Review and Perspectives on Bifidobacterium lactis for Infants’ and Children’s Health
Abstract
:1. Introduction
2. Bifidobacterium lactis B94 and Pediatric Gut Health
2.1. Necrotizing Enterocolitis Incidence and Progression
2.2. Diarrhea in Acute Gastroenteritis
2.3. GI symptoms in Children with IBS
2.4. Helicobacter Pylori Eradication and AAD
3. Discussion and Perspectives
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth. Front. Microbiol. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Miko, E.; Csaszar, A.; Bodis, J.; Kovacs, K. The Maternal-Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life 2022, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Gschwind, R.; Fournier, T.; Kennedy, S.; Tsatsaris, V.; Cordier, A.G.; Barbut, F.; Butel, M.J.; Wydau-Dematteis, S. Evidence for contamination as the origin for bacteria found in human placenta rather than a microbiota. PLoS ONE 2020, 15, e0237232. [Google Scholar] [CrossRef] [PubMed]
- Senn, V.; Bassler, D.; Choudhury, R.; Scholkmann, F.; Righini-Grunder, F.; Vuille-dit-Bille, R.N.; Restin, T. Microbial Colonization From the Fetus to Early Childhood—A Comprehensive Review. Front. Cell. Infect. Microbiol. 2020, 10, 573755. [Google Scholar] [CrossRef]
- Mueller, N.T.; Bakacs, E.; Combellick, J.; Grigoryan, Z.; Dominguez-Bello, M.G. The infant microbiome development: Mom matters. Trends Mol. Med. 2015, 21, 109–117. [Google Scholar] [CrossRef]
- van Best, N.; Dominguez-Bello, M.G.; Hornef, M.W.; Jašarević, E.; Korpela, K.; Lawley, T.D. Should we modulate the neonatal microbiome and what should be the goal? Microbiome 2022, 10, 74. [Google Scholar] [CrossRef]
- Lewis, Z.T.; Mills, D.A. Differential Establishment of Bifidobacteria in the Breastfed Infant Gut. Nestle Nutr. Inst. Workshop Ser. 2017, 88, 149–159. [Google Scholar] [CrossRef]
- Laursen, M.F. Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. Ann. Nutr. Metab. 2021, 77 (Suppl. S3), 21–34. [Google Scholar] [CrossRef]
- Vatanen, T.; Franzosa, E.A.; Schwager, R.; Tripathi, S.; Arthur, T.D.; Vehik, K.; Lernmark, Å.; Hagopian, W.A.; Rewers, M.J.; She, J.-X.; et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018, 562, 589–594. [Google Scholar] [CrossRef]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E., Jr.; Shaikh, N.; Linneman, L.A.; et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Sprockett, D.; Fukami, T.; Relman, D.A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 197–205. [Google Scholar] [CrossRef]
- Michel, C.; Blottière, H.M. Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Front. Microbiol. 2022, 13, 825942. [Google Scholar] [CrossRef] [PubMed]
- Martino, C.; Dilmore, A.H.; Burcham, Z.M.; Metcalf, J.L.; Jeste, D.; Knight, R. Microbiota succession throughout life from the cradle to the grave. Nat. Rev. Microbiol. 2022, 20, 707–720. [Google Scholar] [CrossRef]
- Turroni, F.; Foroni, E.; Pizzetti, P.; Giubellini, V.; Ribbera, A.; Merusi, P.; Cagnasso, P.; Bizzarri, B.; de’Angelis, G.L.; Shanahan, F.; et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl. Environ. Microbiol. 2009, 75, 1534–1545. [Google Scholar] [CrossRef]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 2016, 7, 1204. [Google Scholar] [CrossRef] [PubMed]
