vB_CacS-HV1 as a Novel Pahexavirus Bacteriophage with Lytic and Anti-Biofilm Potential against Cutibacterium acnes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Strains and Growth Conditions
2.2. Sampling from Healthy Individuals
2.3. Phage Isolation and Purification
2.4. Transmission Electron Microscopy
2.5. Phage Optimal Multiplicity of Infection and One-Step Growth Curve Determination
2.6. Determination of Host Ranges and Efficiency of Plating (EOP)
2.7. Thermal and pH Stability Test
2.8. Genome Sequencing and In Silico Analysis
2.9. Antibacterial Effect of vB_CacS-HV1 In Vitro
2.10. Anti-Biofilm Effects of vB_CacS-HV1 In Vitro
2.11. Statistical Analysis
2.12. Figure Assembly
2.13. Data Availability
3. Results
3.1. Morphological Characterization of Phage vB_CacS-HV1 and Its Plaque Formation
3.2. Biological Features of Phage vB_CacS-HV1
3.3. Host Range and EOP of Phage vB_CacS-HV1
3.4. Genome Analysis of the Phage vB_CacS-HV1
3.5. Phylogenetic Analysis of the Phage vB_CacS-HV1
3.6. Antibacterial Effect of vB_CacS-HV1 In Vitro
3.7. Anti-Biofilm Effects of vB_CacS-HV1 In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silverberg, J.I.; Silverberg, N.B. Epidemiology and extracutaneous comorbidities of severe acne in adolescence: A U.S. population-based study. Br. J. Dermatol. 2014, 170, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Layton, A.M.; Ravenscroft, J. Adolescent acne vulgaris: Current and emerging treatments. Lancet Child Adolesc. Health 2023, 7, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, K. Acne in adolescents. Aust. Fam. Physician 2017, 46, 892–895. [Google Scholar] [PubMed]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet 2012, 379, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.K.; Michaels, B.B. Post-adolescent acne in women: More common and more clinical considerations. J. Drugs Dermatol. JDD 2012, 11, 708–713. [Google Scholar] [PubMed]
- Layton, A.M.; Thiboutot, D.; Tan, J. Reviewing the global burden of acne: How could we improve care to reduce the burden? Br. J. Dermatol. 2021, 184, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Bickers, D.R.; Lim, H.W.; Margolis, D.; Weinstock, M.A.; Goodman, C.; Faulkner, E.; Gould, C.; Gemmen, E.; Dall, T. The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J. Am. Acad. Dermatol. 2006, 55, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Petridis, C.; Navarini, A.A.; Dand, N.; Saklatvala, J.; Baudry, D.; Duckworth, M.; Allen, M.H.; Curtis, C.J.; Lee, S.H.; Burden, A.D.; et al. Genome-wide meta-analysis implicates mediators of hair follicle development and morphogenesis in risk for severe acne. Nat. Commun. 2018, 9, 5075. [Google Scholar] [CrossRef]
- Dreno, B.; Poli, F. Epidemiology of acne. Dermatology 2003, 206, 7–10. [Google Scholar] [CrossRef]
- Krutmann, J.; Moyal, D.; Liu, W.; Kandahari, S.; Lee, G.S.; Nopadon, N.; Xiang, L.F.; Seité, S. Pollution and acne: Is there a link? Clin. Cosmet. Investig. Dermatol. 2017, 10, 199–204. [Google Scholar] [CrossRef]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet radiation, both UVA and UVB, influences the composition of the skin microbiome. Exp. Dermatol. 2019, 28, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol. 2015, 172 (Suppl. S1), 3–12. [Google Scholar] [CrossRef] [PubMed]
- Adebamowo, C.A.; Spiegelman, D.; Berkey, C.S.; Danby, F.W.; Rockett, H.H.; Colditz, G.A.; Willett, W.C.; Holmes, M.D. Milk consumption and acne in teenaged boys. J. Am. Acad. Dermatol. 2008, 58, 787–793. [Google Scholar] [CrossRef]
