Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Stains and Plant Materials
2.2. Endophyte Isolation
2.3. Identification of Bacterial and Fungal Isolates
2.4. Antifungal Activity of Endophyte isolates
2.4.1. In Vitro Antagonistic Assay
2.4.2. In Planta Antagonistic Assay
2.5. Phylogeny-Based Identification of the Bacterial Biocontrol Candidates
2.6. Biocontrol Potential of Bacillus Velezensis GFB08
2.6.1. Inhibition of Fungal Mycelial Growth by Extracellular Metabolites
2.6.2. Detection of Proteolytic, Cellulolytic, and Chitinolytic Activity
2.6.3. Analysis of Antibiotic Biosynthesis Genes
2.7. Preventive and Curative Action
2.8. Statistical Analysis
3. Results
3.1. Field Survey and Endophyte Isolation
3.2. Dual Culture and Pot Assays for the Selection of Promising BCAs
3.2.1. Dual Culture Assay
3.2.2. Disease Suppression under Greenhouse Conditions
3.3. Identification of Bacillus Biocontrol Candidates
3.4. Biocontrol Potential of B. velezensis GFB08
3.4.1. Effect of Extracellular Metabolites of B. velezensis GFB08 on Mycelium Growth
3.4.2. Extracellular Enzyme Activity of B. velezensis GFB08
3.4.3. Detection of Antibiotic Coding Genes in B. velezensis GFB08
3.5. Preventive and Curative Action of B. velezensis GFB08
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gyawali, R.; Seo, H.-Y.; Lee, H.-J.; Song, H.-P.; Kim, D.-H.; Byun, M.-W.; Kim, K.-S. Effect of γ-Irradiation on Volatile Compounds of Dried Welsh Onion (Allium fistulosum L.). Radiat. Phys. Chem. 2006, 75, 322–328. [Google Scholar] [CrossRef]
- Liu, X.; Gao, S.; Liu, Y.; Cao, B.; Chen, Z.; Xu, K. Comparative Analysis of the Chemical Composition and Water Permeability of the Cuticular Wax Barrier in Welsh Onion (Allium fistulosum L.). Protoplasma 2020, 257, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Choi, G.-H.; Rho, J.-H.; Lee, H.-S.; Park, S.-W.; Oh, K.-Y.; Kim, J.-H. Comparison of the Plant Uptake Factor of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) from the Three Different Concentrations of PFOA and PFOS in Soil to Spinach and Welsh Onion. J. Appl. Biol. Chem. 2020, 63, 243–248. [Google Scholar] [CrossRef]
- Suzuki, T.; Uno, T.; Tajima, R.; Ito, T.; Saito, M. Optimum Range of Soil Phosphorus Fertility Needed for Effective Arbuscular Mycorrhizal Inoculation of Welsh Onions in a Non-Allophanic Andosol. J. Soil. Sci. Plant. Nutr. 2021, 67, 540–544. [Google Scholar] [CrossRef]
- Tsai, W.-A.; Lin, P.-R.; Huang, C.-J. First Report of Dickeya fangzhongdai Causing Soft Rot Disease of Welsh Onion in Taiwan. J. Plant Pathol. 2019, 101, 797–798. [Google Scholar] [CrossRef]
- Wang, C.-H.; Tsai, Y.-C.; Tsai, I.; Chung, C.-L.; Lin, Y.-C.; Hung, T.-H.; Suwannarach, N.; Cheewangkoon, R.; Elgorban, A.M.; Ariyawansa, H.A. Stemphylium Leaf Blight of Welsh Onion (Allium fistulosum): An Emerging Disease in Sanxing, Taiwan. Plant Dis. 2021, 105, 4121–4131. [Google Scholar] [CrossRef] [PubMed]
- Hay, F.S.; Sharma, S.; Hoepting, C.; Strickland, D.; Luong, K.; Pethybridge, S.J. Emergence of Stemphylium Leaf Blight of Onion in New York Associated with Fungicide Resistance. Plant Dis. 2019, 103, 3083–3092. [Google Scholar] [CrossRef]
