Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan–McDermid Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Collection and DNA Extraction
2.3. Amplification, Sequencing of the 16S rRNA Gene and Bioinformatic Analysis
2.4. Short-Chain Fatty Acid (SCFA) Analysis
2.5. Immunological Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Demographics and Clinical Characteristics
3.2. Metataxonomic Analysis
3.3. Short-Chain Fatty Acid (SCFA) Analysis
3.4. Immunological Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zablotsky, B.; Black, L.I. Prevalence of children aged 3–17 Years with developmental disabilities, by urbanicity: United States, 2015–2018. Natl. Health Stat. Rep. 2020, 139, 1–7. [Google Scholar]
- Phelan, M.C.; Rogers, R.C.; Saul, R.A.; Stapleton, G.A.; Sweet, K.; McDermid, H.; Shaw, S.R.; Claytor, J.; Willis, J.; Kelly, D.P. 22q13 deletion syndrome. Am. J. Med. Genet. 2001, 101, 991–999. [Google Scholar] [CrossRef]
- Sarasua, S.M.; Boccuto, L.; Sharp, J.L.; Dwivedi, A.; Chen, C.F.; Rollins, J.D.; Rogers, R.C.; Phelan, K.; DuPont, B.R. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum. Genet. 2014, 133, 847–859. [Google Scholar] [CrossRef]
- Naisbitt, S.; Kim, E.; Tu, J.C.; Xiao, B.; Sala, C.; Valtschanoff, J.; Weinberg, R.J.; Worley, P.F.; Sheng, M. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999, 23, 569–582. [Google Scholar] [CrossRef]
- Arons, M.H.; Thynne, C.J.; Grabrucker, A.M.; Li, D.; Schoen, M.; Cheyne, J.E.; Boeckers, T.M.; Montgomery, J.M.; Garner, C.C. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J. Neurosci. 2012, 32, 14966–14978. [Google Scholar] [CrossRef]
- Peça, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [Google Scholar] [CrossRef]
- Yang, M.; Bozdagi, O.; Scattoni, M.L.; Wöhr, M.; Roullet, F.I.; Katz, A.M.; Abrams, D.N.; Kalikhman, D.; Simon, H.; Woldeyohannes, L.; et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J. Neurosci. 2012, 32, 6525–6541. [Google Scholar] [CrossRef]
- Phelan, K.; Boccuto, L.; Powell, C.M.; Boeckers, T.M.; van Ravenswaaij-Arts, C.; Rogers, R.C.; Sala, C.; Verpelli, C.; Thurm, A.; Bennett, W.E., Jr.; et al. Phelan-McDermid syndrome: A classification system after 30 years of experience. Orphanet J. Rare Dis. 2022, 17, 27. [Google Scholar] [CrossRef]
- Mitz, A.R.; Boccuto, L.; Thurm, A. Evidence for common mechanisms of pathology between SHANK3 and other genes of Phelan-McDermid syndrome. Clin. Genet. 2024, 105, 459–469. [Google Scholar] [CrossRef]
- Serrada-Tejeda, S.; Martínez-Piédrola, R.M.; Máximo-Bocanegra, N.; Sánchez-Herrera-Baeza, P.; Pérez-de-Heredia-Torres, M. Descriptive analysis of adaptive behavior in Phelan-McDermid syndrome and autism spectrum disorder. Front. Neurosci. 2022, 16, 893003. [Google Scholar] [CrossRef]
- Gillentine, M.A.; Wang, T.; Eichler, E.E. Estimating the prevalence of de novo monogenic neurodevelopmental disorders from large cohort studies. Biomedicines 2022, 10, 2865. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Holingue, C.; Jimenez-Gomez, A.; Dallman, J.E.; Moshiree, B. Gastrointestinal dysfunction in genetically defined neurodevelopmental disorders. Semin. Neurol. 2023, 43, 645–660. [Google Scholar] [CrossRef]
- Betancur, C.; Buxbaum, J.D. SHANK3 haploinsufficiency: A “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol. Autism 2013, 4, 17. [Google Scholar] [CrossRef]
- Leblond, C.S.; Nava, C.; Polge, A.; Gauthier, J.; Huguet, G.; Lumbroso, S.; Giuliano, F.; Stordeur, C.; Depienne, C.; Mouzat, K. Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments. PLoS Genet. 2014, 10, e1004580. [Google Scholar] [CrossRef]
- De Rubeis, S.; Siper, P.M.; Durkin, A.; Weissman, J.; Muratet, F.; Halpern, D.; Trelles, M.D.P.; Frank, Y.; Lozano, R.; Wang, A.T.; et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol. Autism 2018, 9, 31. [Google Scholar] [CrossRef]
- Phelan-McDermid Foundation. How Are Phelan-McDermid Syndrome and Autism Related? Available online: https://pmsf.org/phelan-mcdermid-syndrome-and-autism (accessed on 19 September 2024).
- Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsäter, H.; et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 2007, 39, 25–27. [Google Scholar] [CrossRef]
- Holingue, C.; Newill, C.; Lee, L.C.; Pasricha, P.J.; Daniele Fallin, M. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res. 2018, 11, 24–36. [Google Scholar] [CrossRef]
- Penzol, M.J.; Salazar de Pablo, G.; Llorente, C.; Moreno, C.; Hernández, P.; Dorado, M.L.; Parellada, M. Functional gastrointestinal disease in autism spectrum disorder: A retrospective descriptive study in a clinical sample. Front. Psychiatry 2019, 10, 179. [Google Scholar] [CrossRef]
- Matuleviciene, A.; Siauryte, K.; Kuiper, E.; Grabrucker, A.M.; European Phelan-McDermid Syndrome Guideline Consortium. Consensus recommendations on chewing, swallowing and gastrointestinal problems in Phelan-McDermid syndrome. Eur. J. Med. Genet. 2023, 66, 104763. [Google Scholar] [CrossRef]
- Goodspeed, K.; Bliss, G.; Linnehan, D. Bringing everyone to the table—Findings from the 2018 Phelan-McDermid Syndrome Foundation International Conference. Orphanet J. Rare Dis. 2020, 15, 152. [Google Scholar] [CrossRef]
- Holingue, C.; Poku, O.; Pfeiffer, D.; Murray, S.; Fallin, M.D. Gastrointestinal concerns in children with autism spectrum disorder: A qualitative study of family experiences. Autism 2022, 26, 1698–1711. [Google Scholar] [CrossRef] [PubMed]
- Pfaender, S.; Sauer, A.K.; Hagmeyer, S.; Mangus, K.; Linta, L.; Liebau, S.; Bockmann, J.; Huguet, G.; Bourgeron, T.; Boeckers, T.M.; et al. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci. Rep. 2017, 7, 45190. [Google Scholar] [CrossRef] [PubMed]
- James, D.M.; Kozol, R.A.; Kajiwara, Y.; Wahl, A.L.; Storrs, E.C.; Buxbaum, J.D.; Klein, M.; Moshiree, B.; Dallman, J.E. Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism. Mol. Autism 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Sauer, A.K.; Bockmann, J.; Steinestel, K.; Boeckers, T.M.; Grabrucker, A.M. Altered Intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int. J. Mol. Sci. 2019, 20, 2134. [Google Scholar] [CrossRef]
- Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11, 22. [Google Scholar] [CrossRef]
- Kang, D.-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013, 8, 322. [Google Scholar] [CrossRef]
- Iglesias-Vázquez, L.; Van Ginkel Riba, G.; Arija, V.; Canals, J. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and meta-analysis. Nutrients 2020, 12, 792. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, H.; Zhu, H.; Du, Y.; Wang, L. Revealing the gut microbiome mystery: A meta-analysis revealing differences between individuals with autism spectrum disorder and neurotypical children. Biosci. Trends 2024, 18, 233–249. [Google Scholar] [CrossRef]
- Lasheras, I.; Seral, P.; Latorre, E.; Barroso, E.; Gracia-García, P.; Santabárbara, J. Microbiota and gut-brain axis dysfunction in autism spectrum disorder: Evidence for functional gastrointestinal disorders. Asian J. Psychiatr. 2020, 47, 101874. [Google Scholar] [CrossRef]
- Chaidez, V.; Hansen, R.L.; Hertz-Picciotto, I. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 2014, 44, 1117–1127. [Google Scholar] [CrossRef]