- Ghodsi, S.Z.; Orawa, H.; Zouboulis, C.C. Prevalence, severity, and severity risk factors of acne in high school pupils: A community-based study. J. Investig. Dermatol. 2009, 129, 2136–2141. [Google Scholar] [CrossRef]
- Mias, C.; Mengeaud, V.; Bessou-Touya, S.; Duplan, H. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway. J. Eur. Acad. Dermatol. Venereol. JEADV 2023, 37 (Suppl. S2), 3–11. [Google Scholar] [CrossRef] [PubMed]
- Szabó, K.; Erdei, L.; Bolla, B.S.; Tax, G.; Bíró, T.; Kemény, L. Factors shaping the composition of the cutaneous microbiota. Br. J. Dermatol. 2017, 176, 344–351. [Google Scholar] [CrossRef]
- Dagnelie, M.A.; Corvec, S.; Saint-Jean, M.; Bourdès, V.; Nguyen, J.M.; Khammari, A.; Dréno, B. Decrease in Diversity of Propionibacterium acnes Phylotypes in Patients with Severe Acne on the Back. Acta Derm. Venereol. 2018, 98, 262–267. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.M.; Liggins, M.C.; Seidman, J.S.; Do, T.H.; Li, F.; Cavagnero, K.J.; Dokoshi, T.; Cheng, J.Y.; Shafiq, F.; Hata, T.R.; et al. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci. Transl. Med. 2022, 14, eabh1478. [Google Scholar] [CrossRef]
- Jeremy, A.H.; Holland, D.B.; Roberts, S.G.; Thomson, K.F.; Cunliffe, W.J. Inflammatory events are involved in acne lesion initiation. J. Investig. Dermatol. 2003, 121, 20–27. [Google Scholar] [CrossRef]
- Dessinioti, C.; Katsambas, A. Antibiotics and Antimicrobial Resistance in Acne: Epidemiological Trends and Clinical Practice Considerations. Yale J. Biol. Med. 2022, 95, 429–443. [Google Scholar]
- Lee, Y.H.; Liu, G.; Thiboutot, D.M.; Leslie, D.L.; Kirby, J.S. A retrospective analysis of the duration of oral antibiotic therapy for the treatment of acne among adolescents: Investigating practice gaps and potential cost-savings. J. Am. Acad. Dermatol. 2014, 71, 70–76. [Google Scholar] [CrossRef]
- Zhu, T.; Zhu, W.; Wang, Q.; He, L.; Wu, W.; Liu, J.; Li, Y.; Sun, D. Antibiotic susceptibility of Propionibacterium acnes isolated from patients with acne in a public hospital in Southwest China: Prospective cross-sectional study. BMJ Open 2019, 9, e022938. [Google Scholar] [CrossRef]
- Żaczek, M.; Łusiak-Szelachowska, M.; Jończyk-Matysiak, E.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Owczarek, B.; Kopciuch, A.; Fortuna, W.; Rogóż, P.; Górski, A. Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Front. Microbiol. 2016, 7, 1681. [Google Scholar] [CrossRef]
- Van Nieuwenhuyse, B.; Galant, C.; Brichard, B.; Docquier, P.L.; Djebara, S.; Pirnay, J.P.; Van der Linden, D.; Merabishvili, M.; Chatzis, O. A Case of In Situ Phage Therapy against Staphylococcus aureus in a Bone Allograft Polymicrobial Biofilm Infection: Outcomes and Phage-Antibiotic Interactions. Viruses 2021, 13, 1898. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef]
- Little, J.S.; Dedrick, R.M.; Freeman, K.G.; Cristinziano, M.; Smith, B.E.; Benson, C.A.; Jhaveri, T.A.; Baden, L.R.; Solomon, D.A.; Hatfull, G.F. Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nat. Commun. 2022, 13, 2313. [Google Scholar] [CrossRef]
- Rimon, A.; Rakov, C.; Lerer, V.; Sheffer-Levi, S.; Oren, S.A.; Shlomov, T.; Shasha, L.; Lubin, R.; Zubeidat, K.; Jaber, N.; et al. Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions. Nat. Commun. 2023, 14, 1005. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhen, N.; Liao, D.; Niu, J.; Liu, R.; Li, Z.; Lei, Z.; Yang, Z. Application of bacteriophage φPaP11-13 attenuates rat Cutibacterium acnes infection lesions by promoting keratinocytes apoptosis via inhibiting PI3K/Akt pathway. Microbiol. Spectr. 2024, 12, e0283823. [Google Scholar] [CrossRef] [PubMed]
