Characterisation of Mid-Gestation Amniotic Fluid Cytokine and Bacterial DNA Profiles in Relation to Pregnancy Outcome in a Small Australian Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. Sample Collection
2.3. Pregnancy Outcome Data
2.4. Cytokine Analyses
2.5. DNA Extraction
2.6. 16S rRNA Gene Amplification and Barcoding
2.7. PacBio Sequencing
2.8. Sequence Processing
2.9. Identification of Contaminant Sequences
2.10. Statistical Analysis
3. Results
3.1. Amniotic Fluid Cytokines
3.2. No Difference in Amniotic Fluid Bacterial DNA Profiles from Term and Preterm Deliveries
3.3. Association between Amniotic Fluid Bacterial DNA Profiles and Cytokine Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.; Brown, K.; Newnham, J. The Australian Preterm Birth Prevention Alliance. Aust. N. Z. J. Obstet. Gynaecol. 2020, 60, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.S.; Rodriguez, C.; Holtz, L.R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 2018, 6, 87. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018, 67, 1614–1625. [Google Scholar] [CrossRef]
- Urushiyama, D.; Suda, W.; Ohnishi, E.; Araki, R.; Kiyoshima, C.; Kurakazu, M.; Sanui, A.; Yotsumoto, F.; Murata, M.; Nabeshima, K.; et al. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci. Rep. 2017, 7, 12171. [Google Scholar] [CrossRef] [Green Version]
- Kayem, G.; Doloy, A.; Schmitz, T.; Chitrit, Y.; Bouhanna, P.; Carbonne, B.; Jouannic, J.M.; Mandelbrot, L.; Benachi, A.; Azria, E.; et al. Antibiotics for amniotic-fluid colonization by Ureaplasma and/or Mycoplasma spp. to prevent preterm birth: A randomized trial. PLoS ONE 2018, 13, e0206290. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Luo, F.; Hu, W.; Han, Y.; Wang, Y.; Zheng, H.; Guo, X.; Qin, J. Bacterial Communities in the Womb during Healthy Pregnancy. Front. Microbiol. 2018, 9, 2163. [Google Scholar] [CrossRef]
- Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The Not-So-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Front. Microbiol. 2019, 10, 1124. [Google Scholar] [CrossRef] [Green Version]
- Stinson, L.; Hallingstrom, M.; Barman, M.; Viklund, F.; Keelan, J.; Kacerovsky, M.; Payne, M.; Jacobsson, B. Comparison of Bacterial DNA Profiles in Mid-Trimester Amniotic Fluid Samples from Preterm and Term Deliveries. Front. Microbiol. 2020, 11, 415. [Google Scholar] [CrossRef] [Green Version]
- Vander Haar, E.L.; So, J.; Gyamfi-Bannerman, C.; Han, Y.W. Fusobacterium nucleatum and adverse pregnancy outcomes: Epidemiological and mechanistic evidence. Anaerobe 2018, 50, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Waites, K.B.; Schelonka, R.L.; Xiao, L.; Grigsby, P.L.; Novy, M.J. Congenital and opportunistic infections: Ureaplasma species and Mycoplasma hominis. Semin. Fetal Neonatal Med. 2009, 14, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Viscardi, R.M. Ureaplasma species: Role in diseases of prematurity. Clin. Perinatol. 2010, 37, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novy, M.J.; Duffy, L.; Axthelm, M.K.; Sadowsky, D.W.; Witkin, S.S.; Gravett, M.G.; Cassell, G.H.; Waites, K.B. Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques. Reprod. Sci. 2009, 16, 56–70. [Google Scholar] [CrossRef]