- Saturio, S.; Nogacka, A.M.; Suarez, M.; Fernandez, N.; Mantecon, L.; Mancabelli, L.; Milani, C.; Ventura, M.; de Los Reyes-Gavilan, C.G.; Solis, G.; et al. Early-Life Development of the Bifidobacterial Community in the Infant Gut. Int. J. Mol. Sci. 2021, 22, 3382. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Stanton, C.; Ross, R.P.; Lee, Y.K.; Zhao, J.; Zhang, H.; Chen, W. Bifidobacterium and Lactobacillus Composition at Species Level and Gut Microbiota Diversity in Infants before 6 Weeks. Int. J. Mol. Sci. 2019, 20, 3306. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Sales Teixeira, T.F.; Bigonha, S.M.; Lobo, G.; Salminen, S.; de Luces Fortes Ferreira, C.L. Gut Bifidobacterium microbiota in one-month-old Brazilian newborns. Anaerobe 2015, 35, 54–58. [Google Scholar] [CrossRef]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Gueimonde, M.; Flórez, A.B.; van Hoek, A.H.; Stuer-Lauridsen, B.; Strøman, P.; de los Reyes-Gavilán, C.G.; Margolles, A. Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl. Environ. Microbiol. 2010, 76, 3364–3369. [Google Scholar] [CrossRef] [PubMed]
- Nøhr-Meldgaard, K.; Struve, C.; Ingmer, H.; Agersø, Y. The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. Front. Microbiol. 2021, 12, 658943. [Google Scholar] [CrossRef]
- EFSA. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar]
- Lokesh, D.; Parkesh, R.; Kammara, R. Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Sci. Rep. 2018, 8, 11897. [Google Scholar] [CrossRef] [PubMed]
- Loquasto, J.R.; Barrangou, R.; Dudley, E.G.; Stahl, B.; Chen, C.; Roberts, R.F. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl Environ. Microbiol 2013, 79, 6903–6910. [Google Scholar] [CrossRef]
- Di Pierro, F.; Pane, M. Bifidobacterium longum W11: Uniqueness and individual or combined clinical use in association with rifaximin. Clin. Nutr. ESPEN 2021, 42, 15–21. [Google Scholar] [CrossRef]
- Health Functional Food Code (No. 2020-92, 2020.9.23); Ministry of Food Drug and Safety (MFDS): Cheongju, Republic of Korea, 2023; Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=70011&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=3 (accessed on 19 September 2023).
- Therapeutic Goods Administration (TGA). Therapeutic Goods (Permissible Ingredients) Determination No. 3; Therapeutic Goods Administration (TGA): Woden, Australia, 2023; Volume 2. Available online: https://www.legislation.gov.au/Details/F2023L00828/Html/Volume_2 (accessed on 19 September 2023).
- “List of Bacterial Cultures for Foods” and “List of Bacterial Cultures for Baby Foods”; National Health Commission of the People’s Republic of China: Xi’an, China, 2022. Available online: https://www.cirs-group.com/en/food/nhc-updated-two-lists-of-strains-that-can-be-used-in-food-and-infant-and-young-children-food-in-china (accessed on 19 September 2023).
- Health Supplements, Nutraceuticals, Food for Special Dietary Use, Food for Special Medical Purpose, and Prebiotic and Probiotic Food; Food Safety and Standards Authority of India (FSSAI): New Delhi, India, 2022; Volume Schedule IV. Available online: https://www.fssai.gov.in/upload/advisories/2022/03/6243ef28079ceDirection_Nutra_30_03_2022.pdf (accessed on 19 September 2023).
- Registration of Medicines: Complementary Medicines—Health Supplements Safety and Efficacy; South African Health Products Regulatory Authority (SAHPRA): Pretoria, South Africa, 2022; Volume Annexure C, Available online: https://www.sahpra.org.za/wp-content/uploads/2022/03/7.04_CM_SE_Health_Supplements_Mar22_v4_3.pdf (accessed on 19 September 2023).
