Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers
Abstract
1. Introduction
2. Materials and Methods
3. Data Preparation
4. Machine Learning Methods
5. Results
6. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Birch, P.R.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Cui, J.; Luan, Y.; Jiang, N.; Bao, H.; Meng, J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lnc RNA 16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J. 2017, 89, 577–589. [Google Scholar] [CrossRef] [PubMed]
- El-Ganainy, S.M.; Iqbal, Z.; Awad, H.M.; Sattar, M.N.; Tohamy, A.M.; Abbas, A.O.; Squires, J.; Cooke, D.E. Genotypic and phenotypic structure of the population of Phytophthora infestans in Egypt revealed the presence of European genotypes. J. Fungi 2022, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Mutschler, M.A. Transfer to processing tomato and characterization of late blight resistance derived from Solanum pimpinellifolium L. L3708. J. Am. Soc. Hortic. Sci. 2005, 130, 877–884. [Google Scholar] [CrossRef]
- Miranda, B.E.C.; Suassuna, N.D.; Reis, A. Mating type, mefenoxam sensitivity, and pathotype diversity in Phytophthora infestans isolates from tomato in Brazil. Pesqui. Agropecu. Bras. 2010, 45, 671–679. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Agho, C.A.; Zoteyeva, N.; Koppel, M.; Hansen, M.; Hallikma, T.; Cooke, D.E.; Nassar, H.; Niinemets, Ü. Highly diverse Phytophthora infestans populations infecting potato crops in Pskov region, North-West Russia. J. Fungi 2022, 8, 472. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Nassar, H.; Tähtjärv, T.; Eremeev, V.; Hansen, M.; Niinemets, Ü. High temporal variability in late blight pathogen diversity.; virulence.; and fungicide resistance in potato breeding fields: Results from a long-term monitoring study. Plants 2022, 11, 2426. [Google Scholar] [CrossRef]
- Śliwka, J.; Sobkowiak, S.; Lebecka, R.; Avendaño-Córcoles, J.; Zimnoch-Guzowska, E. Mating type, virulence, aggressiveness and metalaxyl resistance of isolates of Phytophthora infestans in Poland. Potato Res. 2006, 49, 155–166. [Google Scholar] [CrossRef]
- Fry, W.E.; Goodwin, S.B.; Matuszak, J.M.; Spielman, L.J.; Milgroom, M.G.; Drenth, A. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 1992, 30, 107–130. [Google Scholar] [CrossRef]
- Park, Y.; Hwang, J.; Kim, K.; Kang, J.; Kim, B.; Xu, S.; Ahn, Y. Development of the gene-based SCARs for the Ph-3 locus, which confers late blight resistance in tomato. Sci. Hortic. 2013, 164, 9–16. [Google Scholar] [CrossRef]
- Adolf, B.; Andrade-Piedra, J.; Bittara Molina, F.; Przetakiewicz, J.; Hausladen, H.; Kromann, P.; Lees, A.; Lindqvist-Kreuze, H.; Perez, W.; Secor, G.A.; et al. Fungal, oomycete, and plasmodiophorid diseases of potato. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer: Cham, Switzerland, 2020; pp. 307–350. [Google Scholar]
- Pomerantz, A.; Cohen, Y.; Shufan, E.; Ben-Naim, Y.; Mordechai, S.; Salman, A.; Huleihel, M. Characterization of Phytophthora infestans resistance to mefenoxam using FTIR spectroscopy. J. Photochem. Photobiol. B Biol. 2014, 141, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Day, J.P.; Wattier, R.A.M.; Shaw, D.S.; Shattock, R.C. Phenotypic and genotypic diversity in Phytophthora infestans on potato in Great Britain, 1995–1998. Plant Pathol. 2004, 53, 303–315. [Google Scholar] [CrossRef]