- Han, Y.W.; Redline, R.W.; Li, M.; Yin, L.; Hill, G.B.; McCormick, T.S. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: Implication of oral bacteria in preterm birth. Infect. Immun. 2004, 72, 2272–2279. [Google Scholar] [CrossRef] [Green Version]
- Stinson, L.F.; Payne, M.S. Infection-mediated preterm birth: Bacterial origins and avenues for intervention. Aust. N. Z. J. Obstet. Gynaecol. 2019, 59, 781–790. [Google Scholar] [CrossRef]
- Combs, C.A.; Gravett, M.; Garite, T.J.; Hickok, D.E.; Lapidus, J.; Porreco, R.; Rael, J.; Grove, T.; Morgan, T.K.; Clewell, W.; et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am. J. Obstet. Gynecol. 2014, 210, 125.e1–125.e15. [Google Scholar] [CrossRef]
- Romero, R.; Miranda, J.; Chaiworapongsa, T.; Korzeniewski, S.J.; Chaemsaithong, P.; Gotsch, F.; Dong, Z.; Ahmed, A.I.; Yoon, B.H.; Hassan, S.S.; et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Reprod. Immunol. 2014, 72, 458–474. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Yamamoto, T.; Kojima, K.; Tanemura, M.; Tateyama, H.; Suzumori, K. Evaluation levels of cytokines in amniotic fluid of women with intrauterine infection in the early second trimester. Fetal Diagn. Ther. 2006, 21, 45–50. [Google Scholar] [CrossRef]
- Figueroa, R.; Garry, D.; Elimian, A.; Patel, K.; Sehgal, P.B.; Tejani, N. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J. Matern. Fetal Neonatal Med. 2005, 18, 241–247. [Google Scholar] [CrossRef]
- Holst, R.M.; Hagberg, H.; Wennerholm, U.B.; Skogstrand, K.; Thorsen, P.; Jacobsson, B. Prediction of spontaneous preterm delivery in women with preterm labor: Analysis of multiple proteins in amniotic and cervical fluids. Obstet. Gynecol. 2009, 114, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Keeler, S.M.; Kiefer, D.G.; Rust, O.A.; Vintzileos, A.; Atlas, R.O.; Bornstein, E.; Hanna, N. Comprehensive amniotic fluid cytokine profile evaluation in women with a short cervix: Which cytokine(s) correlates best with outcome? Am. J. Obstet. Gynecol. 2009, 201, 276.e1-6. [Google Scholar] [CrossRef] [PubMed]
- La Sala, G.B.; Ardizzoni, A.; Capodanno, F.; Manca, L.; Baschieri, M.C.; Soncini, E.; Peppoloni, S.; Blasi, E. Protein microarrays on midtrimester amniotic fluids: A novel approach for the diagnosis of early intrauterine inflammation related to preterm delivery. Int. J. Immunopathol. Pharmacol. 2012, 25, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Weissenbacher, T.; Laubender, R.P.; Witkin, S.S.; Gingelmaier, A.; Schiessl, B.; Kainer, F.; Friese, K.; Jeschke, U.; Dian, D.; Karl, K. Diagnostic biomarkers of pro-inflammatory immune-mediated preterm birth. Arch. Gynecol. Obstet. 2013, 287, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Peltier, M.R.; Drobek, C.O.; Bhat, G.; Saade, G.; Fortunato, S.J.; Menon, R. Amniotic fluid and maternal race influence responsiveness of fetal membranes to bacteria. J. Reprod. Immunol. 