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Comby, M.; Gacoin, M.; Robineau, M.; Rabenoelina, F.; Ptas, S.; Dupont, J.; Profizi, C.; Baillieul, F. Screening of Wheat Endophytes as Biological Control Agents against Fusarium Head Blight Using Two Different In Vitro Tests. Microbiol. Res. 2017, 202, 11–20. [Google Scholar] [CrossRef]
- Hashem, A.H.; Attia, M.S.; Kandil, E.K.; Fawzi, M.M.; Abdelrahman, A.S.; Khader, M.S.; Khodaira, M.A.; Emam, A.E.; Goma, M.A.; Abdelaziz, A.M. Bioactive Compounds and Biomedical Applications of Endophytic Fungi: A Recent Review. Microb. Cell Fact. 2023, 22, 107. [Google Scholar] [CrossRef]
- De Silva, N.I.; Brooks, S.; Lumyong, S.; Hyde, K.D. Use of Endophytes as Biocontrol Agents. Fungal Biol. Rev. 2019, 33, 133–148. [Google Scholar] [CrossRef]
- Segaran, G.; Sathiavelu, M. Fungal Endophytes: A Potent Biocontrol Agent and a Bioactive Metabolites Reservoir. Biocatal. Agric. Biotechnol. 2019, 21, 101284. [Google Scholar] [CrossRef]
- Li, S.-B.; Fang, M.; Zhou, R.-C.; Huang, J. Characterization and Evaluation of the Endophyte Bacillus B014 as a Potential Biocontrol Agent for the Control of Xanthomonas axonopodis Pv. Dieffenbachiae—Induced Blight of Anthurium. Biol. Control 2012, 63, 9–16. [Google Scholar] [CrossRef]
- Blumenstein, K.; Albrectsen, B.R.; Martín, J.A.; Hultberg, M.; Sieber, T.N.; Helander, M.; Witzell, J. Nutritional Niche Overlap Potentiates the Use of Endophytes in Biocontrol of a Tree Disease. BioControl 2015, 60, 655–667. [Google Scholar] [CrossRef]
- Sahu, P.K.; Singh, S.; Gupta, A.; Singh, U.B.; Brahmaprakash, G.P.; Saxena, A.K. Antagonistic Potential of Bacterial Endophytes and Induction of Systemic Resistance against Collar Rot Pathogen Sclerotium rolfsii in Tomato. Biol. Control 2019, 137, 104014. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.M.; Abdel-Rahim, I.R.; Almasoudi, N.M.; Alghamdi, S.A. Native Endophytic Pseudomonas putida as a Biocontrol Agent against Common Bean Rust Caused by Uromyces appendiculatus. J. Fungi 2021, 7, 745. [Google Scholar] [CrossRef]
- Chen, L.; Shi, H.; Heng, J.; Wang, D.; Bian, K. Antimicrobial, Plant Growth-Promoting and Genomic Properties of the Peanut Endophyte Bacillus velezensis LDO2. Microbiol. Res. 2019, 218, 41–48. [Google Scholar] [CrossRef]
- Guo, D.-J.; Singh, R.K.; Singh, P.; Li, D.-P.; Sharma, A.; Xing, Y.-X.; Song, X.-P.; Yang, L.-T.; Li, Y.-R. Complete Genome Sequence of Enterobacter Roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium with Biocontrol and Stress Tolerance Properties, Isolated from Sugarcane Root. Front. Microbiol. 2020, 11, 580081. [Google Scholar] [CrossRef]
- Cun, H.; Munir, S.; He, P.; Wu, Y.; He, P.; Ahmed, A.; Che, H.; Li, J.; He, Y. Diversity of Root Endophytic Bacteria from Maize Seedling Involved in Biocontrol and Plant Growth Promotion. Egypt. J. Biol. Pest Control 2022, 32, 129. [Google Scholar] [CrossRef]
- Shabanamol, S.; Divya, K.; George, T.K.; Rishad, K.S.; Sreekumar, T.S.; Jisha, M.S. Characterization and in Planta Nitrogen Fixation of Plant Growth Promoting Endophytic Diazotrophic Lysinibacillus sphaericus Isolated from Rice (Oryza sativa). Physiol. Mol. Plant Pathol. 2018, 102, 46–54. [Google Scholar] [CrossRef]