- Mazefsky, C.A.; Schreiber, D.R.; Olino, T.M.; Minshew, N.J. The association between emotional and behavioral problems and gastrointestinal symptoms among children with high-functioning autism. Autism 2014, 18, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Rea, K.; Dinan, T.G.; Cryan, J.F. Gut Microbiota: A perspective for psychiatrists. Neuropsychobiology 2020, 79, 50–62. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Sherwin, E.; Bordenstein, S.R.; Quinn, J.L.; Dinan, T.G.; Cryan, J.F. Microbiota and the social brain. Science 2019, 366, aar2016. [Google Scholar] [CrossRef]
- Ritz, N.L.; Brocka, M.; Butler, M.I.; Cowan, C.S.M.; Barrera-Bugueño, C.; Turkington, C.J.R.; Draper, L.A.; Bastiaanssen, T.F.S.; Turpin, V.; Morales, L.; et al. Social anxiety disorder-associated gut microbiota increases social fear. Proc. Natl. Acad. Sci. USA 2024, 121, e2308706120. [Google Scholar] [CrossRef]
- Ojeda, J.; Ávila, A.; Vidal, P.M. Gut microbiota interaction with the central nervous system throughout life. J. Clin. Med. 2021, 10, 1299. [Google Scholar] [CrossRef]
- Mancini, V.O.; Brook, J.; Hernandez, C.; Strickland, D.; Christophersen, C.T.; D’Vaz, N.; Silva, D.; Prescott, S.; Callaghan, B.; Downs, J.; et al. Associations between the human immune system and gut microbiome with neurodevelopment in the first 5 years of life: A systematic scoping review. Dev. Psychobiol. 2023, 65, e22360. [Google Scholar] [CrossRef]
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci. 2014, 34, 15490–15496. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, E.; Narbad, A.; Rodríguez, J.M. Autism spectrum disorder associated with gut microbiota at immune, metabolomic, and neuroactive level. Front. Neurosci. 2020, 14, 578666. [Google Scholar] [CrossRef] [PubMed]
- Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 2016, 165, 1762–1775. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, S.Y.; El Gendy, Y.G.; Mehanna, N.S.; El-Senousy, W.M.; El-Feki, H.S.A.; Saad, K.; El-Asheer, O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018, 21, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Mörkl, S.; Butler, M.I.; Holl, A.; Cryan, J.F.; Dinan, T.G. Probiotics and the microbiota-gut-brain axis: Focus on psychiatry. Curr. Nutr. Rep. 2020, 9, 171–182. [Google Scholar] [CrossRef]
- Bicknell, B.; Liebert, A.; Borody, T.; Herkes, G.; McLachlan, C.; Kiat, H. Neurodegenerative and neurodevelopmental diseases and the gut-brain axis: The potential of therapeutic targeting of the microbiome. Int. J. Mol. Sci. 2023, 24, 9577. [Google Scholar] [CrossRef]
- Chandel, P.; Thapa, K.; Kanojia, N.; Rani, L.; Singh, T.G.; Rohilla, P. Exploring therapeutic potential of phytoconstituents as a gut microbiota modulator in the management of neurological and psychological disorders. Neuroscience 2024, 551, 69–78. [Google Scholar] [CrossRef]
- Wiefels, M.D.; Furar, E.; Eshraghi, R.S.; Mittal, J.; Memis, I.; Moosa, M.; Mittal, R.; Eshraghi, A.A. Targeting gut dysbiosis and microbiome metabolites for the development of therapeutic modalities for neurological disorders. Curr. Neuropharmacol. 2024, 22, 123–139. [Google Scholar] [CrossRef]
