The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinicopathologic Characteristics
2.3. Treatment Received
2.3.1. TACE Procedure
2.3.2. Ablation Procedure
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Efficacy
3.3. Independent Prognostic Factors Based on Lasso–Cox Regression
3.4. Development of Nomogram
3.5. Validation of the Nomogram
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Li, H.; Hu, P.; Zou, Y.; Yuan, L.; Xu, Y.; Zhang, X.; Luo, X.; Zhang, Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front. Oncol. 2023, 13, 1071415. [Google Scholar] [CrossRef] [PubMed]
- Livraghi, T.; Meloni, F.; Di Stasi, M.; Rolle, E.; Solbiati, L.; Tinelli, C.; Rossi, S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice. Hepatology 2008, 47, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Thornton, L.M.; Cabrera, R.; Kapp, M.; Lazarowicz, M.; Vogel, J.D.; Toskich, B.B. Radiofrequency vs microwave ablation after neoadjuvant transarterial bland and drug-eluting microsphere chembolization for the treatment of hepatocellular carcinoma. Curr. Probl. Diagn. Radiol. 2017, 46, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.; Kelley, R.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qiao, W.; Zhang, H.; Liu, B.; Li, J.; Zang, C.; Mei, T.; Zheng, J.; Zhang, Y. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Front. Immunol. 2022, 13, 1019638. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 39, 1301–1314. [Google Scholar] [CrossRef]
- Clinical Guidelines Committee of Chinese College of Interventionalists. Chinese clinical practice guidelines for transarterial chemoembolization of hepatocellular carcinoma (2023 edition). Zhonghua Yi Xue Za Zhi 2023, 103, 2674–2694. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef] [PubMed]
- Cooperative Group of Basic Research and Experimental Diagnosis of Liver Diseases, Chinese Society of Hepatology, Chinese Medical Association. Expert consensus on the clinical application of the markers of hepatitis B virus. Zhonghua Gan Zang Bing Za Zhi 2023, 31, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y. Hepatitis B Virus-Associated Hepatocellular Carcinoma. Adv. Exp. Med. Biol. 2017, 1018, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-C.; Huang, Y.-H.; Chau, G.-Y.; Su, C.-W.; Lai, C.-R.; Lee, P.-C.; Huo, T.-I.; Sheen, I.-J.; Lee, S.-D.; Lui, W.-Y. Risk factors for early and late recurrence in hepatitis B-related hepatocellular carcinoma. J. Hepatol. 2009, 51, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Lai, E.C.; Lau, W.Y.; Zhou, W.P.; Shen, F.; Pan, Z.Y.; Fu, S.Y.; Wu, M.C. Posthepatectomy HBV reactivation in hepatitis B-related hepatocellular carcinoma influences postoperative survival in patients with preoperative low HBV-DNA levels. Ann. Surg. 2013, 257, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Lau, W.Y.; Wang, Z.-G.; Pan, Z.-Y.; Yuan, S.-X.; Shen, F.; Zhou, W.-P.; Wu, M.