- Etminani, F.; Harighi, B. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees. Plant Pathol. J. 2018, 34, 208–217. [Google Scholar] [CrossRef]
- Chand, K.; Shah, S.; Sharma, J.; Paudel, M.R.; Pant, B. Isolation, Characterization, and Plant Growth-Promoting Activities of Endophytic Fungi from a Wild Orchid Vanda cristata. Plant Signal. Behav. 2020, 15, 1744294. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Sarmiento, D.H.; Palacios-Pala, E.F.; Rodríguez-Hernández, A.A.; Medina Melchor, D.L.; Rodríguez-Monroy, M.; Sepúlveda-Jiménez, G. Trichoderma asperellum, a Potential Biological Control Agent of Stemphylium vesicarium, on Onion (Allium cepa L.). Biol. Control 2020, 140, 104105. [Google Scholar] [CrossRef]
- Roylawar, P.; Khandagale, K.; Randive, P.; Shinde, B.; Murumkar, C.; Ade, A.; Singh, M.; Gawande, S.; Morelli, M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens 2021, 10, 1085. [Google Scholar] [CrossRef]
- Galindez, H.J.A.; Lopez, L.L.M.A.; Kalaw, S.P.; Waing, K.G.D.; Galindez, J.L. Evaluation of three species of Trichoderma as potential bio-control agent against Colletotrichum gloeosrioides, a causal agent of anthracnose disease in onion. Adv. Environ. Biol. 2017, 11, 62. [Google Scholar]
- Abdel-Hafez, S.I.I.; Abo-Elyousr, K.A.M.; Abdel-Rahim, I.R. Leaf Surface and Endophytic Fungi Associated with Onion Leaves and Their Antagonistic Activity against Alternaria porri. Czech Mycol. 2015, 67, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shi, L.; Wang, D.; Li, L.; Loake, G.J.; Yang, X.; Jiang, J. White Rot Disease Protection and Growth Promotion of Garlic (Allium sativum) by Endophytic Bacteria. Plant Pathol. 2019, 68, 1543–1554. [Google Scholar] [CrossRef]
- Murtado, A.; Mubarik, N.R.; Tjahjoleksono, A. Isolation and Characterization Endophytic Bacteria as Biological Control of Fungus Colletotrichum sp. on Onion Plants (Allium cepa L.). IOP Conf. Ser. Earth Environ. Sci. 2020, 457, 012043. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Li, J.; Huang, Y. Endophytic Bacterium Serratia plymuthica from Chinese Leek Suppressed Apple Ring Rot on Postharvest Apple Fruit. Front. Microbiol. 2022, 12, 802887. [Google Scholar] [CrossRef]
- Ratnawati, R.; Sjam, S.; Rosmana, A.; Tresnapura, U.S. Endophytic Trichoderma species of Palu valley shallot origin with potential for controlling purple blotch pathogen Alternaria porri. Int. J. Agric. Biol. 2020, 22, 977–982. [Google Scholar]
- Igarashi, Y.; Ogawa, M.; Sato, Y.; Saito, N.; Yoshida, R.; Kunoh, H.; Onaka, H.; Furumai, T. Fistupyrone, a Novel Inhibitor of the Infection of Chinese Cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J. Antibiot. 2000, 53, 1117–1122. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y. Illumina-Based Analysis of Endophytic Bacterial Diversity of Four Allium Species. Sci. Rep. 2019, 9, 15271. [Google Scholar] [CrossRef] [Green Version]
- Marian, M.; Fujikawa, T.; Shimizu, M. Genome Analysis Provides Insights into the Biocontrol Ability of Mitsuaria sp. Strain TWR114. Arch. Microbiol. 2021, 203, 3373–3388. [Google Scholar] [CrossRef]