2012, 96, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Baud, O.; Emilie, D.; Pelletier, E.; Lacaze-Masmonteil, T.; Zupan, V.; Fernandez, H.; Dehan, M.; Frydman, R.; Ville, Y. Amniotic fluid concentrations of interleukin-1beta, interleukin-6 and TNF-alpha in chorioamnionitis before 32 weeks of gestation: Histological associations and neonatal outcome. Br. J. Obstet. Gynaecol. 1999, 106, 72–77. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Romero, R.; Korzeniewski, S.J.; Martinez-Varea, A.; Dong, Z.; Yoon, B.H.; Hassan, S.S.; Chaiworapongsa, T.; Yeo, L. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J. Matern. Fetal Neonatal Med. 2016, 29, 349–359. [Google Scholar] [CrossRef]
- Payne, M.S.; Feng, Z.; Li, S.; Doherty, D.A.; Xu, B.; Li, J.; Newnham, J.P. Second trimester amniotic fluid cytokine concentrations, Ureaplasma sp. colonisation status and sexual activity as predictors of preterm birth in Chinese and Australian women. BMC Pregnancy Childbirth 2014, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Stinson, L.F.; Keelan, J.A.; Payne, M.S. Characterization of the bacterial microbiome in first-pass meconium using propidium monoazide (PMA) to exclude nonviable bacterial DNA. Lett. Appl. Microbiol. 2019, 68, 378–385. [Google Scholar] [CrossRef]
- Stinson, L.F.; Keelan, J.A.; Payne, M.S. Identification and removal of contaminating microbial DNA from PCR reagents: Impact on low-biomass microbiome analyses. Lett. Appl. Microbiol. 2019, 68, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Stinson, L.F.; Keelan, J.A.; Payne, M.S. Comparison of Meconium DNA Extraction Methods for Use in Microbiome Studies. Front. Microbiol. 2018, 9, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karstens, L.; Asquith, M.; Davin, S.; Fair, D.; Gregory, W.T.; Wolfe, A.J.; Braun, J.; McWeeney, S. Controlling for Contaminants in Low-Biomass 16S rRNA Gene Sequencing Experiments. mSystems 2019, 4, e00290-19. [Google Scholar] [CrossRef] [Green Version]
- White, J.R.; Nagarajan, N.; Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009, 5, e1000352. [Google Scholar] [CrossRef] [PubMed]
- Park, S.N.; Lim, Y.K.; Shin, J.H.; Kim, H.S.; Jo, E.; Lee, W.P.; Shin, Y.; Paek, J.; Chang, Y.H.; Kim, H.; et al. Fusobacterium pseudoperiodonticum sp. nov., Isolated from the Human Oral Cavity. Curr. Microbiol. 2019, 76, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Stockham, S.; Stamford, J.E.; Roberts, C.T.; Fitzsimmons, T.R.; Marchant, C.; Bartold, P.M.; Zilm, P.S. Abnormal pregnancy outcomes in mice using an induced periodontitis model and the haematogenous migration of Fusobacterium nucleatum sub-species to the murine placenta. PLoS ONE 2015, 10, e0120050. [Google Scholar] [CrossRef] [Green Version]
- Shea, S.; Paniz-Mondolfi, A.; Sordillo, E.; Nowak, M.; Dekio, F. Florid Bacillus cereus Infection of the Placenta Associated with Intrauterine Fetal Demise. Pediatr. Dev. Pathol. 2021, 24, 361–365. [Google Scholar] [CrossRef]
- Carmona, C.A., Jr.; Marante, A.; Levent, F.; Marsicek, S. Burkholderia cepacia Sepsis in a Previously Healthy Full-Term Infant. Case Rep. Pediatr. 2020, 2020, 8852847. [Google Scholar] [CrossRef]
- Fidalgo, B.; Bosch, J.; Cobo, T.; Ribera, L.; Casals, C.; Almela, M. Bacteremia and intramniotic infection due to Burkholderia cenocepacea. Clin. Microbiol. Infect. 2020, 26, 1564–1565. [Google Scholar] [CrossRef]
