Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates Origin and Their Selection Criteria
2.2. Antimicrobial Susceptibility Testing
2.3. DNA Extraction
2.4. PCR Analysis
2.4.1. blaOXA Gene Detection and High-Resolution Melting Analysis
2.4.2. ISAba1-blaOXA-23 Gene Detection
2.5. Data Analysis
3. Results
3.1. Bacterial Strains Origin
3.2. Bacterial Strains Antimicrobial Susceptibility
3.3. Presence of blaOXA Genes among Meropenem-Susceptible A. baumannii Isolates
3.4. Presence of ISAba1-blaOXA-23 among Carbapenem-Resistant A. baumannii Isolates (n = 53)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef] [PubMed]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An Increasing Threat in Hospitals: Multidrug-Resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef]
- Protic, D.; Pejovic, A.; Andjelkovic, D.; Djukanovic, N.; Savic, D.; Piperac, P.; Markovic Denic, L.; Zdravkovic, M.; Todorovic, Z. Nosocomial Infections Caused by Acinetobacter baumannii: Are We Losing the Battle? Surg. Infect. 2016, 17, 236–242. [Google Scholar] [CrossRef]
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a Global Pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef]
- Wu, F.; Hu, R. Risk Factors for Pneumonia Caused by Antimicrobial Drug-Resistant or Drug-Sensitive Acinetobacter baumannii Infections. Medicine 2020, 99, e21051. [Google Scholar] [CrossRef]
- Ballouz, T.; Aridi, J.; Afif, C.; Irani, J.; Lakis, C.; Nasreddine, R.; Azar, E. Risk Factors, Clinical Presentation, and Outcome of Acinetobacter baumannii Bacteremia. Front. Cell. Infect. Microbiol. 2017, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Depka, D.; Bogiel, T.; Rzepka, M.; Gospodarek-Komkowska, E. The Prevalence of Virulence Factor Genes among Carbapenem-Non-Susceptible Acinetobacter baumannii Clinical Strains and Their Usefulness as Potential Molecular Biomarkers of Infection. Diagnostics 2023, 13, 1036. [Google Scholar] [CrossRef]
- Liu, C.; Chang, Y.; Xu, Y.; Luo, Y.; Wu, L.; Mei, Z.; Li, S.; Wang, R.; Jia, X. Distribution of Virulence-Associated Genes and Antimicrobial Susceptibility in Clinical Acinetobacter baumannii Isolates. Oncotarget 2018, 9, 21663–21673. [Google Scholar] [CrossRef]
- Morris, F.C.; Dexter, C.; Kostoulias, X.; Uddin, M.I.; Peleg, A.Y. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front. Microbiol. 2019, 10, 1601. [Google Scholar] [CrossRef] [PubMed]
- Abbott, I.; Cerqueira, G.M.; Bhuiyan, S.; Peleg, A.Y. Carbapenem Resistance in Acinetobacter baumannii: Laboratory Challenges, Mechanistic Insights and Therapeutic Strategies. Expert Rev. Anti-Infect. Ther. 2013, 11, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Custovic, A.; Smajlovic, J.; Tihic, N.; Hadzic, S.; Ahmetagic, S.; Hadzagic, H. Epidemiological Monitoring of Nosocomial Infections Caused by Acinetobacter baumannii. Med. Arch. 2014, 68, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Grisold, A.J.; Luxner, J.; Bedenić, B.; Diab-Elschahawi, M.; Berktold, M.; Wechsler-Fördös, A.; Zarfel, G.E. Diversity of Oxacillinases and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii from Austria. Int. J. Environ. Res. Public Health 2021, 18, 2171. [Google Scholar] [CrossRef]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef]
- Turton, J.F.; Ward, M.E.; Woodford, N.; Kaufmann, M.E.; Pike, R.; Livermore, D.M.; Pitt, T.L. The Role of ISAba1 in Expression of OXA Carbapenemase Genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 2006, 258, 72–77. [Google Scholar] [CrossRef]
- Słoczyńska, A.; Wand, M.E.; Tyski, S.; Laudy, A.E. Analysis of BlaCHDL Genes and Insertion Sequences Related to Carbapenem Resistance in Acinetobacter baumannii Clinical Strains Isolated in Warsaw, Poland. Int. J. Mol. Sci. 2021, 22, 2486. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Pham, S.C.; Ly, A.K.; Nguyen, C.V.V.; Vu, T.T.; Ha, T.M. Overexpression of BlaOXA-58 Gene Driven by ISAba3 Is Associated with Imipenem Resistance in a Clinical Acinetobacter baumannii Isolate from Vietnam. Biomed. Res. Int. 2020, 2020, 7213429. [Google Scholar] [CrossRef]
- Pagano, M.; Martins, A.F.; Barth, A.L. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Braz. J. Microbiol. 2016, 47, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Eucast: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 25 August 2023).