- Sasaki, T.; Igarashi, Y.; Ogawa, M.; Furumai, T. Identification of 6-Prenylindole as an Antifungal Metabolite of Streptomyces sp. TP-A0595 and Synthesis and Bioactivity of 6-Substituted Indoles. J. Antibiot. 2002, 55, 1009–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashad, Y.M.; Abbas, M.A.; Soliman, H.M.; Abdel-Fattah, G.; Abdel-Fattah, G. Synergy between Endophytic Bacillus amyloliquefaciens GGA and Arbuscular Mycorrhizal Fungi Induces Plant Defense Responses against White Rot of Garlic and Improves Host Plant Growth. Phytopathol. Mediterr. 2020, 59, 169–186. [Google Scholar] [CrossRef]
- Espinoza, F.; Vidal, S.; Rautenbach, F.; Lewu, F.; Nchu, F. Effects of Beauveria bassiana (Hypocreales) on Plant Growth and Secondary Metabolites of Extracts of Hydroponically Cultivated Chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon 2019, 5, e03038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potshangbam, M.; Devi, S.I.; Sahoo, D.; Strobel, G.A. Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L. Front. Microbiol. 2017, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Wang, Z.; Mei, Y.; Wang, L.; Wang, X.; Xu, Q.; Peng, S.; Zhou, Y.; Wei, C. Isolation, Diversity, and Growth-Promoting Activities of Endophytic Bacteria from Tea Cultivars of Zijuan and Yunkang-10. Front. Microbiol. 2018, 9, 1848. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, X.-F.; Yang, S.-J.; Liu, W.-H.; Hu, X.-F. Design and Application of Specific 16S RDNA-Targeted Primers for Assessing Endophytic Diversity in Dendrobium Officinale Using Nested PCR-DGGE. Appl. Microbiol. Biotechnol. 2013, 97, 9825–9836. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Humayun, P.; Kiran, B.K.; Kannan, I.G.K.; Vidya, M.S.; Deepthi, K.; Rupela, O. Evaluation of Bacteria Isolated from Rice Rhizosphere for Biological Control of Charcoal Rot of Sorghum Caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 2011, 27, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Katoch, M.; Pull, S. Endophytic Fungi Associated with Monarda citriodora, an Aromatic and Medicinal Plant and Their Biocontrol Potential. Pharm. Biol. 2017, 55, 1528–1535. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-H.; Huang, C.-J.; Chen, C.-Y. Evidence of Induced Systemic Resistance Against Botrytis elliptica in Lily. Phytopathology 2008, 98, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H.; Alikhani, H.A. Co-Inoculation with Endophytic and Rhizosphere Bacteria Allows Reduced Application Rates of N-Fertilizer for Rice Plant. Rhizosphere 2016, 2, 5–12. [Google Scholar] [CrossRef]
- Paparu, P.; Dubois, T.; Coyne, D.; Viljoen, A. Dual Inoculation of Fusarium oxysporum Endophytes in Banana: Effect on Plant Colonization, Growth and Control of the Root Burrowing Nematode and the Banana Weevil. Biocontrol Sci. Technol. 2009, 19, 639–655. [Google Scholar] [CrossRef]
- Jiang, C.; Song, J.; Zhang, J.; Yang, Q. Identification and Characterization of the Major Antifungal Substance against Fusarium sporotrichioides from Chaetomium globosum. World J. Microbiol. Biotechnol. 2017, 33, 108. [Google Scholar] [CrossRef]
- Galván, G.A.; Galván, G.A.; Wietsma, W.A.; Putrasemedja, S.; Permadi, A.H.; Kik, C. Screening for resistance to anthracnose (Colletotrichum gloeosporioides Penz) in Allium cepa and its wild relatives. Euphytica 1997, 95, 173–178. [Google Scholar] [CrossRef]