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Koutsoumanis, K.; Herman, L.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 8: Suitability of taxonomic units notified to EFSA until March 2018. EFSA J. 2018, 16, e5315. [Google Scholar] [CrossRef]
- Donkor, O.N.; Ravikumar, M.; Proudfoot, O.; Day, S.L.; Apostolopoulos, V.; Paukovics, G.; Vasiljevic, T.; Nutt, S.L.; Gill, H. Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin. Exp. Immunol. 2012, 167, 282–295. [Google Scholar] [CrossRef]
- Su, P.; Henriksson, A.; Mitchell, H. Selected prebiotics support the growth of probiotic mono-cultures in vitro. Anaerobe 2007, 13, 134–139. [Google Scholar] [CrossRef]
- Su, P.; Henriksson, A.; Mitchell, H. Prebiotics enhance survival and prolong the retention period of specific probiotic inocula in an in vivo murine model. J. Appl. Microbiol. 2007, 103, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Peran, L.; Camuesco, D.; Comalada, M.; Bailon, E.; Henriksson, A.; Xaus, J.; Zarzuelo, A.; Galvez, J. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J. Appl. Microbiol. 2007, 103, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, S.; Ramay, M.S.; Güntürkün, O.B.; Yalçın, S.S.; Ahlat, O.; Yalçın, S.; Özkaya, M. Efficacy of mono- and multistrain synbiotics supplementation in modifying performance, caecal fermentation, intestinal health, meat and bone quality, and some blood biochemical indices in broilers. J. Anim. Physiol. Anim. Nutr. 2022, 107, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, J.; Yao, Z.; Ni, L.; Zhao, Y.; Wei, S.; Chen, Z. Effect and Mechanism of Bifidobacterium animalis B94 in the Prevention and Treatment of Liver Injury in Rats. Front. Cell. Infect. Microbiol. 2022, 12, 914684. [Google Scholar] [CrossRef]
- Margolles, A.; Sánchez, B. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid. Appl. Environ. Microbiol. 2012, 78, 3338–3342. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, M.; Henriksson, A. The effect of processed meat and meat starter cultures on gastrointestinal colonization and virulence of Listeria monocytogenes in mice. Int. J. Food Microbiol. 2003, 84, 255–261. [Google Scholar] [CrossRef]
- Pidcock, K.; Heard, G.M.; Henriksson, A. Application of nontraditional meat starter cultures in production of Hungarian salami. Int. J. Food Microbiol. 2002, 76, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Crittenden, R.; Bird, A.R.; Gopal, P.; Henriksson, A.; Lee, Y.K.; Playne, M.J. Probiotic research in Australia, New Zealand and the Asia-Pacific region. Curr. Pharm. Des. 2005, 11, 37–53. [Google Scholar] [CrossRef]
- Clancy, R.L.; Pang, G. Probiotics—Industry Myth or a Practical Reality? [Based on an unpublished internal report from Pang in 2005, Isolate 2 is B94]. J. Am. Coll. Nutr. 2007, 26, 691S–694S. [Google Scholar] [CrossRef]
- Zhang, L.; Su, P.; Henriksson, A.; O’Rourke, J.; Mitchell, H. Investigation of the immunomodulatory effects of Lactobacillus casei and Bifidobacterium lactis on Helicobacter pylori infection. Helicobacter 2008, 13, 183–190. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, D.H.; Meyer, D. Supplementation of baby formula with native inulin has a prebiotic effect in formula-fed babies. Asia Pac. J. Clin. Nutr. 2007, 16, 172–177. [Google Scholar]
- Alsaied, A.; Islam, N.; Thalib, L. Global incidence of Necrotizing Enterocolitis: A systematic review and Meta-analysis. BMC Pediatr. 2020, 20, 344. [Google Scholar] [CrossRef] [PubMed]
- Dilli, D.; Aydin, B.; Fettah, N.D.; Özyazıcı, E.; Beken, S.; Zenciroğlu, A.; Okumuş, N.; Özyurt, B.M.; İpek, M.; Akdağ, A.; et al. The propre-save study: Effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. J. Pediatr. 2015, 166, 545–551. [Google Scholar] [CrossRef] [PubMed]