-C. Antiviral therapy improves postoperative survival in patients with hepatocellular carcinoma: A randomized controlled trial. Ann. Surg. 2015, 261, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Li, P.P.; Lau, W.Y.; Pan, Z.Y.; Zhao, L.H.; Wang, Z.G.; Wang, M.C.; Zhou, W.P. Antiviral therapy reduces hepatocellular carcinoma recurrence in patients with low HBV-DNA levels: A randomized controlled trial. Ann. Surg. 2018, 268, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yao, L.; Deng, Z.R.; Dong, J.; Zheng, R.J.; Lu, X.B.; Zhang, Y.X.; Sun, L.H. Analysis of clinical characteristics of 481 HBV-related liver cirrhotic patients with low viral load. Zhonghua Gan Zang Bing Za Zhi 2021, 29, 227–233. [Google Scholar] [CrossRef]
- Liu, X.F.; Zhang, T.; Tang, K.; Sui, L.L.; Xu, G.; Liu, Q. Study of Preoperative Antiviral Treatment of Patients with HCC Negative for HBV-DNA. World J. Surg. Oncol. 2017, 37, 4701–4706. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Shi, Q.; Knox, J.J.; Kaubisch, A.; Niedzwiecki, D.; Posey, J.; Tan, B.R.; Kavan, P.; Goel, R.; Lammers, P.E.; et al. Assessment of treatment with sorafenib plus doxorubicin vs sorafenib alone in pa-tients with advanced hepatocellular carcinoma: Phase 3 calgb 80802 randomized clinical trial. JAMA Oncol. 2019, 5, 1582–1588. [Google Scholar] [CrossRef]
- HU, P. Key points of clinical practice guidelines for hepatitis B virus infection at the 2017 European Annual Meeting on Liver Diseases. Chin. J. Hepatol. 2017, 25, 415–418. [Google Scholar]
- Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. The guidelines of prevention and treatment for chronic hepatitis B (2019 version). Zhonghua Gan Zang Bing Za Zhi 2019, 27, 938–961. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridis, G.; Buti, M.; Cornberg, M.; Janssen, H.; Mutimer, D.; Pol, S.; Raimondo, G.; Dusheiko, G.; Lok, A.; Marcellin, P.; et al. EASL clinical practice guidelines: Management of chronic hepatitis B virus infection. Hepatology 2012, 57, 167–185. [Google Scholar]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.; Papatheodoridis, G.; Zoulim, F.; Tacke, F. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection European Association for the Study of the Liver. Hepatology 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed]
- TTerrault, N.A.; Bzowej, N.H.; Chang, K.; Hwang, J.P.; Jonas, M.M.; Murad, M.H. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2016, 63, 261–283. [Google Scholar] [CrossRef]
- Su, K.; Shen, Q.; Tong, J.; Gu, T.; Xu, K.; Li, H.; Chi, H.; Liu, Y.; Li, X.; Wen, L.; et al. Construction and validation of a nomogram for HBV-related hepatocellular carcinoma: A large, multicenter study. Ann. Hepatol. 2023, 28, 101109. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of the People’s Republic of China. Updated standards for the diagnosis and treatment of primary liver cancer. Zhonghua Gan Zang Bing Za Zhi 2012, 20, 419–426. (In Chinese) [Google Scholar]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Zhang, W.; Zhangyuan, G.; Wang, F.; Zhang, H.; Yu, D.; Wang, J.; Jin, K.; Yu, W.; Liu, Y.; Sun, B. High preoperative serum globulin in hepatocellular carcinoma is a risk factor for poor survival. J. Cancer 2019, 10, 3494–3500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nielsen, S.R.; Schmid, M.C. Macrophages as key drivers of cancer progression and metastasis. Mediat. Inflamm. 2017, 2017, 9624760. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, Y.; Fang, M.; Li, X.L.; Yuan, X.X.; Yuan, J.P. Co-evolution of tumor-associated macrophages and tumor neo-vessels during cervical cancer invasion. Oncol. Lett. 2016, 12, 2625–2631. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, S.; Wang, Q.; Zhang, X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J. Hematol. Oncol. 2017, 10, 36. [Google Scholar] [CrossRef]
- Paterlini, P.; Poussin, K.; Kew, M.; Franco, D.; Brechot, C. Selective accumulation of the X transcript of hepatitis B virus in patients negative for hepatitis B surface antigen with hepatocellular carcinoma. Hepatology 1995, 21, 313–321. [Google Scholar] [PubMed]
- An, H.J.; Jang, J.W.; Bae, S.H.; Choi, J.Y.; Cho, S.H.; Yoon, S.K.; Han, J.Y.; Lee, K.H.; Kim, D.G.; Jung, E.S. Sustained low hepatitis B viral load predicts good outcome after curative resection in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2010, 25, 1876–1882. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Arias, L.; Alvarez, M.; Pacheco, B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: Mechanism of action and resistance. Curr. Opin. Virol. 2014, 8, 1–9. [Google Scholar] [CrossRef]
- Mesev, E.V.; LeDesma, R.A.; Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 2019, 4, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Vlachogiannakos, J.; Papatheodoridis, G.V. Hepatitis B: Who and when to treat? Liver Int. 2018, 38 (Suppl. S1), 71–78. [Google Scholar] [CrossRef]
- Yu, S.J.; Kim, Y.J. Hepatitis B viral load affects prognosis of hepatocellular carcinoma. World J. Gastroenterol. 2014, 20, 12039–12044. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qiao, W.; Liu, B.; Li, J.; Yuan, C.; Long, J.; Hu, C.; Zang, C.; Zheng, J.; Zhang, Y. The Monocyte to Lymphocyte Ratio Not Only at Baseline but Also at Relapse Predicts Poor Outcomes in Patients with Hepatocellular Carcinoma Receiving Locoregional Therapy. BMC Gastroenterol. 2022, 22, 98. [Google Scholar] [CrossRef] [PubMed]
- Breen, D.J.; Lencioni, R. Image-guided ablation of primary liver and renal tumours. Nat. Rev. Clin. Oncol. 2015, 12, 175–186. [Google Scholar] [CrossRef]
- Nikfarjam, M.; Muralidharan, V.; Christophi, C. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 2005, 127, 208–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zeng, X.; Su, T.; Xiao, H.; Lin, M.; Peng, Z.; Peng, S.; Kuang, M. Combinatory local ablation and immunotherapies for hepatocellular carcinoma: Rationale, efficacy, and perspective. Front. Immunol. 2022, 13, 1033000. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, B.; Qiao, W.; Li, J.; Yuan, C.; Long, J.; Hu, C.; Zang, C.; Zheng, J.; Zhang, Y. The dynamic changes of afp from baseline to recurrence as an excellent prognostic factor of hepatocellular carcinoma after locoregional therapy: A 5-year prospective cohort study. Front. Oncol. 2021, 11, 756363. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-D.; Li, H.-L.; Huang, M.-S.; Yang, W.-Z.; Yin, G.-W.; Zhong, B.-Y.; Sun, J.-H.; Jin, Z.-C.; Chen, J.-J.; Ge, N.-J.; et al. Transarterial chemoembolization with PD-(L)1 inhibitors plus molecular targeted therapies for hepatocellular carcinoma (CHANCE001). Signal Transduct. Target. Ther. 2023, 8, 58. [Google Scholar] [CrossRef]
<20 (N = 72) | 20–100 (N = 403) | p-Value | |
---|---|---|---|
Age | 55.47 ± 8.70 | 57.71 ± 8.51 | 0.047 |
Gender | 0.603 | ||
Male | 59 (81.9%) | 316(78.4%) | |
Female | 13 (18.1%) | 87 (21.6%) | |
Hypertension | 0.480 | ||
Yes | 15 (20.8%) | 103 (25.6%) | |
No | 57(79.2%) | 300 (74.4%) | |
Diabetes | 1.000 | ||
Yes | 16 (22.2%) | 91 (22.6%) | |
No | 56 (77.8%) | 312 (77.4%) | |
Cirrhosis | 1.000 | ||
Yes | 63 (87.5%) | 351 (87.1%) | |
No | 9 (12.5%) | 52 (12.9%) | |
Smoking | 0.468 | ||
Yes | 33 (45.8%) | 163 (40.4%) | |
No | 39 (54.2%) | 240 (59.6%) | |
Drinking | 0.527 | ||
Yes | 26 (36.1%) | 127 (31.5%) | |
No | 46 (63.9%) | 276 (68.5%) | |
Child–Pugh | 0.531 | ||
A | 56 (77.8%) | 296 (73.4%) | |
B | 16 (22.2%) | 107 (26.6%) | |
BCLC | 0.319 | ||
0 | 31 (43.1%) | 137 (34.0%) | |
A | 31 (43.1%) | 207 (51.4%) | |
B | 10 (13.9%) | 59 (14.6%) | |
T.N | 0.840 | ||
Single | 52(72.2%) | 283 (70.2%) | |
Multiple | 20 (27.8%) | 120 (29.8%) | |
T.S | 0.622 | ||
<30 mm | 52(72.2%) | 276(68.5%) | |
≥30 mm | 20 (27.8%) | 127 (31.5%) | |
WBC | 4.82 ± 1.78 | 5.13 ± 2.31 | 0.270 |
NLR | 3.03 ± 2.53 | 3.53 ± 3.26 | 0.223 |
MLR | 0.35 ± 0.18 | 0.39 ± 0.23 | 0.207 |
RBC | 4.13 ± 0.76 | 4.15 ± 0.62 | 0.835 |
Hb | 127.78 ± 23.31 | 129.81 ± 19.48 | 0.430 |
PLR | 114.05 ± 69.42 | 111.32 ± 57.89 | 0.721 |
ALT | 28.07 ± 13.46 | 27.95 ± 16.18 | 0.955 |
AST | 30.19 ± 14.39 | 29.71 ± 11.9 | 0.761 |
TBIL | 19.45 ± 9.28 | 20.26 ± 10.55 | 0.541 |
DBIL | 6.89 ± 3.67 | 7.18 ± 4.99 | 0.634 |
Alb | 37.75 ± 4.79 | 37.04 ± 4.76 | 0.250 |
Glob | 29.08 ± 5.35 | 28.44 ± 5.62 | 0.372 |
GLR | 58.45 ± 53.49 | 70.03 ± 105.18 | 0.363 |
ALP | 84.47 ± 26.9 | 88.44 ± 36.8 | 0.383 |
Palb | 145.41 ± 64.09 | 138.08 ± 57.67 | 0.330 |
PT | 12.82 ± 1.55 | 12.68 ± 1.63 | 0.507 |
PTA | 83.3 ± 13.11 | 85.44 ± 15.99 | 0.286 |
INR | 1.13 ± 0.13 | 1.13 ± 0.15 | 0.664 |
APTT | 33.67 ± 3.99 | 33.52 ± 4.86 | 0.801 |
Fib | 2.61 ± 0.76 | 2.8 ± 0.94 | 0.109 |
TT | 15.99 ± 2.12 | 15.94 ± 2.20 | 0.848 |
AFP | 180.57 ± 609.06 | 315.8 ± 1882.44 | 0.546 |
Training (N = 282) | Validation (N = 121) | p-Value | |
---|---|---|---|
Age | 57.9 ± 8.48 | 57.4 ± 8.95 | 0.609 |
Gender | 0.372 | ||
Male | 225 (79.8%) | 91 (75.2%) | |
Female | 57 (20.2%) | 30 (24.8%) | |
Hypertension | 1.000 | ||
Yes | 72 (25.5%) | 31 (25.6%) | |
No | 210 (74.5%) | 90 (74.4%) | |
