phys. 2008, 11, 7–81. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Guterres, S.S.; Freitas, L.D.L.; Pohlmann, A.R. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quím. Nova 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Nehal, N.; Singh, P. Role of nanotechnology for improving properties of biosurfactant from newly isolated bacterial strains from Rajasthan. Mater. Today 2022, 50, 2555–2561. [Google Scholar] [CrossRef]
- Salazar-Bryam, A.M.; Yoshimura, I.; Santos, L.P.; Moura, C.C.; Santos, C.; Silva, V.L.; Lovaglio, R.B.; Marques, R.F.C.; Contiero, M.J.J.J. Silver nanoparticles stabilized by ramnolipids: Effect of pH. Colloids. Surf. B Biointerfaces 2021, 205, 111883. [Google Scholar] [CrossRef]
- Calabrese, C.; La Parola, V.; Testa, M.L.; Liotta, L.F. Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania. Inorganica Chim. Acta 2022, 529, 120636. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.J.P.; Murugan, M.; Gurunathan, S. Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J. Ind. Eng. Chem. 2014, 20, 1505–1510. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Mu, D.; Zhang, H.; Liu, Q.; Chen, G. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green. Chem. Lett. Rev. 2021, 14, 190–203. [Google Scholar] [CrossRef]
- Bezza, F.A.; Tichapondwa, S.M.; Chirwa, E.M.N. Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. J. Hazard. Mater. 2019, 393, 122319. [Google Scholar] [CrossRef]
- Sivasubramanian, K.; Sabarinathan, S.; Muruganandham, M.; Velmurugan, P.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Sivakumar, S. Antioxidant, antibacterial, and cytotoxicity potential of synthesized silver nanoparticles from the Cassia alata leaf aqueous extract. Green. Process. Synth. 2023, 12, 20230018. [Google Scholar] [CrossRef]
- Sodimalla, T.; Yalavarthi, N. Biosynthesis of silver nanoparticles from Pseudomonas fluorescens and their antifungal activity against Aspergillus niger and Fusarium udum. Ann. Appl. Biol. 2022, 181, 235–245. [Google Scholar] [CrossRef]
- Gomes, D.M.; Durán, N.; Seabra, A.; Silva, L.; Prado, F.; Silva, T.; Teixeira, M.F. Síntese verde de nanopartículas de prata intermediada por fungo anamórfico e eficácia antibacteriana e antifúngica. Bol. Do Mus. Para. Emílio Goeldi-Ciências Nat. 2020, 15, 433–443. [Google Scholar] [CrossRef]
- Hassan, M.H.A.; Moharram, A.M.; Ismail, M.A.; Shoreit, A.M. Biogenic silver nanoparticles of resistant Aspergillus flavus AUMC 9834 against some pathogenic microorganisms and its synergistic effect with the antifungal fluconazole. J. Basic Appl. Mycol. 2016, 6, 1–7. [Google Scholar]
- Rani, R.; Sharma, D.; Chaturvedi, M.; Yadav, J.P. Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. J. Nanomed. Nanotechnol. 2017, 8, 457. [Google Scholar] [CrossRef]
- Panácek, A.; Kolár, M.; Vecerová, R.; Prucek, R.; Soukupová, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Mukherjee, T.; Chakraborty, S.; Das, T.K. Biosynthesis, characterisation and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Digest J. Nanomat. Biostruct. 2013, 8, 197–205. [Google Scholar]
- Silva, T.A.; Andrade, P.I.F.; Segala, K.; Silva, L.S.C.; Silva, L.P.; Nista, S.V.G.; Mei, L.H.I.; Duran, N.; Teixeira, M.F.S. Silver nanoparticles biosynthesis and impregnation in cellulose acetate membrane for anti-yeast therapy. Afr. J. Biotechnol. 2017, 16, 1490–1500. [Google Scholar] [CrossRef]
- Silva-Vinhote, N.M.; Caballero, N.E.D.; Silva, T.A.; Quelemes, P.V.; De Araújo, A.R.; Moraes, A.C.M.; Câmara, A.L.S.; Longo, J.P.F.; Azevedo, R.B.; Da Silva, D.A. Extracellular biogenic synthesis of silver nanoparticles by Actinomycetes from amazonic biome and its antimicrobial efficiency. Afr. J. Biotechnol. 2017, 16, 2072–2082. [Google Scholar] [CrossRef]
- Brai, A.; Poggialino, F.; Vangaggini, C.; Pasqualini, C.; Simoni, S.; Fracardi, F.; Dreassi, E. Tenebrio molitor as a simple and cheap preclinical pharmacokinetic and toxicity model. Int. J. Mol. Sci. 2023, 24, 2296. [Google Scholar] [CrossRef]
Microorganism | Rate of Growth Inhibition (%) |
---|---|
Pseudomonas aeruginosa | 71 ± 0.3 |
Enterobacter sp. | 75 ± 0.4 |
Aspergillus niger | 85 ± 0.3 |
Escherichia coli | 95 ± 0.5 |
Staphylococcus aureus | 90 ± 0.2 |
Candida albicans | 90 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, B.G.A.; Silva, R.R.; Meira, H.M.; Durval, I.J.B.; Macedo Bezerra Filho, C.; Silva, T.A.L.; Sarubbo, L.A.; Luna, J.M. Synthesis and Characterization of Silver Nanoparticles Stabilized with Biosurfactant and Application as an Antimicrobial Agent. Microorganisms 2024, 12, 1849. https://doi.org/10.3390/microorganisms12091849
Lima BGA, Silva RR, Meira HM, Durval IJB, Macedo Bezerra Filho C, Silva TAL, Sarubbo LA, Luna JM. Synthesis and Characterization of Silver Nanoparticles Stabilized with Biosurfactant and Application as an Antimicrobial Agent. Microorganisms. 2024; 12(9):1849. https://doi.org/10.3390/microorganisms12091849
Chicago/Turabian StyleLima, Bruna G. A., Renata Raianny Silva, Hugo M. Meira, Italo J. B. Durval, Clovis Macedo Bezerra Filho, Thayse A. L. Silva, Leonie A. Sarubbo, and Juliana Moura Luna. 2024. "Synthesis and Characterization of Silver Nanoparticles Stabilized with Biosurfactant and Application as an Antimicrobial Agent" Microorganisms 12, no. 9: 1849. https://doi.org/10.3390/microorganisms12091849
APA StyleLima, B. G. A., Silva, R. R., Meira, H. M., Durval, I. J. B., Macedo Bezerra Filho, C., Silva, T. A. L., Sarubbo, L. A., & Luna, J. M. (2024). Synthesis and Characterization of Silver Nanoparticles Stabilized with Biosurfactant and Application as an Antimicrobial Agent. Microorganisms, 12(9), 1849. https://doi.org/10.3390/microorganisms12091849