- El, Ç.; Satar, M.; Yıldızdaş, H.Y.; Özlü, F.; Asker, H.S. Evaluation of influence of Bifidobacterium lactis and Hindiba inulin on feeding intolerance and weight gain in premature babies. Cukurova Med. J. 2017, 42, 419–426. [Google Scholar] [CrossRef]
- Dilli, D.; Aydin, B.; Zenciroğlu, A.; Özyazici, E.; Beken, S.; Okumuş, N. Treatment outcomes of infants with cyanotic congenital heart disease treated with synbiotics. Pediatrics 2013, 132, e932–e938. [Google Scholar] [CrossRef]
- Erdoğan, O.; Tanyeri, B.; Torun, E.; Gönüllü, E.; Arslan, H.; Erenberk, U.; Oktem, F. The comparition of the efficacy of two different probiotics in rotavirus gastroenteritis in children. J. Trop. Med. 2012, 2012, 787240. [Google Scholar] [CrossRef] [PubMed]
- İşlek, A.; Sayar, E.; Yılmaz, A.; Baysan, B.; Mutlu, D.; Artan, R. The role of Bifidobacterium lactis B94 plus inulin in the treatment of acute infectious diarrhea in children. Turk. J. Gastroenterol. 2014, 25, 628–633. [Google Scholar] [CrossRef]
- Baştürk, A.; Artan, R.; Atalay, A.; Yılmaz, A. Investigation of the efficacy of synbiotics in the treatment of functional constipation in children: A randomized double-blind placebo-controlled study. Turk. J. Gastroenterol. 2017, 28, 388–393. [Google Scholar] [CrossRef]
- Islek, A.; Sayar, E.; Yilmaz, A.; Artan, R. Bifidobacterium lactis B94 plus inulin for Treatment of Helicobacter pylori infection in children: Does it increase eradication rate and patient compliance? Acta Gastroenterol. Belg. 2015, 78, 282–286. [Google Scholar]
- Şirvan, N.B.; Usta, M.K.; Kizilkan, N.U.; Urganci, N. Are Synbiotics added to the Standard Therapy to eradicate Helicobacter pylori in Children Beneficial? A Randomized Controlled Study. Euroasian J. Hepatogastroenterol. 2017, 7, 17–22. [Google Scholar] [CrossRef]
- Ustundag, G.H.; Altuntas, H.; Soysal, Y.D.; Kokturk, F. The Effects of Synbiotic “Bifidobacterium lactis B94 plus Inulin” Addition on Standard Triple Therapy of Helicobacter pylori Eradication in Children. Can. J. Gastroenterol. Hepatol. 2017, 2017, 8130596. [Google Scholar] [CrossRef] [PubMed]
- Gueimonde, M.; Delgado, S.; Mayo, B.; Ruas-Madiedo, P.; Margolles, A.; de los Reyes-Gavilán, C.G. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res. Int. 2004, 37, 839–850. [Google Scholar] [CrossRef]
- Masco, L.; Huys, G.; De Brandt, E.; Temmerman, R.; Swings, J. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int. J. Food Microbiol. 2005, 102, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Laitila, A.; Ouwehand, A.C. Bifidobacterium animalis subsp. lactis HN019 Effects on Gut Health: A Review. Front. Nutr. 2021, 8, 790561. [Google Scholar] [CrossRef]
- Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12®. Microorganisms 2014, 2, 92–110. [Google Scholar] [CrossRef]
- Uusitupa, H.M.; Rasinkangas, P.; Lehtinen, M.J.; Mäkelä, S.M.; Airaksinen, K.; Anglenius, H.; Ouwehand, A.C.; Maukonen, J. Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients 2020, 12, 892. [Google Scholar] [CrossRef]
- Waitzberg, D.L.; Quilici, F.A.; Michzputen, S.; Friche Passos Mdo, C. The effect of probiotic fermented milk that includes Bifidobacterium lactis CNCM I-2494 on the reduction of gastrointestinal discomfort and symptoms in adults: A narrative review. Nutr. Hosp. 2015, 32, 501–509. [Google Scholar] [CrossRef]
- Eales, J.; Gibson, P.; Whorwell, P.; Kellow, J.; Yellowlees, A.; Perry, R.H.; Edwards, M.; King, S.; Wood, H.; Glanville, J. Systematic review and meta-analysis: The effects of fermented milk with Bifidobacterium lactis CNCM I-2494 and lactic acid bacteria on gastrointestinal discomfort in the general adult population. Ther. Adv. Gastroenterol. 2017, 10, 74–88. [Google Scholar] [CrossRef]