Diabetes | 0.636 | ||
Yes | 66 (23.4%) | 25 (20.7%) | |
No | 216 (76.6%) | 96 (79.3%) | |
Cirrhosis | 0.971 | ||
Yes | 245 (86.9%) | 106 (87.6%) | |
No | 37 (13.1%) | 15 (12.4%) | |
Smoking | 0.154 | ||
Yes | 121 (42.9%) | 42 (34.7%) | |
No | 161 (57.1%) | 79 (65.3%) | |
Drinking | 0.279 | ||
Yes | 94 (33.3%) | 33 (27.3%) | |
No | 188 (66.7%) | 88 (72.7%) | |
Child–Pugh | 0.927 | ||
A | 208 (73.8%) | 88 (72.7%) | |
B | 74 (26.2%) | 33 (27.3%) | |
BCLC | 0.692 | ||
0 | 98 (34.8%) | 39 (32.2%) | |
A | 141 (50%) | 66 (54.5%) | |
B | 43 (15.2%) | 15 (13.2%) | |
T.N | 0.124 | ||
Single | 205 (72.7%) | 78 (64.5%) | |
Multiple | 77 (27.3%) | 43 (35.5%) | |
T.S | 0.703 | ||
<30 mm | 191 (67.7%) | 85 (70.2%) | |
≥30 mm | 91 (32.3%) | 36 (29.8%) | |
WBC | 5.06 ± 2.19 | 5.31 ± 2.58 | 0.351 |
NLR | 3.32 ± 3.00 | 4.00 ± 3.77 | 0.083 |
MLR | 0.38 ± 0.22 | 0.41 ± 0.26 | 0.298 |
RBC | 4.14 ± 0.63 | 4.17 ± 0.59 | 0.621 |
Hb | 130 ± 20.0 | 130 ± 18.3 | 0.935 |
PLR | 109 ± 53.7 | 117 ± 66.6 | 0.238 |
ALT | 28.1 ± 17.4 | 27.6 ± 12.9 | 0.73 |
AST | 30.2 ± 12.8 | 28.5 ± 9.33 | 0.134 |
TBIL | 19.8 ± 10.0 | 21.3 ± 11.6 | 0.206 |
DBIL | 7.19 ± 5.21 | 7.16 ± 4.43 | 0.948 |
Alb | 36.9 ± 4.77 | 37.3 ± 4.75 | 0.539 |
Glob | 28.8 ± 5.52 | 27.6 ± 5.78 | 0.067 |
GLR | 67.3 ± 93.0 | 76.5 ± 129 | 0.478 |
ALP | 89.8 ± 39.0 | 85.3 ± 31.0 | 0.221 |
Palb | 136 ± 54.8 | 144 ± 63.8 | 0.207 |
PT | 12.7 ± 1.55 | 12.8 ± 1.80 | 0.597 |
PTA | 85.4 ± 15.4 | 85.5 ± 17.3 | 0.974 |
INR | 1.12 ± 0.139 | 1.13 ± 0.160 | 0.733 |
APTT | 33.7 ± 4.79 | 33.0 ± 5.00 | 0.168 |
Fib | 2.81 ± 1.01 | 2.77 ± 0.79 | 0.109 |
TT | 15.9 ± 2.25 | 16.0 ± 2.10 | 0.854 |
AFP | 348 ± 2130 | 242 ± 1100 | 0.512 |
p-Value | HR | 95%CI for HR | ||
---|---|---|---|---|
Lower | Upper | |||
Age | 0.177 | 1.012 | 0.995 | 1.029 |
Gender | 0 | 0.451 | 0.295 | 0.69 |
BCLC | 0 | 1.633 | 1.298 | 2.054 |
Ablative modality | 0.101 | 0.759 | 0.545 | 1.056 |
GLR | 0.307 | 1.001 | 0.999 | 1.002 |
Glob | 0.015 | 1.032 | 1.006 | 1.059 |
MLR | 0.02 | 2.27 | 1.14 | 4.522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Wang, Z.; Liu, J.; Li, K.; Zhang, Y. The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model. Microorganisms 2024, 12, 976. https://doi.org/10.3390/microorganisms12050976
Xiong Y, Wang Z, Liu J, Li K, Zhang Y. The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model. Microorganisms. 2024; 12(5):976. https://doi.org/10.3390/microorganisms12050976
Chicago/Turabian StyleXiong, Yiqi, Ziling Wang, Jiajun Liu, Kang Li, and Yonghong Zhang. 2024. "The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model" Microorganisms 12, no. 5: 976. https://doi.org/10.3390/microorganisms12050976
APA StyleXiong, Y., Wang, Z., Liu, J., Li, K., & Zhang, Y. (2024). The Effect of Low HBV-DNA Viral Load on Recurrence in Hepatocellular Carcinoma Patients Who Underwent Primary Locoregional Treatment and the Development of a Nomogram Prediction Model. Microorganisms, 12(5), 976. https://doi.org/10.3390/microorganisms12050976