- Hansen, Z.R.; Everts, K.L.; Fry, W.E.; Gevens, A.J.; Grünwald, N.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; Judelson, H.S.; Knaus, B.J.; et al. Genetic variation within clonal lineages of Phytophthora infestans revealed through genotyping-by-sequencing, and implications for late blight epidemiology. PLoS ONE 2016, 11, e0165690. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, A.; Hannukkala, A.; Naerstad, R.H.; Brurberg, M.B. Variation in populations of Phytophthora infestans in Finland and Norway: Mating type.; metalaxyl resistance and virulence phenotype. Plant Pathol. 2000, 49, 11–22. [Google Scholar] [CrossRef]
- Knapova, G.; Gisi, U. Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathol. 2002, 51, 641–653. [Google Scholar] [CrossRef]
- Blandón-Díaz, J.U.; Widmark, A.K.; Hannukkala, A.; Andersson, B.; Högberg, N.; Yuen, J.E. Phenotypic variation within a clonal lineage of Phytophthora infestans infecting both tomato and potato in Nicaragua. Phytopathology 2012, 102, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Göre, M.E.; Altın, N.; Myers, K.; Cooke, D.E.; Fry, W.E.; Özer, G. Population structure of Phytophthora infestans in Turkey reveals expansion and spread of dominant clonal lineages and virulence. Plant Pathol. 2021, 70, 898–911. [Google Scholar] [CrossRef]
- Cooke, D.E.L.; Lees, A.K. Markers, old and new for examining Phytophthora infestans diversity. Plant Pathol. 2004, 53, 692–704. [Google Scholar] [CrossRef]
- Goodwin, S.B.; Sujkowski, L.S.; Dyer, A.T.; Fry, B.A.; Fry, W.E. Direct detection of gene flow and probable sexual reproduction of Phytophthora infestans in northern North America. Phytopathology 1995, 85, 473–479. [Google Scholar] [CrossRef]
- Fry, W.E.; Goodwin, S.B.; Dyer, A.T.; Matuszak, J.M.; Drenth, A.; Tooley, P.W.; Sujkowski, L.S.; Koh, Y.J.; Cohen, B.A.; Spielman, L.J.; et al. Historical and recent migrations of Phytophthora infestans: Chronology, pathways and implications. Plant Dis. 1993, 77, 653–661. [Google Scholar] [CrossRef]
- Cooke, L.R.; Schepers, H.T.; Hermansen, A.; Bain, R.A.; Bradshaw, N.J.; Ritchie, F.; Shaw, D.S.; Evenhuis, A.; Kessel, G.J.; Wander, J.G.; et al. Epidemiology and integrated control of potato late blight in Europe. Potato Res. 2011, 54, 183–222. [Google Scholar] [CrossRef]
- Drenth, A.; Janssen, E.M.; Govers, F. Formation and survival of oospores of Phytophthora infestans under natural conditions. Plant Pathol. 1995, 44, 86–94. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Santana, F.M.; Gomes, C.B.; Rombaldi, C.; Bianchi, V.J.; Reis, A. Characterization of Phytophthora infestans populations of southern Brazil in 2004 and 2005. Phytoparasitica 2013, 41, 557–568. [Google Scholar] [CrossRef]
- Ayala-Usma, D.A.; Danies, G.; Myers, K.; Bond, M.O.; Romero-Navarro, J.A.; Judelson, H.S.; Restrepo, S.; Fry, W.E. Genome-wide association study identifies single nucleotide polymorphism markers associated with mycelial growth (at 15, 20, and 25 C), mefenoxam resistance, and mating type in Phytophthora infestans. Phytopathology 2020, 110, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Runno-Paurson, E.; Agho, C.A.; Nassar, H.; Hansen, M.; Leitaru, K.; Hallikma, T.; Cooke, D.E.L.; Niinemets, Ü. The variability of Phytophthora infestans isolates collected from Estonian islands in the Baltic Sea. Plant Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Davidse, L.C.; Danial, D.L.; Van Westen, C.J. Resistance to metalaxyl in Phytophthora infestans in the Netherlands. Neth. J. Plant Pathol. 1983, 89, 1–20. [Google Scholar] [CrossRef]