- Milani, C.; Duranti, S.; Lugli, G.A.; Bottacini, F.; Strati, F.; Arioli, S.; Foroni, E.; Turroni, F.; van Sinderen, D.; Ventura, M. Comparative genomics of Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifidobacterial taxon. Appl. Environ. Microbiol. 2013, 79, 4304–4315. [Google Scholar] [CrossRef]
- Lomonaco, S.; Furumoto, E.J.; Loquasto, J.R.; Morra, P.; Grassi, A.; Roberts, R.F. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products. J. Dairy. Sci. 2015, 98, 804–812. [Google Scholar] [CrossRef]
- Salli, K.; Hirvonen, J.; Siitonen, J.; Ahonen, I.; Anglenius, H.; Maukonen, J. Selective Utilization of the Human Milk Oligosaccharides 2′-Fucosyllactose, 3-Fucosyllactose, and Difucosyllactose by Various Probiotic and Pathogenic Bacteria. J. Agric. Food Chem. 2021, 69, 170–182. [Google Scholar] [CrossRef]
- Sakanaka, M.; Gotoh, A.; Yoshida, K.; Odamaki, T.; Koguchi, H.; Xiao, J.-z.; Kitaoka, M.; Katayama, T. Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation. Nutrients 2020, 12, 71. [Google Scholar] [CrossRef]
- Lawson, M.A.E.; O’Neill, I.J.; Kujawska, M.; Gowrinadh Javvadi, S.; Wijeyesekera, A.; Flegg, Z.; Chalklen, L.; Hall, L.J. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. Isme J. 2020, 14, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Moens, F.; Verce, M.; De Vuyst, L. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Int. J. Food Microbiol. 2017, 241, 225–236. [Google Scholar] [CrossRef]
- Autran, C.A.; Kellman, B.P.; Kim, J.H.; Asztalos, E.; Blood, A.B.; Spence, E.C.H.; Patel, A.L.; Hou, J.; Lewis, N.E.; Bode, L. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 2018, 67, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Jantscher-Krenn, E.; Zherebtsov, M.; Nissan, C.; Goth, K.; Guner, Y.S.; Naidu, N.; Choudhury, B.; Grishin, A.V.; Ford, H.R.; Bode, L. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 2012, 61, 1417–1425. [Google Scholar] [CrossRef]
- Masi, A.C.; Embleton, N.D.; Lamb, C.A.; Young, G.; Granger, C.L.; Najera, J.; Smith, D.P.; Hoffman, K.L.; Petrosino, J.F.; Bode, L.; et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 2021, 70, 2273–2282. [Google Scholar] [CrossRef] [PubMed]
- Łoniewski, I.; Skonieczna-Żydecka, K.; Stachowska, L.; Fraszczyk-Tousty, M.; Tousty, P.; Łoniewska, B. Breastfeeding Affects Concentration of Faecal Short Chain Fatty Acids During the First Year of Life: Results of the Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 939194. [Google Scholar] [CrossRef]
Category | Results | References |
---|---|---|
Strain characterization and safety |
| [22,23,24,25,26,27] |
B. lactis species safety |
| [28,29,30,31,32,33] |
Gastrointestinal tract (GIT) survival and adhesion to intestinal cells |
| [34,35,36] |
Synergy with prebiotics |
| [35,36]. |
Intestinal barrier integrity and function |
| [37,38,39] |
Acetate production |
| [38,40] |
Immune defense and immunomodulatory effects |
| [37,41,42,43,44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremblay, A.; Bronner, S.; Binda, S. Review and Perspectives on Bifidobacterium lactis for Infants’ and Children’s Health. Microorganisms 2023, 11, 2501. https://doi.org/10.3390/microorganisms11102501
Tremblay A, Bronner S, Binda S. Review and Perspectives on Bifidobacterium lactis for Infants’ and Children’s Health. Microorganisms. 2023; 11(10):2501. https://doi.org/10.3390/microorganisms11102501
Chicago/Turabian StyleTremblay, Annie, Stéphane Bronner, and Sylvie Binda. 2023. "Review and Perspectives on Bifidobacterium lactis for Infants’ and Children’s Health" Microorganisms 11, no. 10: 2501. https://doi.org/10.3390/microorganisms11102501