- Mozota, M.; Castro, I.; Gómez-Torres, N.; Arroyo, R.; Gutiérrez-Díaz, I.; Delgado, S.; Rodríguez, J.M.; Alba, C. Administration of Ligilactobacillus salivarius CECT 30632 to elderly during the COVID-19 pandemic: Nasal and fecal metataxonomic analysis and fatty acid profiling. Front. Microbiol. 2022, 13, 1052675. [Google Scholar] [CrossRef]
- Aparicio, M.; Alba, C.; Cam Public Health Area PSGO; Rodríguez, J.M.; Fernández, L. Microbiological and immunological markers in milk and infant feces for common gastrointestinal disorders: A pilot study. Nutrients 2020, 12, 634. [Google Scholar] [CrossRef]
- De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; de Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 2013, 8, e76993. [Google Scholar] [CrossRef]
- Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010, 16, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-W.; Ilhan, Z.E.; Isern, N.G.; Hoyt, D.W.; Howsmon, D.P.; Shaffer, M.; Lozupone, C.A.; Hahn, J.; Adams, J.B.; Krajmalnik-Brown, R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2018, 49, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef]
- Gauthier, J.; Spiegelman, D.; Piton, A.; Lafrenière, R.G.; Laurent, S.; St-Onge, J.; Lapointe, L.; Hamdan, F.F.; Cossette, P.; Mottron, L.; et al. Novel de novo SHANK3 mutation in autistic patients. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 421–424. [Google Scholar] [CrossRef]
- Phelan, K.; McDermid, H.E. The 22q13.3 Deletion syndrome (Phelan-McDermid syndrome). Mol. Syndromol. 2012, 2, 186–201. [Google Scholar] [CrossRef]
- Tabouy, L.; Getselter, D.; Ziv, O.; Karpuj, M.; Tabouy, T.; Lukic, I.; Maayouf, R.; Werbner, N.; Ben-Amram, H.; Nuriel-Ohayon, M.; et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 2018, 73, 310–319. [Google Scholar] [CrossRef]
- Morton, J.T.; Jin, D.M.; Mills, R.H.; Shao, Y.; Rahman, G.; McDonald, D.; Zhu, Q.; Balaban, M.; Jiang, Y.; Cantrell, K.; et al. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 2023, 26, 1208–1217. [Google Scholar] [CrossRef]
- Price, C.E.; Valls, R.A.; Ramsey, A.R.; Loeven, N.A.; Jones, J.T.; Barrack, K.E.; Schwartzman, J.D.; Royce, D.B.; Cramer, R.A.; Madan, J.C.; et al. Intestinal Bacteroides modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis. mBio 2024, 15, e0314423. [Google Scholar] [CrossRef]
- Qu, D.; Sun, F.; Feng, S.; Yu, L.; Tian, F.; Zhang, H.; Chen, W.; Zhai, Q. Protective effects of Bacteroides fragilis against lipopolysaccharide-induced systemic inflammation and their potential functional genes. Food Funct. 2022, 13, 1015–1025. [Google Scholar] [CrossRef]
- He, Q.; Niu, M.; Bi, J.; Du, N.; Liu, S.; Yang, K.; Li, H.; Yao, J.; Du, Y.; Duan, Y. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro. Sci. Rep. 2023, 13, 15842. [Google Scholar] [CrossRef]
- Zhai, Q.; Cen, S.; Jiang, J.; Zhao, J.; Zhang, H.; Chen, W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environ. Res. 2019, 171, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Elhefnawy, A.M.; Azouz, H.G.; Roshdy, Y.S.; Ashry, M.H.; Ibrahim, A.E.; Meheissen, M.A. Study of the gut microbiome profile in children with autism spectrum disorder: A single tertiary hospital experience. J. Mol. Neurosci. 2020, 70, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Carmel, J.; Ghanayem, N.; Mayouf, R.; Saleev, N.; Chaterjee, I.; Getselter, D.; Tikhonov, E.; Turjeman, S.; Shaalan, M.; Khateeb, S.; et al. Bacteroides is increased in an autism cohort and induces autism-relevant behavioral changes in mice in a sex-dependent manner. NPJ Biofilms Microbiomes 2023, 9, 103. [Google Scholar] [CrossRef]