- Dowley, L.J.; O’sullivan, E. Metalaxyl-resistant strains of Phytophthora infestans (Mont.) de Bary in Ireland. Potato Res. 1981, 24, 417–421. [Google Scholar] [CrossRef]
- Hahn, M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol. 2014, 7, 133–141. [Google Scholar] [CrossRef]
- Lee, T.Y.; Mizubuti, E.; Fry, W.E. Genetics of metalaxyl resistance in Phytophthora infestans. Fungal Genet. Biol. 1999, 26, 118–130. [Google Scholar] [CrossRef]
- Steffens, J.J.; Pell, E.J.; Tien, M. Mechanisms of fungicide resistance in phytopathogenic fungi. Curr. Opin. Biotechnol. 1996, 7, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Adaskaveg, J.E.; Michailides, T.; Eskalen, A. Fungicides, Bactericides, Biocontrols, and Natural Products for Deciduous Tree Fruit and Nut, Citrus, Strawberry, and Vine Crops in California; University of California: Davis, CA, USA, 2022. [Google Scholar]
- Pliakhnevich, M.; Ivaniuk, V. Aggressiveness and metalaxyl sensitivity of Phytophthora infestans strains in Belarus. Zemdirbyste 2008, 95, 379–387. [Google Scholar]
- Eom, S.H.; Kim, K.J.; Jung, H.S.; Lee, S.P.; Lee, Y.S. Identification of DNA Markers Linked to Metalaxyl Insensitivity Loci in Phytophthora infestans. Mycobiology 2003, 31, 229–234. [Google Scholar] [CrossRef]
- Montes, M.S.; Nielsen, B.J.; Schmidt, S.G.; Bødker, L.; Kjøller, R.; Rosendahl, S. Population genetics of Phytophthora infestans in Denmark reveals dominantly clonal populations and specific alleles linked to metalaxyl-M resistance. Plant Pathol. 2016, 65, 744–753. [Google Scholar] [CrossRef]
- Fabritius, A.L.; Shattock, R.C.; Judelson, H.S. Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers. Phytopathology 1997, 87, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Saville, A.; Graham, K.; Grünwald, N.J.; Myers, K.; Fry, W.E.; Ristaino, J.B. Fungicide sensitivity of US genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Dis. 2015, 99, 659–666. [Google Scholar] [CrossRef]
- Runno-Paurson, E.; Fry, W.E.; Myers, K.L.; Koppel, M.; Mänd, M. Characterisation of Phytophthora infestans isolates collected from potato in Estonia during 2002–2003. Eur. J. Plant Pathol. 2009, 124, 565–575. [Google Scholar] [CrossRef]
- Mabon, R.; Guibert, M.; Corbière, R.; Andrivon, D. An improved PCR method for rapid and accurate identification of mating types in the late blight pathogen Phytophthora infestans. Plant Health Prog. 2021, 22, 362–367. [Google Scholar] [CrossRef]
- Raffaele, S.; Win, J.; Cano, L.M.; Kamoun, S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genom. 2010, 11, 637. [Google Scholar] [CrossRef]
- Fraslin, C.; Koskinen, H.; Nousianen, A.; Houston, R.D.; Kause, A. Genome-wide association and genomic prediction of resistance to Flavobacterium columnare in a farmed rainbow trout population. Aquaculture 2022, 557, 738332. [Google Scholar] [CrossRef]
- Gürüler, H.; Peker, M.; Baysal, Ö. Soft computing model on genetic diversity and pathotype differentiation of pathogens: A novel approach. Electron. J. Biotechnol. 2015, 18, 347–354. [Google Scholar] [CrossRef]
- Ornella, L.; Tapia, E. Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data. Comput. Electron. Agric. 2010, 74, 250–257. [Google Scholar] [CrossRef]
- Sousa, I.C.; Nascimento, M.; Silva, G.N.; Nascimento, A.C.; Cruz, C.D.; Almeida, D.P.; Pestana, K.N.; Azevedo, C.F.; Zambolim, L.; Caixeta, E.T. Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms. Sci. Agric. 2020, 78, e20200021. [Google Scholar] [CrossRef]