- Woodford, N.; Ellington, M.J.; Coelho, J.M.; Turton, J.F.; Ward, M.E.; Brown, S.; Amyes, S.G.B.; Livermore, D.M. Multiplex PCR for Genes Encoding Prevalent OXA Carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 2006, 27, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; et al. Antibiotic Resistance: What Is so Special about Multidrug-Resistant Gram-Negative Bacteria? GMS Hyg. Infect. Control 2017, 12, Doc05. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef]
- Ajmal, S.; Athar Hashmi, F.; Imran, I. Recent Progress in Development and Applications of Biomaterials. Mater. Today Proc. 2022, 62, 385–391. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial Resistance: Risk Associated with Antibiotic Overuse and Initiatives to Reduce the Problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Bliziotis, I.A.; Kasiakou, S.K.; Samonis, G.; Athanassopoulou, P.; Michalopoulos, A. Outcome of Infections Due to Pandrug-Resistant (PDR) Gram-Negative Bacteria. BMC Infect. Dis. 2005, 5, 24. [Google Scholar] [CrossRef]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 18 August 2023).
- Bandić-Pavlović, D.; Zah-Bogović, T.; Žižek, M.; Bielen, L.; Bratić, V.; Hrabač, P.; Slačanac, D.; Mihaljević, S.; Bedenić, B. Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. J. Chemother. 2020, 32, 344–358. [Google Scholar] [CrossRef]
- Jabeen, F.; Khan, Z.; Sohail, M.; Tahir, A.; Tipu, I.; Saleem, H.G.M. Antibiotic Resistance Pattern of Acinetobacter baumannii Isolated From Bacteremia Patients In Pakistan. J. Ayub Med. Coll. Abbottabad 2022, 34, 95–100. [Google Scholar] [CrossRef]
- Lob, S.H.; Hoban, D.J.; Sahm, D.F.; Badal, R.E. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii. Int. J. Antimicrob. Agents 2016, 47, 317–323. [Google Scholar] [CrossRef]
- Elham, B.; Fawzia, A. Colistin Resistance in Acinetobacter baumannii Isolated from Critically Ill Patients: Clinical Characteristics, Antimicrobial Susceptibility and Outcome. Afr. Health Sci. 2019, 19, 2400–2406. [Google Scholar] [CrossRef]
- Almutairi, M.M. Synergistic activities of colistin combined with other antimicrobial agents against colistin-resistant Acinetobacter baumannii clinical isolates. PLoS ONE 2022, 17, e0270908. [Google Scholar] [CrossRef]
- Evans, B.A.; Amyes, S.G.B. OXA β-Lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [PubMed]
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef] [PubMed]
- Bahador, A.; Raoofian, R.; Pourakbari, B.; Taheri, M.; Hashemizadeh, Z.; Hashemi, F.B. Genotypic and Antimicrobial Susceptibility of Carbapenem-Resistant Acinetobacter baumannii: Analysis of ISAba Elements and BlaOXA-23-like Genes Including a New Variant. Front. Microbiol. 2015, 6, 1249. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Y.; Wei, Y.; Jian, C.; Liu, J.; Zeng, Z. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Front. Microbiol. 2022, 13, 1045206. [Google Scholar] [CrossRef]
- Kalanuria, A.A.; Ziai, W.; Mirski, M. Ventilator-Associated Pneumonia in the ICU. Crit. Care 2014, 18, 208. [Google Scholar] [CrossRef]
- Konca, C.; Tekin, M.; Geyik, M. Susceptibility Patterns of Multidrug-Resistant Acinetobacter baumannii. Indian J. Pediatr. 2021, 88, 120–126. [Google Scholar] [CrossRef]
Gene Detected | Primer Sequences 5′→3′ | Tm (°C) | Annealing Temperature (°C) | Product Length (bp) | References |
---|---|---|---|---|---|
blaOXA-40 | F: GGTTAGTTGGCCCCCTTAA | 51.8 | 58 | 246 | [23] |
R: AGTTGAGCGAAAAGGGGATT | 49.7 | ||||
blaOXA-23 | F: GATCGGATTGGAGAACCAGA | 50.3 | 58 | 501 | [23] |
R: ATTTCTGACCGCATTTCCAT | 47.7 | ||||
blaOXA-51 | F: TAATGCTTTGATCGGCCTTG | 49.7 | 58 | 353 | [23] |
