Effects of Male and Female Strains of Salix linearistipularis on Physicochemical Properties and Microbial Community Structure in Saline–Alkali Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Collection
2.2. Analysis of Physical and Chemical Properties of Soil
2.3. Soil DNA Extraction, PCR Amplification, and High-Throughput Sequencing
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Rhizosphere Soil of Male and Female S. linearistipularis
3.2. Rhizosphere Soil Microbial Communities between Male and Female Salix linearistipularis
3.3. Correlation between Microbial Communities and Soil Physicochemical Properties
4. Discussion
4.1. Effects of Male and Female on Salix linearistipularis Soil Physicochemical Properties
4.2. Effects of Male and Female Salix linearistipularis on the Soil Microbial Community
4.3. Soil Physical and Chemical Properties of Salix linearistipularis Drive Microbial Community Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, J.; Xie, R.; Zhu, H.; Zhao, Y.; Zhang, Z. Comparative study on the abilities of different crack parameters to estimate the salinity of soda saline-alkali soil in Songnen Plain, China. Catena 2022, 213, 106221. [Google Scholar] [CrossRef]
- Wang, Y.; Dou, S.; Wang, L.; Wu, J.; Wang, T.; Wang, C.; Jiang, Z.; Ju, Z.; Wang, J.; Luo, M. Salinity Variability of Soda Meadow Alkaline Soil in Different Depths of Subsurface Pipe. Pol. J. Environ. Stud. 2018, 27, 2801–2809. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Xu, W.; Li, K.; Chen, L.; Kong, W.; Liu, C. The impacts of freeze-thaw cycles on saturated hydraulic conductivity and microstructure of saline-alkali soils. Sci. Rep. 2021, 11, 18655. [Google Scholar] [CrossRef] [PubMed]
- Renner, S.S.; Ricklefs, R.E. Dioecy and Its Correlates in the Flowering Plants. Am. J. Bot. 1995, 82, 596–606. [Google Scholar] [CrossRef]
- Song, H.; Cai, Z.; Liao, J.; Tang, D.; Zhang, S. Sexually differential gene expressions in poplar roots in response to nitrogen deficiency. Tree Physiol. 2019, 39, 1614–1629. [Google Scholar] [CrossRef]
- Feng, S.; Sun, H.; Ma, H.; Zhang, X.; Ma, S.; Qiao, K.; Zhou, A.; Bu, Y.; Liu, S. Sexual Differences in Physiological and Transcriptional Responses to Salinity Stress of Salix linearistipularis. Front. Plant Sci. 2020, 11, 517962. [Google Scholar] [CrossRef]
- Barrett, S.C.; Hough, J. Sexual dimorphism in flowering plants. J. Exp. Bot. 2013, 64, 67–82. [Google Scholar] [CrossRef]
- Forrest, J.R.K. Plant Size, Sexual Selection, and the Evolution of Protandry in Dioecious Plants. Am. Nat. 2014, 184, 338–351. [Google Scholar] [CrossRef]
- Ren, Y.; Xun, W.; Yan, H.; Ma, A.; Xiong, W.; Shen, Q.; Zhang, R. Functional compensation dominates the assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 2020, 150, 107968. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, Z.; Bakker, M.R.; Kim, J.H.; Brancheriau, L.; Buatois, B.; Leclerc, R.; Selli, L.; Rey, H.; Jourdan, C.; et al. Linking conifer root growth and production to soil temperature and carbon supply in temperate forests. Plant Soil 2018, 426, 33–50. [Google Scholar] [CrossRef]
- Qu, Y.; Tang, J.; Liu, B.; Lyu, H.; Duan, Y.; Yang, Y.; Wang, S.; Li, Z. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region. Sci. Rep. 2022, 12, 1314. [Google Scholar] [CrossRef] [PubMed]
- Lowry, D.B.; Hall, M.C.; Salt, D.E.; Willis, J.H. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytol. 2009, 183, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.A.; Rothballer, M.; Chowdhury, S.P.; Nussbaumer, T.; Gutjahr, C.; Falter-Braun, P. Systems Biology of Plant-Microbiome Interactions. Mol. Plant 2019, 12, 804–821. [Google Scholar] [CrossRef] [PubMed]
- Macia-Vicente, J.G.; Ferraro, V.; Burruano, S.; Lopez-Llorca, L.V. Fungal Assemblages Associated with Roots of Halophytic and Non-halophytic Plant Species Vary Differentially Along a Salinity Gradient. Microb. Ecol. 2012, 64, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Ishida, T.A.; Nara, K.; Ma, S.; Takano, T.; Liu, S. Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 2009, 19, 329–335. [Google Scholar] [CrossRef]
- Qi, Q. Response of Cuttings of Salix Linearistipularis Male and Female Plants to Saline-Alkali Stress. Master’s Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar] [CrossRef]
- Zhu, Q.; Yan, K.; Dong, Y.; Wang, Y. Rhizosphere bacterial communities and soil nutrient conditions reveal sexual dimorphism of Populus deltoides. J. For. Res. 2023, 34, 761–771. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z.; Wu, F.; Tang, M. Microenvironment and microbial community in the rhizosphere of dioecious Populus cathayana at Chaka Salt Lake. J. Soils Sediments 2019, 19, 2740–2751. [Google Scholar] [CrossRef]
- Zhang, M.J. Difference Analysis between Female and Male Plants of Salix linearistipularis. Master’s Thesis, Northeast Forestry University, Harbin, China, 2016. [Google Scholar]
- Guan, Q.; He, M.; Ma, H.; Liao, X.; Wang, Z.; Liu, S. Construction of genetic transformation system of Salix mongolica: In vitro leaf-based callus induction, adventitious buds differentiation, and plant regeneration. Plant Cell Tissue Organ Cult. 2018, 132, 213–217. [Google Scholar] [CrossRef]