- Torkzaban, B.; Kayvanjoo, A.H.; Ardalan, A.; Mousavi, S.; Mariotti, R.; Baldoni, L.; Ebrahimie, E.; Ebrahimi, M.; Hosseini-Mazinani, M. Machine learning based classification of microsatellite variation: An effective approach for phylogeographic characterization of olive populations. PLoS ONE 2015, 10, e0143465. [Google Scholar] [CrossRef] [PubMed]
- Khorramifar, A.; Rasekh, M.; Karami, H.; Malaga-Toboła, U.; Gancarz, M. A machine learning method for classification and identification of potato cultivars based on the reaction of MOS type sensor-array. Sensors 2021, 21, 5836. [Google Scholar] [CrossRef]
- Beiki, A.H.; Saboor, S.; Ebrahimi, M. A new avenue for classification and prediction of olive cultivars using supervised and unsupervised algorithms. PLoS ONE 2012, 7, e44164. [Google Scholar] [CrossRef]
- Kim, K.J.; Eom, S.H.; Lee, S.P.; Jung, H.S.; Kamoun, S.; Lee, Y.S. A genetic marker associated with the A1 mating type locus in Phytophthora infestans. J. Microbiol. Biotechnol. 2005, 15, 502–509. [Google Scholar]
- Brylińska, M.; Sobkowiak, S.; Stefańczyk, E.; Śliwka, J. Potato cultivation system affects population structure of Phytophthora infestans. Fungal Ecol. 2016, 20, 132–143. [Google Scholar] [CrossRef]
- Janiszewska, M.; Sobkowiak, S.; Stefańczyk, E.; Śliwka, J. Population structure of Phytophthora infestans from a single location in Poland over a long period of time in context of weather conditions. Microb. Ecol. 2021, 81, 746–757. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Brooks, J.C.; Grünwald, N.J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 2015, 6, 208. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Botalb, A.; Moinuddin, M.; Al-Saggaf, U.M.; Ali, S.S. Contrasting convolutional neural network (CNN) with multi-layer perceptron (MLP) for big data analysis. In Proceedings of the 2018 International Conference on Intelligent and Advanced System, Kuala Lumpur, Malaysia, 13–14 August 2018. [Google Scholar]
- Nasien, D.; Yuhaniz, S.S.; Haron, H. Statistical learning theory and support vector machines. In Proceedings of the 2010 Second International Conference on Computer Research and Development, Kuala Lumpur, Malaysia, 7–10 May 2010; pp. 760–764. [Google Scholar]
- Jackulin, C.; Murugavalli, S. A comprehensive review on detection of plant disease using machine learning and deep learning approaches. Meas. Sens. 2022, 24, 100441. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning Mastery: New York, NY, USA, 2018. [Google Scholar]
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Barrón-López, J.A.; Martini, J.W.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. A review of deep learning applications for genomic selection. BMC Genom. 2021, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Szűgyi-Reiczigel, Z.; Ladányi, M.; Bisztray, G.D.; Varga, Z.; Bodor-Pesti, P. Morphological Traits Evaluated with Random Forest Method Explains Natural Classification of Grapevine (Vitis vinifera L.) Cultivars. Plants 2022, 11, 3428. [Google Scholar] [CrossRef] [PubMed]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Varre, M.S.; Izuora, K.; Trabia, M.B.; Dufek, J.S. Prediction of Diabetes Mellitus Progression Using Supervised Machine Learning. Sensors 2023, 23, 4658. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1. [Google Scholar]
- Wu, N.; Liu, F.; Meng, F.; Li, M.; Zhang, C.; He, Y. Rapid and accurate varieties classification of different crop seeds under sample-limited condition based on hyperspectral imaging and deep transfer learning. Front. Bioeng. Biotechnol. 2021, 9, 696292. [Google Scholar] [CrossRef]