- Aveling, T.A.S. Evaluation of Seed Treatments for Reducing Alternaria porri and Stemphylium vesicarium on Onion Seed. Plant Dis. 1993, 77, 1009. [Google Scholar] [CrossRef]
- Rooney, A.P.; Price, N.P.J.; Ehrhardt, C.; Swezey, J.L.; Bannan, J.D. Phylogeny and Molecular Taxonomy of the Bacillus subtilis Species Complex and Description of Bacillus subtilis Subsp. Inaquosorum Subsp. Nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 2429–2436. [Google Scholar] [CrossRef]
- Dunlap, C.A. Taxonomy of Registered Bacillus Spp. Strains Used as Plant Pathogen Antagonists. Biol. Control 2019, 134, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Kedves, O.; Kocsubé, S.; Bata, T.; Andersson, M.A.; Salo, J.M.; Mikkola, R.; Salonen, H.; Szűcs, A.; Kedves, A.; Kónya, Z.; et al. Chaetomium and Chaetomium-like Species from European Indoor Environments Include Dichotomopilus finlandicus sp. Nov. Pathogens 2021, 10, 1133. [Google Scholar] [CrossRef]
- Yilmaz, N.; Sandoval-Denis, M.; Lombard, L.; Visagie, C.M.; Wingfield, B.D.; Crous, P.W. Redefining Species Limits in the Fusarium fujikuroi Species Complex. Persoonia 2021, 46, 129–162. [Google Scholar] [CrossRef]
- Silvestro, D.; Michalak, I. RaxmlGUI: A Graphical Front-End for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Jeong, M.-H.; Lee, Y.-S.; Cho, J.-Y.; Ahn, Y.-S.; Moon, J.-H.; Hyun, H.-N.; Cha, G.-S.; Kim, K.-Y. Isolation and Characterization of Metabolites from Bacillus Licheniformis MH48 with Antifungal Activity against Plant Pathogens. Microb. Pathog. 2017, 110, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Pailin, T.; Kang, D.H.; Schmidt, K.; Fung, D.Y.C. Detection of Extracellular Bound Proteinase in EPS-Producing Lactic Acid Bacteria Cultures on Skim Milk Agar. Lett. Appl. Microbiol. 2001, 33, 45–49. [Google Scholar] [CrossRef]
- Teather, R.M.; Wood, P.J. Use of Congo Red-Polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rumen. Appl. Environ. Microbiol. 1982, 43, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, T.; Kotasthane, A.S. Chitinolytic Assay of Indigenous Trichoderma Isolates Collected from Different Geographical Locations of Chhattisgarh in Central India. SpringerPlus 2012, 1, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, F.-C.; Li, M.-C.; Lin, T.-C.; Kao, S.-S. Rapid Detection and Characterization of Surfactin-Producing Bacillus subtilis and Closely Related Species Based on PCR. Curr. Microbiol. 2004, 49, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ramarathnam, R.; Bo, S.; Chen, Y.; Fernando, W.G.D.; Xuewen, G.; De Kievit, T. Molecular and Biochemical Detection of Fengycin- and Bacillomycin D-Producing Bacillus Spp., Antagonistic to Fungal Pathogens of Canola and Wheat. Can. J. Microbiol. 2007, 53, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Kong, H.; Buyer, J.S.; Lakshman, D.K.; Lydon, J.; Kim, S.-D.; Roberts, D.P. Isolation and Partial Characterization of Bacillus subtilis ME488 for Suppression of Soilborne Pathogens of Cucumber and Pepper. Appl. Microbiol. Biotechnol. 2008, 80, 115–123. [Google Scholar] [CrossRef]