- McDowell, A.; Barnard, E.; Nagy, I.; Gao, A.; Tomida, S.; Li, H.; Eady, A.; Cove, J.; Nord, C.E.; Patrick, S. An expanded multilocus sequence typing scheme for propionibacterium acnes: Investigation of ‘pathogenic’, ‘commensal’ and antibiotic resistant strains. PLoS ONE 2012, 7, e41480. [Google Scholar] [CrossRef]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. JEADV 2018, 32 (Suppl. S2), 5–14. [Google Scholar] [CrossRef]
- Huang, X.W.; Pan, W.; Zhong, M.Z.; Chhonker, Y.S.; Steele, A.D.; Keohane, C.E.; Mishra, B.; Felix Raj Lucas, L.O.; Murry, D.J.; Ausubel, F.M.; et al. Biological Evaluation of the Antibacterial Retinoid CD437 in Cutibacterium acnes Infection. Antimicrob. Agents Chemother. 2023, 67, e0167922. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Xu, X.; Liu, Y.; Wang, X.; Wu, S.; Qiu, Z.; Liu, X.; Pan, X.; Gu, C.; Wang, S.; et al. Multi-omics signatures reveal genomic and functional heterogeneity of Cutibacterium acnes in normal and diseased skin. Cell Host Microbe 2024, 32, 1129–1146.e28. [Google Scholar] [CrossRef] [PubMed]
- Forraz, N.; Bize, C.; Desroches, A.L.; Milet, C.; Payen, P.; Chanut, P.; Kern, C.; Garcia, C.; McGuckin, C. The World’s First Acne Dysbiosis-like Model of Human 3D Ex Vivo Sebaceous Gland Colonized with Cutibacterium acnes and Staphylococcus epidermidis. Microorganisms 2023, 11, 2183. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, J.; Yan, Y.; Han, P.; Tong, Y.; Li, X. SW16-7, a Novel Ackermannviridae Bacteriophage with Highly Effective Lytic Activity Targets Salmonella enterica Serovar Weltevreden. Microorganisms 2023, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Kutter, E. Phage host range and efficiency of plating. Methods Mol. Biol. 2009, 501, 141–149. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Holmberg, A.; Lood, R.; Mörgelin, M.; Söderquist, B.; Holst, E.; Collin, M.; Christensson, B.; Rasmussen, M. Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin. Microbiol. Infect. 2009, 15, 787–795. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kumkar, S.N.; Pardesi, K.R. Characterization of Novel Klebsiella Phage PG14 and Its Antibiofilm Efficacy. Microbiol. Spectr. 2022, 10, e0199422. [Google Scholar] [CrossRef] [PubMed]
- Zaki, B.M.; Fahmy, N.A.; Aziz, R.K.; Samir, R.; El-Shibiny, A. Characterization and comprehensive genome analysis of novel bacteriophage, vB_Kpn_ZCKp20p, with lytic and anti-biofilm potential against clinical multidrug-resistant Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2023, 13, 1077995. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, H.; Morita, M. Phage DNA packaging. Genes Cells Devoted Mol. Cell. Mech. 1997, 2, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Prevelige, P.E., Jr.; Cortines, J.R. Phage assembly and the special role of the portal protein. Curr. Opin. Virol. 2018, 31, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Linares, R.; Arnaud, C.A.; Degroux, S.; Schoehn, G.; Breyton, C. Structure, function and assembly of the long, flexible tail of siphophages. Curr. Opin. Virol. 2020, 45, 34–42. [Google Scholar] [CrossRef]