- Kushak, R.I.; Winter, H.S.; Buie, T.M.; Cox, S.B.; Phillips, C.D.; Ward, N.L. Analysis of the duodenal microbiome in autistic individuals: Association with carbohydrate digestion. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e110–e116. [Google Scholar] [CrossRef]
- Caputi, V.; Hill, L.; Figueiredo, M.; Popov, J.; Hartung, E.; Margolis, K.G.; Baskaran, K.; Joharapurkar, P.; Moshkovich, M.; Pai, N. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: A systematic review of pediatric and adult studies. Front. Neurosci. 2024, 18, 1341656. [Google Scholar] [CrossRef]
- Pulikkan, J.; Maji, A.; Dhakan, D.B.; Saxena, R.; Mohan, B.; Anto, M.M.; Agarwal, N.; Grace, T.; Sharma, V.K. Gut microbial dysbiosis in indian children with autism spectrum disorders. Microb. Ecol. 2018, 76, 1102–1114. [Google Scholar] [CrossRef]
- Inoue, R.; Sakaue, Y.; Sawai, C.; Sawai, T.; Ozeki, M.; Romero-Pérez, G.A.; Tsukahara, T. A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci. Biotechnol. Biochem. 2016, 80, 2450–2458. [Google Scholar] [CrossRef]
- Xu, M.; Xu, X.; Li, J.; Li, F. Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis. Front. Psychiatry 2019, 10, 473. [Google Scholar] [CrossRef]
- Hua, X.; Zhu, J.; Yang, T.; Guo, M.; Li, Q.; Chen, J.; Li, T. The gut microbiota and associated metabolites are altered in sleep disorder of children with autism spectrum disorders. Front. Psychiatry 2020, 11, 855. [Google Scholar] [CrossRef]
- Niu, M.; Li, Q.; Zhang, J.; Wen, F.; Dang, W.; Duan, G.; Li, H.; Ruan, W.; Yang, P.; Guan, C.; et al. Characterization of intestinal microbiota and probiotics treatment in children with autism spectrum disorders in China. Front. Neurol. 2019, 10, 1084. [Google Scholar] [CrossRef]
- Averina, O.V.; Kovtun, A.S.; Polyakova, S.I.; Savilova, A.M.; Rebrikov, D.V.; Danilenko, V.N. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020, 69, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, H.; Lu, W.; Zhai, Q.; Zhang, Q.; Yuan, W.; Gu, Z.; Zhao, J.; Zhang, H.; Chen, W. Potential of gut microbiome for detection of autism spectrum disorder. Microb. Pathog. 2020, 149, 104568. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zhang, Y.; Chen, X.; Li, S.; Mei, H.; Xiao, H.; Ma, X.; Liu, Z.; Li, R. Gut microbiome and serum amino acid metabolome alterations in autism spectrum disorder. Sci. Rep. 2024, 14, 4037. [Google Scholar] [CrossRef]
- Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 2019, 9, 287. [Google Scholar] [CrossRef]
- Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef]
- MacFabe, D.F. Enteric short-chain fatty acids: Microbial messengers of metabolism, mitochondria, and mind: Implications in autism spectrum disorders. Microb. Ecol. Health Dis. 2015, 26, 28177. [Google Scholar] [CrossRef]