- Porter, M.C.; Pennell, C.E.; Woods, P.; Dyer, J.; Merritt, A.J.; Currie, B.J. Case Report: Chorioamnionitis and Premature Delivery due to Burkholderia pseudomallei Infection in Pregnancy. Am. J. Trop. Med. Hyg. 2018, 98, 797–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammes, W.P.; Hertel, C. The Genera Lactobacillus and Carnobacterium. In The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 320–403. [Google Scholar]
- Chen, X.; Lu, Y.; Chen, T.; Li, R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front. Cell Infect. Microbiol. 2021, 11, 631972. [Google Scholar] [CrossRef] [PubMed]
- Parnell, L.A.; Willsey, G.G.; Joshi, C.S.; Yin, Y.; Wargo, M.J.; Mysorekar, I.U. Functional characterization of Ralstonia insidiosa, a bona fide resident at the maternal-fetal interface. bioRxiv 2019, 721977. [Google Scholar] [CrossRef] [Green Version]
- Vaneechoutte, M.; Janssens, M.; Avesani, V.; Delmee, M.; Deschaght, P. Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to Acidovorax avenae. Int. J. Syst. Evol. Microbiol. 2013, 63, 2203–2206. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.; Thorsen, P.; Vogel, I.; Jacobsson, B.; Morgan, N.; Jiang, L.; Li, C.; Williams, S.M.; Fortunato, S.J. Racial disparity in amniotic fluid concentrations of tumor necrosis factor (TNF)-alpha and soluble TNF receptors in spontaneous preterm birth. Am. J. Obstet. Gynecol. 2008, 198, 533.e1–533.e10. [Google Scholar] [CrossRef]
Extraction Controls | PCR Controls | |
---|---|---|
Novosphingobium sp. | 13,999 | 0 |
Sphingomonas sp. | 570 | 0 |
Unclassified Sphingomonadaceae | 213 | 0 |
Ralstonia sp. | 73 | 0 |
Rhizorhapis sp. | 5 | 0 |
Moraxella sp. | 1 | 0 |
Pelomonas sp. | 1 | 0 |
Parablastomonas sp. | 1 | 0 |
Preterm | Term | p-Value | |
N | 11 | 20 | |
Maternal age (years) | 36.4 (29.1, 40.6) | 33.0 (25.4, 36.6) | 0.301 |
Ethnicity | 0.458 | ||
Caucasian | 7 (63.6) | 9 (45.0) | |
Other * | 4 (36.4) | 11 (55.0) | |
Nulliparous | 3 (27.3) | 9 (45.0) | 0.452 |
Previous preterm birth | 3 (27.3) | 0 (0.0) | 0.037 |
Smoking during pregnancy | 2 (18.2) | 2 (10.0) | 0.602 |
Preterm pre-labour rupture of membranes | 6 (54.5) | 0 (0.0) | 0.001 |
Threatened preterm labour | 5 (45.5) | 0 (0.0) | 0.003 |
Clinical chorioamnionitis | 1 (9.1) | 0 (0.0) | 0.355 |
Spontaneous labour | 4 (36.4) | 14 (70.0) | 0.128 |
Spontaneous onset ^ | 6 (54.5) | 14 (70.0) | <0.001 |
Gestational age at birth | 33.0 (27.0, 34.0) | 39.0 (39.0, 40.0) | <0.001 |
Birthweight (g) | 1836 (1148, 2180) | 3507.5 (3132.5, 3915.0) | <0.001 |
Male | 6 (54.5) | 11 (55.0) | 1.000 |
Stillborn | 3 (27.3) | 0 (0.0) | 0.037 |
All | Preterm | Term | p-Value | |
---|---|---|---|---|
IL-10 | 5.3 (2.5, 11) | 5.9 (5.1, 12.5) | 3.9 (2.0, 9.0) | 0.097 |
IL-1β | 0.8 (0.3, 1.1) | 1.0 (0.8, 1.7) | 0.5 (0.2, 0.9) | 0.058 |
IL-6 | 87.1 (33.3, 377.9) | 131.6 (29.6, 409.2) | 69.9 (35.0, 319.7) | 0.648 |
MCP-1 | 925.1 (685.6, 1161.4) | 904.0 (679.2, 1132.5) | 941.9 (756.7, 1165.0) | 0.587 |
TNF-α | 4.9 (3.4, 6.4) | 5.6 (4.9, 6.4) | 3.9 (2.2, 5.4) | 0.042 |