- Lourenço, V.M.; Ogutu, J.O.; Rodrigues, R.A.; Posekany, A.; Piepho, H.P. Genomic prediction using machine learning: A comparison of the performance of regularized regression.; ensemble.; instance-based and deep learning methods on synthetic and empirical data. BMC Genom. 2024, 25, 152. [Google Scholar] [CrossRef]
- Silva, P.P.; Gaudillo, J.D.; Vilela, J.A.; Roxas-Villanueva, R.M.; Tiangco, B.J.; Domingo, M.R.; Albia, J.R. A machine learning-based SNP-set analysis approach for identifying disease-associated susceptibility loci. Sci. Rep. 2022, 12, 15817. [Google Scholar] [CrossRef]
- Yoosefzadeh-Najafabadi, M.; Eskandari, M.; Torabi, S.; Torkamaneh, D.; Tulpan, D.; Rajcan, I. Machine-learning-based genome-wide association studies for uncovering QTL underlying soybean yield and its components. Int. J. Mol. Sci. 2022, 23, 5538. [Google Scholar] [CrossRef]
- Benali, S.; Mohamed, B.; Henni, J.E.; Neema, C. Advances of molecular markers application in plant pathology research. Eur. J. Sci. Res. 2011, 50, 110–123. [Google Scholar]
- Babarinde, S.; Burlakoti, R.R.; Peters, R.D.; Al-Mughrabi, K.; Novinscak, A.; Sapkota, S.; Prithiviraj, B. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Appl. Microbiol. Biotechnol. 2024, 108, 237. [Google Scholar] [CrossRef]
- Li, Y.; Cooke, D.E.; Jacobsen, E.; van der Lee, T. Efficient multiplex simple sequence repeat genotyping of the oomycete plant pathogen Phytophthora infestans. J. Microbiol. Methods 2013, 92, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Multiplex SSR Analysis of Phytophthora infestans in Different Countries and the Importance for Potato Breeding; Wageningen University and Research: Wageningen, The Netherlands, 2012. [Google Scholar]
- Tenzer, I.; degli Ivanissevich, S.; Morgante, M.; Gessler, C. Identification of microsatellite markers and their application to population genetics of Venturia inaequalis. Phytopathology 1999, 89, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.E.; Andersson, B. What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathol. 2013, 62, 485–491. [Google Scholar] [CrossRef]
- Saville, A.; Ristaino, J.B. Genetic structure and subclonal variation of extant and recent US lineages of Phytophthora infestans. Phytopathology 2019, 109, 1614–1627. [Google Scholar] [CrossRef]
- Kiiker, R.; Skrabule, I.; Ronis, A.; Cooke, D.E.; Hansen, J.G.; Williams, I.H.; Mänd, M.; Runno-Paurson, E. Diversity of populations of Phytophthora infestans in relation to patterns of potato crop management in Latvia and Lithuania. Plant Pathol. 2019, 68, 1207–1214. [Google Scholar] [CrossRef]
- Vogel, G.; Gore, M.A.; Smart, C.D. Genome-wide association study in New York Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity. Phytopathology 2021, 111, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Judelson, H.S.; Roberts, S. Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans. Phytopathology 1999, 89, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Li, H.; He, J. Machine Learning for Subsurface Characterization; Gulf Professional Publishing: Houston, TX, USA, 2019. [Google Scholar]
- Meher, P.K.; Begam, S.; Sahu, T.K.; Gupta, A.; Kumar, A.; Kumar, U.; Rao, A.R.; Singh, K.P.; Dhankher, O.P. ASRmiRNA: Abiotic stress-responsive miRNA prediction in plants by using machine learning algorithms with pseudo K-tuple nucleotide compositional features. Int. J. Mol. Sci. 2022, 23, 1612. [Google Scholar] [CrossRef] [PubMed]