- Tsuji, A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005, 2, 54–62. [Google Scholar] [CrossRef]
- Kim, C.H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol. 2021, 18, 1161–1171. [Google Scholar] [CrossRef]
- Ratajczak, W.; Rył, A.; Mizerski, A.; Walczakiewicz, K.; Sipak, O.; Laszczyńska, M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Yang, L.L.; Millischer, V.; Rodin, S.; MacFabe, D.F.; Villaescusa, J.C.; Lavebratt, C. Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. J. Neurochem. 2020, 154, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004, 279, 40545–40559. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Leeds, P.; Chuang, D.M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J. Neurochem. 2009, 110, 1226–1240. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.Y.; Kim, W.; Nam, S.M.; Kim, D.W.; Chung, J.Y.; Choi, S.Y.; Yoon, Y.S.; Won, M.H.; Hwang, I.K. Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus. Neurochem. Res. 2011, 36, 1850–1857. [Google Scholar] [CrossRef]
- Wei, Y.; Melas, P.A.; Wegener, G.; Mathé, A.A.; Lavebratt, C. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. Int. J. Neuropsychopharmacol. 2014, 18, pyu032. [Google Scholar] [CrossRef]
- Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef]
- Osman, A.; Mervosh, N.L.; Strat, A.N.; Euston, T.J.; Zipursky, G.; Pollak, R.M.; Meckel, K.R.; Tyler, S.R.; Chan, K.L.; Grice, A.B.; et al. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Brain Behav. Immun. 2023, 114, 311–324. [Google Scholar] [CrossRef]
- Parker-Athill, E.C.; Tan, J. Maternal immune activation and autism spectrum disorder: Interleukin-6 signaling as a key mechanistic pathway. Neurosignals 2010, 18, 113–128. [Google Scholar] [CrossRef]
- Wei, H.; Alberts, I.; Li, X. Brain IL-6 and autism. Neuroscience 2013, 252, 320–325. [Google Scholar] [CrossRef]
- Yang, C.J.; Liu, C.L.; Sang, B.; Zhu, X.M.; Du, Y.J. The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience 2015, 284, 290–296. [Google Scholar] [CrossRef]
- Gumusoglu, S.B.; Fine, R.S.; Murray, S.J.; Bittle, J.L.; Stevens, H.E. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav. Immun. 2017, 65, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Gumusoglu, S.B.; Stevens, H.E. Maternal inflammation and neurodevelopmental programming: A review of preclinical outcomes and implications for translational psychiatry. Biol. Psychiatry 2018, 85, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing role of maternal immune activation in neurodevelopmental disorders. Front. Behav. Neurosci. 2018, 12, 230. [Google Scholar] [CrossRef] [PubMed]
- De Theije, C.G.; Wu, J.; da Silva, S.L.; Kamphuis, P.J.; Garssen, J.; Korte, S.M.; Kraneveld, A.D. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol. 2011, 668 (Suppl. S1), S70–S80. [Google Scholar] [CrossRef]
- Nawarathna, G.; Fakhruddin, K.S.; Shorbagi, A.I.S.A.; Samaranayake, L.P. The gut microbiota-neuroimmune crosstalk and neuropathic pain: A scoping review. Gut Microbiome 2023, 4, e10. [Google Scholar] [CrossRef]
- Gómez Taylor, B.; Moreno Sancho, M.L.; Drehmer Rieger, E.; Carrera Juliá, S.; Nevado, J.; Sempere Ferre, F. Prevalencia del síndrome de Phelan-McDermid en España [Prevalence of the Phelan-McDermid Syndrome in Spain]. Rev. Esp. Salud Publica 2020, 94, e202012121. [Google Scholar]