IL-10 | IL-1β | IL-6 | MCP-1 | TNF-α | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Marginal Geometric Mean | p | Back-Transformed Marginal Mean | p | Marginal Geometric Mean | p | Marginal Geometric Mean | p | Marginal Geometric Mean | p | ||
Novosphingobium sp. * | Low | 5.85 (3.56, 9.60) | 0.483 | 0.81 (0.45, 1.28) | 0.903 | 140.37 (59.32, 332.14) | 0.229 | 967.97 (754.20, 1242.34) | 0.386 | 5.06 (3.92, 6.53) | 0.318 |
High | 4.39 (2.33, 8.31) | 0.77 (0.37, 1.31) | 71.67 (35.94, 142.93) | 848.09 (712.96, 1008.84) | 3.96 (2.64, 5.94) | ||||||
Sphingomonadaceae_ Unclassified | Absent | 6.75 (4.08, 11.16) | 0.178 | 0.64 (0.41, 0.94) | 0.245 | 122.24 (54.90, 272.18) | 0.549 | 795.90 (666.84, 949.95) | 0.105 | 4.76 (3.65, 6.21) | 0.621 |
Present | 3.71 (1.90, 7.23) | 0.99 (0.49, 1.66) | 82.31 (32.33, 209.51) | 1031.44 (805.96, 1320.00) | 4.16 (2.66, 6.51) | ||||||
Ralstonia sp. | Absent | 4.80 (2.52, 9.12) | 0.758 | 0.71 (0.36, 1.19) | 0.556 | 100.16 (45.27, 221.61) | 0.995 | 860.88 (706.77, 1048.60) | 0.460 | 4.37 (3.01, 6.34) | 0.831 |
Present | 5.42 (3.51, 8.36) | 0.89 (0.51, 1.38) | 100.49 (44.12, 228.87) | 968.71 (757.42, 1238.95) | 4.59 (3.46, 6.09) | ||||||
Sphingomonas sp. | Absent | 4.29 (2.63, 7.01) | 0.139 | 0.60 (0.39, 0.87) | 0.031 | 89.84 (45.21, 178.51) | 0.491 | 862.02 (750.95, 989.52) | 0.363 | 3.87 (3.00, 4.99) | 0.037 |
Present | 8.81 (4.17, 18.61) | 1.54 (0.73, 2.65) | 144.05 (47.23, 439.34) | 1067.18 (678.99, 1677.31) | 7.26 (4.35, 12.11) | ||||||
Pelomonas sp. | Absent | 4.53 (2.95, 6.96) | 0.113 | 0.85 (0.54, 1.22) | 0.168 | 79.10 (45.30, 138.14) | 0.005 | 895.21 (754.59, 1062.04) | 0.410 | 4.50 (3.39, 5.97) | 0.734 |
Present | 10.43 (4.12, 26.36) | 0.46 (0.15, 0.95) | 469.40 (163.70, 1345.96) | 979.78 (834.87, 1149.85) | 4.21 (3.37, 5.25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stinson, L.F.; Berman, Y.; Li, S.; Keelan, J.A.; Dickinson, J.E.; Doherty, D.A.; Newnham, J.P.; Payne, M.S. Characterisation of Mid-Gestation Amniotic Fluid Cytokine and Bacterial DNA Profiles in Relation to Pregnancy Outcome in a Small Australian Cohort. Microorganisms 2023, 11, 1698. https://doi.org/10.3390/microorganisms11071698
Stinson LF, Berman Y, Li S, Keelan JA, Dickinson JE, Doherty DA, Newnham JP, Payne MS. Characterisation of Mid-Gestation Amniotic Fluid Cytokine and Bacterial DNA Profiles in Relation to Pregnancy Outcome in a Small Australian Cohort. Microorganisms. 2023; 11(7):1698. https://doi.org/10.3390/microorganisms11071698
Chicago/Turabian StyleStinson, Lisa F., Yey Berman, Shaofu Li, Jeffrey A. Keelan, Jan E. Dickinson, Dorota A. Doherty, John P. Newnham, and Matthew S. Payne. 2023. "Characterisation of Mid-Gestation Amniotic Fluid Cytokine and Bacterial DNA Profiles in Relation to Pregnancy Outcome in a Small Australian Cohort" Microorganisms 11, no. 7: 1698. https://doi.org/10.3390/microorganisms11071698
APA StyleStinson, L. F., Berman, Y., Li, S., Keelan, J. A., Dickinson, J. E., Doherty, D. A., Newnham, J. P., & Payne, M. S. (2023). Characterisation of Mid-Gestation Amniotic Fluid Cytokine and Bacterial DNA Profiles in Relation to Pregnancy Outcome in a Small Australian Cohort. Microorganisms, 11(7), 1698. https://doi.org/10.3390/microorganisms11071698