- Chaitra, N.; Vijaya, P.A.; Deshpande, G. Diagnostic prediction of autism spectrum disorder using complex network measures in a machine learning framework. Biomed. Signal Process. Control 2020, 62, 102099. [Google Scholar] [CrossRef]
- Budhlakoti, N.; Kushwaha, A.K.; Rai, A.; Chaturvedi, K.K.; Kumar, A.; Pradhan, A.K.; Kumar, U.; Kumar, R.R.; Juliana, P.; Mishra, D.C.; et al. Genomic selection: A tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front. Genet. 2022, 13, 832153. [Google Scholar] [CrossRef] [PubMed]
- Ban, H.J.; Heo, J.Y.; Oh, K.S.; Park, K.J. Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genet. 2010, 11, 26. [Google Scholar] [CrossRef]
- Listgarten, J.; Damaraju, S.; Poulin, B.; Cook, L.; Dufour, J.; Driga, A.; Mackey, J.; Wishart, D.; Greiner, R.; Zanke, B. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin. Cancer Res. 2004, 10, 2725–2737. [Google Scholar] [CrossRef]
- Uhmn, S.; Kim, D.H.; Ko, Y.W.; Cho, S.; Cheong, J.; Kim, J. A study on application of single nucleotide polymorphism and machine learning techniques to diagnosis of chronic hepatitis. Expert Syst. 2009, 26, 60–69. [Google Scholar] [CrossRef]
- Yoon, Y.; Song, J.; Hong, S.H.; Kim, J.Q. Analysis of multiple single nucleotide polymorphisms of candidate genes related to coronary heart disease susceptibility by using support vector machines. Clin. Chem. Lab. Med. 2003, 41, 529–534. [Google Scholar] [CrossRef]
All SSR Alleles | Mating Type | Accuracy | Precision | Recall | F1_Score |
Random Forest | 76.72 | 0.726 | 0.747 | 0.736 | |
Decision Tree | 68.25 | 0.570 | 0.668 | 0.615 | |
Support Vector Machine | 70.37 | 0.657 | 0.671 | 0.663 | |
Artificial Neural Network | 37.57 | 0.513 | 0.567 | 0.539 | |
Metalaxyl response | Accuracy | Precision | Recall | F1_Score | |
Random Forest | 75.81 | 0.542 | 0.700 | 0.611 | |
Decision Tree | 68.28 | 0.446 | 0.520 | 0.480 | |
Support Vector Machine | 73.66 | 0.499 | 0.673 | 0.573 | |
Artificial Neural Network | 58.60 | 0.354 | 0.387 | 0.370 | |
Mating type | Accuracy | Precision | Recall | F1_Score | |
Common SSR Alleles | Random Forest | 75.66 | 0.718 | 0.733 | 0.726 |
Decision Tree | 67.20 | 0.565 | 0.634 | 0.598 | |
Support Vector Machine | 67.72 | 0.619 | 0.637 | 0.628 | |
Artificial Neural Network | 64.55 | 0.559 | 0.585 | 0.572 | |
Metalaxyl response | Accuracy | Precision | Recall | F1_Score | |
Random Forest | 74.19 | 0.538 | 0.652 | 0.590 | |
Decision Tree | 72.04 | 0.473 | 0.670 | 0.555 | |
Support Vector Machine | 73.66 | 0.509 | 0.691 | 0.586 | |
Artificial Neural Network | 63.44 | 0.453 | 0.489 | 0.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agho, C.A.; Śliwka, J.; Nassar, H.; Niinemets, Ü.; Runno-Paurson, E. Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers. Microorganisms 2024, 12, 982. https://doi.org/10.3390/microorganisms12050982
Agho CA, Śliwka J, Nassar H, Niinemets Ü, Runno-Paurson E. Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers. Microorganisms. 2024; 12(5):982. https://doi.org/10.3390/microorganisms12050982
Chicago/Turabian StyleAgho, Collins A., Jadwiga Śliwka, Helina Nassar, Ülo Niinemets, and Eve Runno-Paurson. 2024. "Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers" Microorganisms 12, no. 5: 982. https://doi.org/10.3390/microorganisms12050982
APA StyleAgho, C. A., Śliwka, J., Nassar, H., Niinemets, Ü., & Runno-Paurson, E. (2024). Machine Learning-Based Identification of Mating Type and Metalaxyl Response in Phytophthora infestans Using SSR Markers. Microorganisms, 12(5), 982. https://doi.org/10.3390/microorganisms12050982