Characteristic | Control Group (n = 22) | PMS Group (n = 42) |
---|---|---|
Gender (male/female) | 11/11 (50%/50%) | 23/19 (54.8%/45.2%) |
Median Age (years, range) | 10 (6–14) | 11 (7–15) |
BMI (kg/m2, mean ± SD) | 17.9 ± 2.2 | 18.2 ± 2.5 |
Gastrointestinal Symptoms (%) | 2 (9.1%) | 28 (66.7%) |
Speech Delay (%) | 0 (0%) | 40 (95.2%) |
Motor Coordination Issues (%) | 0 (0%) | 35 (83.3%) |
Autistic Traits (%) | 0 (0%) | 38 (90.5%) |
Control Group | PMS Group | p-Value * | |||
---|---|---|---|---|---|
Phyla/Genera | N (%) | Median (IQR) | N (%) | Median (IQR) | |
Bacillota | 22 (100%) | 88.28 (76.82–91.84) | 40 (100%) | 86.53 (80.96–91.70) | 0.800 |
Subdoligranulum | 22 (100%) | 8.24 (6.42–15.05) | 40 (100%) | 5.57 (2.97–9.70) | 0.024 |
Faecalibacterium | 22 (100%) | 9.82 (4.93–12.36) | 40 (100%) | 2.13 (1.16–7.35) | <0.001 |
Blautia | 22 (100%) | 5.41 (3.44–6.96) | 40 (100%) | 4.37 (3.28–7.03) | 0.530 |
Agathobacter | 22 (100%) | 9.58 (1.80–12.61) | 40 (100%) | 1.33 (0.43–4.72) | 0.011 |
Dialister | 22 (100%) | 3.69 (0.24–10.96) | 32 (80%) | 0.13 (<0.01–4.43) | 0.031 |
Ruminococcus | 22 (100%) | 1.56 (0.34–4.40) | 39 (97.5%) | 1.46 (0.25–5.77) | 0.910 |
Ruminococcus_torques_group | 22 (100%) | 0.64 (0.44–1.05) | 40 (100%) | 1.03 (0.33–2.28) | 0.300 |
Eubacterium hallii group | 22 (100%) | 1.11 (0.73–2.29) | 40 (100%) | 3.00 (0.82–5.54) | 0.014 |
Eubacterium coprostanoligenes group | 21 (95.45%) | 1.16 (0.57–3.17) | 39 (97.5%) | 1.83 (1.09–3.16) | 0.210 |
Anaerostipes | 22 (100%) | 1.36 (0.53–2.24) | 40 (100%) | 2.06 (1.00–5.16) | 0.110 |
Dorea | 22 (100%) | 1.78 (0.93–3.37) | 38 (95%) | 2.76 (1.11–4.15) | 0.310 |
Christensenellaceae R7 group | 20 (90.91%) | 0.96 (0.57–2.19) | 38 (95%) | 1.84 (0.61–3.59) | 0.130 |
Coprococcus | 22 (100%) | 1.52 (1.02–2.78) | 39 (97.5%) | 1.59 (0.89–1.96) | 0.620 |
Roseburia | 22 (100%) | 1.59 (0.95–3.24) | 39 (97.5%) | 0.83 (0.37–1.59) | 0.007 |
Streptococcus | 22 (100%) | 0.58 (0.35–1.33) | 40 (100%) | 0.78 (0.19–1.76) | 0.940 |
Bacteroidota | 22 (100%) | 6.91 (3.22–15.25) | 40 (100%) | 2.78 (1.05–6.79) | 0.014 |
Bacteroides | 22 (100%) | 4.59 (2.57–7.33) | 40 (100%) | 1.51 (0.36–4.66) | 0.004 |
Alistipes | 22 (100%) | 1.41 (0.45–3.79) | 39 (97.5%) | 0.55 (0.16–2.24) | 0.038 |
Actinomycetota | 22 (100%) | 2.31 (1.45–4.27) | 40 (100%) | 3.92 (2.45–9.71) | 0.030 |
Bifidobacterium | 22 (100%) | 1.22 (0.85–2.53) | 40 (100%) | 1.98 (0.98–6.38) | 0.300 |
Pseudomonadota | 22 (100%) | 0.51 (0.32–0.84) | 40 (100%) | 0.36 (0.11–0.89) | 0.150 |
Verrucomicrobiota | 16 (72.73%) | 0.07 (<0.01–0.28) | 28 (70%) | 0.13 (<0.01–1.12) | 0.280 |
Minor_phyla | 22 (100%) | 0.07 (0.03–0.25) | 40 (100%) | 0.18 (0.09–0.41) | 0.120 |
Minor_genera | 22 (100%) | 13.76 (11.37–17.79) | 40 (100%) | 20.52 (14.72–25.03) | 0.002 |
Unclassified_genera | 22 (100%) | 11.74 (8.97–19.11) | 40 (100%) | 17.27 (12.10–25.35) | 0.056 |
Fatty Acids (μg/g, Mean ± SD) | Control Group | PMS Group | p-Value * |
---|---|---|---|
Acetic acid | 3259.77 ± 84.85 | 2964.60 ± 105.16 | >0.001 |
Propionic | 1122.14 ± 90.53 | 861.67 ± 73.53 | >0.001 |