- Twist, K.A.; Campbell, E.A.; Deighan, P.; Nechaev, S.; Jain, V.; Geiduschek, E.P.; Hochschild, A.; Darst, S.A. Crystal structure of the bacteriophage T4 late-transcription coactivator gp33 with the β-subunit flap domain of Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 2011, 108, 19961–19966. [Google Scholar] [CrossRef]
Strain | Sequence Type (ST) | Clonal Complex (CC) | Plaque Clarity Score | Efficiency of Plating (EOP) |
---|---|---|---|---|
ATCC6919 | 1 | CC1 (type IA1) | 4 | 0.83 ± 0.14 |
ATCC11827 | 1 | CC1 (type IA1) | 4 | 0.81 ± 0.17 |
CAH | 115 | CC3 (type IA1) | 4 | 0.72 ± 0.25 |
CAF2 | 22 | CC3 (type IA1) | 4 | 0.69 ± 0.05 |
CAF3 | 115 | CC3 (type IA1) | 4 | 0.69 ± 0.34 |
CAH1 | 115 | CC6 (type II) | 3 | 0.10 ± 0.03 |
CAH2 | 6 | CC4 (type IA1) | 3 | 0.11 ± 0.03 |
CAH3 | 4 | CC2 (type IA2) | 4 | 0.61 ± 0.10 |
CAH4 | 2 | CC2 (type IA2) | 2 | 0.12 ± 0.04 |
Scientific Name | Coverage | E Value | Identity | Accession Number | Taxonomy | OrthoANI |
---|---|---|---|---|---|---|
Propionibacterium phage PAD20 | 98% | 0 | 88.24% | NC_015454.1 | Pahexavirus PAD20 | 86.65 |
Propionibacterium phage PaP11-13 | 97% | 0 | 89.34% | ON557706.1 | Pahexavirus | 87.91 |
Cutibacterium phage Ristretto | 98% | 0 | 89.67% | PP165414.1 | Pahexavirus | 88.75 |
Propionibacterium phage Attacne | 97% | 0 | 89.39% | NC_027629.1 | Pahexavirus attacne | 87.53 |
Propionibacterium phage Wizzo | 96% | 0 | 88.81% | NC_027621.1 | Pahexavirus wizzo | 87.59 |
Propionibacterium phage Ouroboros | 98% | 0 | 91.18% | NC_027630.1 | Pahexavirus ouroboros | 88.47 |
Propionibacterium phage pa27 | 98% | 0 | 90.85% | MG820634.1 | Pahexavirus | 88.34 |
Propionibacterium phage PHL116M00 | 99% | 0 | 90.77% | NC_027362.1 | Pahexavirus PHL116M00 | 88.62 |
Propionibacterium phage PHL163M00 | 97% | 0 | 90.75% | NC_027405.1 | Pahexavirus PHL163M00 | 88.91 |
Propionibacterium phage PHL117M00 | 97% | 0 | 90.75% | NC_027403.1 | Pahexavirus PHL117M00 | 88.92 |
Propionibacterium phage PHL095N00 | 98% | 0 | 90.54% | NC_027401.1 | Pahexavirus PHL095N00 | 87.98 |
Propionibacterium phage PHL070N00 | 98% | 0 | 90.38% | NC_027333.1 | Pahexavirus PHL070N00 | 87.79 |
Propionibacterium phage PHL092M00 | 96% | 0 | 90.39% | NC_027385.1 | Pahexavirus PHL092M00 | 88.31 |
Propionibacterium phage Procrass1 | 99% | 0 | 90.36% | NC_027626.1 | Pahexavirus procrass1 | 87.99 |
Cutibacterium phage PAP1-1 | 98% | 0 | 90.31% | OP491959.1 | Pahexavirus | 87.73 |
Propionibacterium phage pa29399-1-D_1 | 98% | 0 | 90.31% | MG820635.1 | Pahexavirus | 88.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ding, W.; Li, Z.; Yan, Y.; Tong, Y.; Xu, J.; Li, M. vB_CacS-HV1 as a Novel Pahexavirus Bacteriophage with Lytic and Anti-Biofilm Potential against Cutibacterium acnes. Microorganisms 2024, 12, 1566. https://doi.org/10.3390/microorganisms12081566
Li X, Ding W, Li Z, Yan Y, Tong Y, Xu J, Li M. vB_CacS-HV1 as a Novel Pahexavirus Bacteriophage with Lytic and Anti-Biofilm Potential against Cutibacterium acnes. Microorganisms. 2024; 12(8):1566. https://doi.org/10.3390/microorganisms12081566
Chicago/Turabian StyleLi, Xu, Wenyan Ding, Zicheng Li, Yi Yan, Yigang Tong, Jialiang Xu, and Mengzhe Li. 2024. "vB_CacS-HV1 as a Novel Pahexavirus Bacteriophage with Lytic and Anti-Biofilm Potential against Cutibacterium acnes" Microorganisms 12, no. 8: 1566. https://doi.org/10.3390/microorganisms12081566
APA StyleLi, X., Ding, W., Li, Z., Yan, Y., Tong, Y., Xu, J., & Li, M. (2024). vB_CacS-HV1 as a Novel Pahexavirus Bacteriophage with Lytic and Anti-Biofilm Potential against Cutibacterium acnes. Microorganisms, 12(8), 1566. https://doi.org/10.3390/microorganisms12081566