- Mora, I.; Cabrefiga, J. Antimicrobial Peptide Genes in Bacillus Strains from Plant Environments. Int. Microbiol. 2011, 14, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Compaoré, C.S.; Nielsen, D.S.; Ouoba, L.I.I.; Berner, T.S.; Nielsen, K.F.; Sawadogo-Lingani, H.; Diawara, B.; Ouédraogo, G.A.; Jakobsen, M.; Thorsen, L. Co-Production of Surfactin and a Novel Bacteriocin by Bacillus subtilis Subsp. Subtilis H4 Isolated from Bikalga, an African Alkaline Hibiscus sabdariffa Seed Fermented Condiment. Int. J. Food Microbiol. 2013, 162, 297–307. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- ALKahtani, M.D.F.; Fouda, A.; Attia, K.A.; Al-Otaibi, F.; Eid, A.M.; Ewais, E.E.-D.; Hijri, M.; St-Arnaud, M.; Hassan, S.E.-D.; Khan, N.; et al. Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy 2020, 10, 1325. [Google Scholar] [CrossRef]
- Ganie, S.A.; Bhat, J.A.; Devoto, A. The Influence of Endophytes on Rice Fitness under Environmental Stresses. Plant Mol. Biol. 2022, 109, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.; Eraky, A.; Abd-El-Rahman, T.; Abd-El-Razik, A. Endophytic Fungi Associated with Allium Plants and Their Antagonistic Activity against Fusarium oxysporum f.sp. Cepae. J. Sohag Agriscience 2021, 6, 1–7. [Google Scholar] [CrossRef]
- Leylaie, S.; Zafari, D.; Abadi, S.B. First Report of Colletotrichum circinans Causing Smudge on Onion in Iran. New Dis. Rep. 2014, 30, 2. [Google Scholar] [CrossRef] [Green Version]
- Santana, K.F.A.; Garcia, C.B.; Matos, K.S.; Hanada, R.E.; Silva, G.F.; Sousa, N.R. First Report of Anthracnose Caused by Colletotrichum spaethianum on Allium fistulosum in Brazil. Plant Dis. 2016, 100, 224. [Google Scholar] [CrossRef]
- De Silva, D.D.; Crous, P.W.; Ades, P.K.; Hyde, K.D.; Taylor, P.W.J. Life Styles of Colletotrichum Species and Implications for Plant Biosecurity. Fungal Biol. Rev. 2017, 31, 155–168. [Google Scholar] [CrossRef]
- Prusky, D.; Alkan, N.; Mengiste, T.; Fluhr, R. Quiescent and Necrotrophic Lifestyle Choice During Postharvest Disease Development. Annu. Rev. Phytopathol. 2013, 51, 155–176. [Google Scholar] [CrossRef]
- Ranathunge, N.P.; Mongkolporn, O.; Ford, R.; Taylor, P.W.J. Colletotrichum truncatum Pathosystem on Capsicum spp.: Infection, Colonization and Defence Mechanisms. Australas. Plant Pathol. 2012, 41, 463–473. [Google Scholar] [CrossRef]
- Costa Júnior, P.S.P.; Cardoso, F.P.; Martins, A.D.; Teixeira Buttrós, V.H.; Pasqual, M.; Dias, D.R.; Schwan, R.F.; Dória, J. Endophytic Bacteria of Garlic Roots Promote Growth of Micropropagated Meristems. Microbiol. Res. 2020, 241, 126585. [Google Scholar] [CrossRef]
- Samayoa, B.E.; Shen, F.-T.; Lai, W.-A.; Chen, W.-C. Screening and Assessment of Potential Plant Growth-Promoting Bacteria Associated with Allium cepa Linn. Microb. Environ. 2020, 35, ME19147. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Gu, Y.; Wang, P.; Song, W.; Ma, J.; Yang, X. The Variability of Bacterial Communities in Both the Endosphere and Ectosphere of Different Niches in Chinese Chives (Allium tuberosum). PLoS ONE 2020, 15, e0227671. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Spera, D.M.; Ercole, C.; Del Gallo, M. Allium Cepa L. Inoculation with a Consortium of Plant Growth-Promoting Bacteria: Effects on Plants, Soil, and the Autochthonous Microbial Community. Microorganisms 2021, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Besset-Manzoni, Y.; Joly, P.; Brutel, A.; Gerin, F.; Soudière, O.; Langin, T.; Prigent-Combaret, C. Does in Vitro Selection of Biocontrol Agents Guarantee Success in Planta? A Study Case of Wheat Protection against Fusarium Seedling Blight by Soil Bacteria. PLoS ONE 2019, 14, e0225655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnick, R.L.; Zidack, N.K.; Bailey, B.A.; Maximova, S.N.; Guiltinan, M.; Backman, P.A. Bacterial Endophytes: Bacillus spp. from Annual Crops as Potential Biological Control Agents of Black Pod Rot of Cacao. Biol. Control 2008, 46, 46–56. [Google Scholar] [CrossRef]
- Priest, F.G.; Goodfellow, M.; Shute, L.A.; Berkeley, R.C.W. Bacillus amyloliquefaciens sp. Nov., Nom. Rev. Int. J. Syst. Bacteriol. 1987, 37, 69–71. [Google Scholar] [CrossRef]
- Nakamura, L.K. Taxonomic Relationship of Black-Pigmented Bacillus subtilis Strains and a Proposal for Bacillus atrophaeus sp. Nov. Int. J. Syst. Bacteriol. 1989, 39, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-T.; Lee, F.-L.; Tai, C.-J.; Yokota, A.; Kuo, H.-P. Reclassification of Bacillus axarquiensis Ruiz-García et al. 2005 and Bacillus malacitensis Ruiz-García et al. 2005 as Later Heterotypic Synonyms of Bacillus mojavensis Roberts et al. 1994. Int. J. Syst. Bacteriol. 2007, 57, 1663–1667. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.S.; Nakamura, L.K.; Cohan, F.M. Bacillus mojavensis sp. Nov., Distinguishable from Bacillus subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition. Int. J. Syst. Bacteriol. 1994, 44, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Palmisano, M.M.; Nakamura, L.K.; Duncan, K.E.; Istock, C.A.; Cohan, F.M. Bacillus sonorensis sp. Nov., a Close Relative of Bacillus licheniformis, Isolated from Soil in the Sonoran Desert, Arizona. Int. J. Syst. Evol. Microbiol. 2001, 51, 1671–1679. [Google Scholar] [CrossRef]
- Roberts, M.S.; Nakamura, L.K.; Cohan, F.M. Bacillus vallismortis sp. Nov., a Close Relative of Bacillus subtilis, Isolated from Soil in Death Valley, California. Int. J. Syst. Bacteriol. 1996, 46, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Gatson, J.W.; Benz, B.F.; Chandrasekaran, C.; Satomi, M.; Venkateswaran, K.; Hart, M.E. Bacillus tequilensis sp. Nov., Isolated from a 2000-Year-Old Mexican Shaft-Tomb, Is Closely Related to Bacillus subtilis. Int. J. Syst. Evol. Microbiol. 2006, 56, 1475–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-T.; Lee, F.-L.; Tai, C.-J.; Kuo, H.-P. Bacillus velezensis Is a Later Heterotypic Synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 2008, 58, 671–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, R.; Munir, S.; He, P.; Yang, H.; Wu, Y.; Wang, J.; He, P.; Cai, Y.; Wang, G.; He, Y. Biocontrol Potential of the Endophytic Bacillus amyloliquefaciens YN201732 against Tobacco Powdery Mildew and Its Growth Promotion. Biol. Control 2020, 143, 104160. [Google Scholar] [CrossRef]