Butyric | 871.36 ± 54.10 | 668.52 ± 46.03 | >0.001 |
Control Group | PMS Group | p-Value * | |||
---|---|---|---|---|---|
n (%) | Mean (sd) | n (%) | Mean (sd) | ||
IL-1β | 8 (36.36%) | 1.04 (2.01) | 14 (33.33%) | 2.71 (4.92) | 0.44 |
IL-1ra | 17 (77.27%) | 831.60 (1495.05) | 37 (88.10%) | 993.68 (1589.26) | 0.69 |
IL-4 | 2 (9.09%) | 0.21 (0.37) | 2 (4.76%) | 0.29 (0.74) | 0.62 |
IL-6 | 11 (50%) | 0.88 (1.13) | 23 (54.76%) | 0.78 (1.03) | 0.73 |
IL-8 | 1 (4.55%) | 0.91 (0.001) | 0 (0%) | 0.95 (0.19) | 0.32 |
IL-9 | 4 (18.18%) | 1.86 (4.15) | 1 (2.38%) | 3.20 (5.08) | 0.29 |
IL-10 | 16 (72.73%) | 2.90 (5.07) | 23 (54.76%) | 4.09 (7.68) | 0.52 |
IL-12 (p70) | 20 (90.91%) | 20.09 (13.67) | 41 (97.62%) | 20.10 (19.72) | 0.99 |
IL-13 | 8 (36.36%) | 1.21 (1.60) | 13 (30.95%) | 1.27 (1.19) | 0.86 |
IL-17 | 17 (77.27%) | 3.62 (6.18) | 31 (73.81%) | 6.04 (9.19) | 0.28 |
Eotaxin | 2 (9.09%) | 0.18 (0.19) | 4 (9.52%) | 0.18 (0.15) | 0.88 |
FGF basic | 1 (4.55%) | 18.36 (17.85) | 3 (7.14%) | 19.09 (19.55) | 0.88 |
G-CSF | 3 (13.64%) | 14.79 (29.64) | 3 (7.14%) | 20.13 (44.23) | 0.61 |
GM-CSF | 1 (4.55%) | 2.22 (2.19) | 6 (14.29%) | 1.95 (1.87) | 0.61 |
IFN-γ | 17 (77.27%) | 11.70 (13.76) | 27 (64.28%) | 13.59 (11.56) | 0.57 |
IP-10 | 5 (22.73%) | 12.42 (7.58) | 6 (14.29%) | 13.98 (8.32) | 0.47 |
MCP-1 (MCAF) | 1 (4.55%) | 3.889 (0.59) | 1 (2.38%) | 4.68 (4.18) | 0.38 |
MIP-1a | 7 (31.82%) | 0.54 (0.49) | 5 (11.90%) | 0.81 (0.74) | 0.13 |
PDGF-bb | 21 (95.45%) | 92.77 (75.49) | 40 (95.24%) | 97.45 (45.27) | 0.76 |
MIP-1b | 3 (13.64%) | 1.17 (3.51) | 4 (9.52%) | 1.28 (3.55) | 0.91 |
RANTES | 21 (95.45%) | 91.86 (21.42) | 41 (97.62%) | 95.14 (22.47) | 0.58 |
TNF-α | 7 (31.82%) | 14.26 (57.12) | 12 (28.57%) | 28.97 (72.42) | 0.41 |
VEGF | 1 (4.55%) | 835.78 (0.001) | 0 (0%) | 873.77 (178.19) | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, C.; Herranz, C.; Monroy, M.A.; Aragón, A.; Jurado, R.; Díaz-Regañón, D.; Sánchez, C.; Tolín, M.; Miranda, C.; Gómez-Taylor, B.; et al. Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan–McDermid Syndrome. Microorganisms 2024, 12, 2006. https://doi.org/10.3390/microorganisms12102006
Alba C, Herranz C, Monroy MA, Aragón A, Jurado R, Díaz-Regañón D, Sánchez C, Tolín M, Miranda C, Gómez-Taylor B, et al. Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan–McDermid Syndrome. Microorganisms. 2024; 12(10):2006. https://doi.org/10.3390/microorganisms12102006
Chicago/Turabian StyleAlba, Claudio, Carmen Herranz, Miguel A. Monroy, Alberto Aragón, Rubén Jurado, David Díaz-Regañón, César Sánchez, Mar Tolín, Carmen Miranda, Bárbara Gómez-Taylor, and et al. 2024. "Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan–McDermid Syndrome" Microorganisms 12, no. 10: 2006. https://doi.org/10.3390/microorganisms12102006
APA StyleAlba, C., Herranz, C., Monroy, M. A., Aragón, A., Jurado, R., Díaz-Regañón, D., Sánchez, C., Tolín, M., Miranda, C., Gómez-Taylor, B., Sempere, F., Álvarez-Calatayud, G., & Rodríguez, J. M. (2024). Metataxonomic and Immunological Analysis of Feces from Children with or without Phelan–McDermid Syndrome. Microorganisms, 12(10), 2006. https://doi.org/10.3390/microorganisms12102006