R: TGGATTGCACTTCATCTTGG | 49.7 | ||||
ISAba1-blaOXA-23 | F: AATCACAAGCATGATGAGCG | 49.7 | 54 | 962 | [19] |
R: CATTTCTGACCGCATTTCCAT | 50.5 |
Clinic/Department | Strain Number (%) |
---|---|
Department of Anesthesiology and Intensive Care | 8 (22.8%) |
Clinical Unit of Anesthesiology and Intensive Care with Cardiac Anesthesiology Division | 7 (20.0%) |
Department of Cardiology | 3 (8.6%) |
Department of Neurology | 3 (8.6%) |
Department of General, Oncologic and Pediatric Urology | 2 (5.7%) |
Department of Liver and General Surgery | 2 (5.7%) |
Department of Nephrology, Hypertension and Internal Medicine | 2 (5.7%) |
Department of Otolaryngology and Laryngological Oncology with Audiology and Phoniatrics Unit | 2 (5.7%) |
Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology | 1 (2.9%) |
Department of Emergency Medicine | 1 (2.9%) |
Department of Endocrinology and Diabetology | 1 (2.9%) |
Department of Orthopedics and Traumatology | 1 (2.9%) |
Department of Transplantation and General Surgery | 1 (2.9%) |
Chronic Wound Care | 1 (2.9%) |
Clinic/Department | Strain Number (%) |
---|---|
Department of Anesthesiology and Intensive Care | 42 (79.2%) |
Department of Endocrinology and Diabetology | 3 (5.7%) |
Department of Cardiology | 2 (3.8%) |
Department of Geriatrics | 2 (3.8%) |
Department of Liver and General Surgery | 2 (3.8%) |
Department of Cardiac Surgery | 1 (1.9%) |
Department of Rehabilitation | 1 (1.9%) |
Number (%) of Strains | |||
---|---|---|---|
Antimicrobial | Susceptible | Susceptible, Increased Exposure | Resistant |
IMP | 30 (85.7) | 2 (5.7) | 3 (8.6) |
MEM | 35 (100) | 0 | 0 |
TOB | 25 (71.4) | 0 | 10 (28.6) |
AMK | 28 (80.0) | 1 (2.9) | 6 (17.1) |
CIP | 7 (20.0) | 16 (45.7) | 12 (34.3) |
LEV | 23 (65.7) | 0 | 12 (34.3) |
SXT | 22 (62.9) | 0 | 13 (37.1) |
COL | 33 (94.3) | 0 | 2 (5.7) |
Number (%) of Strains | |||
---|---|---|---|
Antimicrobial | Susceptible | Susceptible, Increased Exposure | Resistant |
IMP | 0 | 0 | 53 (100) |
MEM | 0 | 0 | 53 (100) |
TOB | 5 (9.4) | 0 | 48 (90.6) |
AMK | 1 (1.9) | 0 | 52 (98.1) |
CIP | 0 | 0 | 53 (100) |
LEV | 0 | 0 | 53 (100) |
SXT | 0 | 2 (3.7) | 51 (96.2) |
COL | 42 (79.2) | 0 | 11 (20.8) |
Specimen Origin | Unit | Gene Detected | ISAba1 | IMP | MEM | TOB | AMK | CIP | LEV | SXT | COL |
---|---|---|---|---|---|---|---|---|---|---|---|
Bronchoalveolar lavage | ICU | blaOXA-23 | + | R | S | R | S | R | R | R | S |
Wound swab | ICU | blaOXA-23 | + | S | S | R | S | R | R | R | S |
Pus | ICU | blaOXA-40 | n/a | R | S | S | S | R | R | R | R |
Urine | ICU | blaOXA-40 | n/a | S | S | S | S | I | S | S | S |
Vascular catheter | NEU | blaOXA-40 | n/a | R | S | R | S | R | R | R | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depka, D.; Bogiel, T.; Rzepka, M.; Gospodarek-Komkowska, E. Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems—A Pilot Study. Microorganisms 2024, 12, 2057. https://doi.org/10.3390/microorganisms12102057
Depka D, Bogiel T, Rzepka M, Gospodarek-Komkowska E. Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems—A Pilot Study. Microorganisms. 2024; 12(10):2057. https://doi.org/10.3390/microorganisms12102057
Chicago/Turabian StyleDepka, Dagmara, Tomasz Bogiel, Mateusz Rzepka, and Eugenia Gospodarek-Komkowska. 2024. "Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems—A Pilot Study" Microorganisms 12, no. 10: 2057. https://doi.org/10.3390/microorganisms12102057
APA StyleDepka, D., Bogiel, T., Rzepka, M., & Gospodarek-Komkowska, E. (2024). Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems—A Pilot Study. Microorganisms, 12(10), 2057. https://doi.org/10.3390/microorganisms12102057