- Alijani, Z.; Amini, J.; Ashengroph, M.; Bahramnejad, B.; Mozafari, A.A. Biocontrol of Strawberry Anthracnose Disease Caused by Colletotrichum nymphaeae Using Bacillus atrophaeus Strain DM6120 with Multiple Mechanisms. Trop. Plant Pathol. 2022, 47, 245–259. [Google Scholar] [CrossRef]
- Dhouib, H.; Zouari, I.; Ben Abdallah, D.; Belbahri, L.; Taktak, W.; Triki, M.A.; Tounsi, S. Potential of a Novel Endophytic Bacillus velezensis in Tomato Growth Promotion and Protection against Verticillium Wilt Disease. Biol. Control 2019, 139, 104092. [Google Scholar] [CrossRef]
- Arguelles-Arias, A.; Ongena, M.; Halimi, B.; Lara, Y.; Brans, A.; Joris, B.; Fickers, P. Bacillus amyloliquefaciens GA1 as a Source of Potent Antibiotics and Other Secondary Metabolites for Biocontrol of Plant Pathogens. Microb. Cell Fact. 2009, 8, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelaziz, A.M.; Kalaba, M.H.; Hashem, A.H.; Sharaf, M.H.; Attia, M.S. Biostimulation of Tomato Growth and Biocontrol of Fusarium Wilt Disease Using Certain Endophytic Fungi. Bot. Stud. 2022, 63, 34. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Balaraju, K.; Jeon, Y.H. Biological Characteristics of Bacillus amyloliquefaciens AK-0 and Suppression of Ginseng Root Rot Caused by Cylindrocarpon destructans. J. Appl. Microbiol. 2017, 122, 166–179. [Google Scholar] [CrossRef]
- Jin, P.; Wang, H.; Tan, Z.; Xuan, Z.; Dahar, G.Y.; Li, Q.X.; Miao, W.; Liu, W. Antifungal Mechanism of Bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pestic. Biochem. Physiol. 2020, 163, 102–107. [Google Scholar] [CrossRef]
- Park, G.; Nam, J.; Kim, J.; Song, J.; Kim, P.I.; Min, H.J.; Lee, C.W. Structure and Mechanism of Surfactin Peptide from Bacillus velezensis Antagonistic to Fungi Plant Pathogens. Bull. Korean Chem. Soc. 2019, 40, 704–709. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.; Cheon, W.; Park, J.; Kwon, H.-T.; Balaraju, K.; Kim, J.; Yoon, Y.J.; Jeon, Y. Characterization of Bacillus velezensis AK-0 as a Biocontrol Agent against Apple Bitter Rot Caused by Colletotrichum gloeosporioides. Sci. Rep. 2021, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Park, B.-S.; Kim, H.-Y.; Lee, K.-H.; Kim, K.S. Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field. Plant Pathol. J. 2021, 37, 307–314. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-Y.; Jayasinghe, H.; Cho, Y.-T.; Tsai, Y.-C.; Chen, C.-Y.; Doan, H.K.; Ariyawansa, H.A. Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms 2023, 11, 1801. https://doi.org/10.3390/microorganisms11071801
Wang J-Y, Jayasinghe H, Cho Y-T, Tsai Y-C, Chen C-Y, Doan HK, Ariyawansa HA. Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms. 2023; 11(7):1801. https://doi.org/10.3390/microorganisms11071801
Chicago/Turabian StyleWang, Jian-Yuan, Himanshi Jayasinghe, Yi-Tun Cho, Yi-Chen Tsai, Chao-Ying Chen, Hung Kim Doan, and Hiran A. Ariyawansa. 2023. "Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan" Microorganisms 11, no. 7: 1801. https://doi.org/10.3390/microorganisms11071801
APA StyleWang, J.-Y., Jayasinghe, H., Cho, Y.-T., Tsai, Y.-C., Chen, C.-Y., Doan, H. K., & Ariyawansa, H. A. (2023). Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms, 11(7), 1801. https://doi.org/10.3390/microorganisms11071801