- Nan, G.X. Research of Mining Salt Tolerance Genes in Salix linearistipularis. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2014. [Google Scholar]
- Xu, W.D. Soil Physicochemical Properties and Fungal Diversity of Three Plant Regions in Anda Salinealkali Land. Master’s Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Perdok, U.D.; Kroesbergen, B.; Hilhorst, M.A. Influence of gravimetric water content and bulk density on the dielectric properties of soil. Eur. J. Soil Sci. 1996, 47, 367–371. [Google Scholar] [CrossRef]
- Bao, S.D. Agriculture and Chemistry Analysis of Soil; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Smith, L.F.B.; Bain, C.D. A sodium hydroxide fusion method for the determination of total phosphate in soils. Commun. Soil Sci. Plant Anal. 1982, 13, 185–190. [Google Scholar] [CrossRef]
- Lee, E.A.; Weiss, S.L.; Lam, M.; Torres, R.; Diamond, J. A method for assaying intestinal brush-border sucrase in an intact intestinal preparation. Proc. Natl. Acad. Sci. USA 1998, 95, 2111–2116. [Google Scholar] [CrossRef]
- Kandeler, E.; Eder, G. Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biol. Fertil. Soils 1993, 16, 249–254. [Google Scholar] [CrossRef]
- Pozo, C.; Martinez-Toledo, V.M.; Salmeron, V. Effect of chlorpyrifos on soil microbial activity. Environ. Toxicol. Chem. 1995, 14, 187–192. [Google Scholar] [CrossRef]
- Guwy, A.; Martin, S.; Hawkes, F. Catalase activity measurements in suspended aerobic biomass and soil samples. Enzym. Microb. Technol. 1999, 25, 669–676. [Google Scholar] [CrossRef]
- Yu, L.; Huang, Z.; Tang, S.; Korpelainen, H.; Li, C. Populus euphratica males exhibit stronger drought and salt stress resistance than females. Environ. Exp. Bot. 2023, 205, 105114. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhao, Y.; Korpelainen, H.; Li, C. Sex-specific nitrogen allocation tradeoffs in the leaves of Populus cathayana cuttings under salt and drought stress. Plant Physiol. Biochem. 2022, 172, 101–110. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Luo, J.; Korpelainen, H.; Li, C. Sex-specific responses of Populus yunnanensis exposed to elevated CO2 and salinity. Physiol. Plant. 2013, 147, 477–488. [Google Scholar] [CrossRef]
- Jiang, X.M.; Hu, J.Y.; Qi, W.H. Differenct physiological responses of male and female Ginkgo biloba (Ginkgoaceae) seedling to salt stress. Acta Bot. Yunnanica 2009, 31, 447–453. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y. Gender differences of Humulus scandens seedlings in response to NaCl stress. Pratacultural Sci. 2017, 34, 1487–1495. [Google Scholar]
- Bram, M.R.; Quinn, J.A. Sex expression, sex-specific traits, and the effects of salinity on growth and reproduction of Amaranthus cannabinus (Amaranthaceae), a dioecious annual. Am. J. Bot. 2000, 87, 1609–1618. [Google Scholar] [CrossRef]
- Li, Y. Effect of Salt-Alkaline Interaction Stress on Physiological Characteristics of Salix linearistioularis. Master’s Thesis, Northeast Forestry University, Harbin, China, 2020. [Google Scholar]
- Wu, N.; Li, Z.; Liu, H.; Tang, M. Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress. Acta Physiol. Plant. 2015, 37, 183. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z.; Wu, F.; Tang, M. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt. Sci. Rep. 2016, 6, 37663. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, N.; Liu, T.; Chen, H.; Tang, M. Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. Physiol. Plant. 2015, 155, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Price, J.R.; Ledford, S.H.; Ryan, M.O.; Toran, L.; Sales, C.M. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in receiving streams. Sci. Total Environ. 2018, 613, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, S.R.; DeLaune, R.D. Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology 2012, 1, 196–221. [Google Scholar] [CrossRef]
- Yang, J.; An, S.; Zhang, H.; Chen, Y.; Dang, T.; Jiao, J. Effect of erosion on soil microbial biomass and enzyme activity in the Loess Hills. Acta Ecol. Sin. 2015, 35, 5666–5674. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, G.; Zhang, X.; He, N.; Wang, Q.; Wang, S.; Wang, R.; Zhao, N.; Jia, Y.; Wang, C. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 2017, 104, 152–163. [Google Scholar] [CrossRef]
- Huang, L.; Gao, X.; Liu, M.; Du, G.; Guo, J.; Ntakirutimana, T. Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water. Ecol. Eng. 2012, 46, 98–106. [Google Scholar] [CrossRef]
- Bian, X.L.; Zhao, W.L.; Yue, Z.H.; Wang, H.Y.; Jiao, H.; Sui, H.X. Research progress on the role of soil enzymes in carbon and nitrogen cycling in agroecosystems. Chin. Agric. Sci. Bull. 2016, 32, 171–178. [Google Scholar]
- Shi, M.Y. Investigation on Ectomycorrhizal Fungi Resources in Salix lineraristipularis. Master’s Thesis, Northeast Forestry University, Harbin, China, 2020. [Google Scholar]
- He, Q. Preliminary Study on Saline-Alkali Tolerance of Endophytic Fungi from The Root of Salix Lineraristipularis. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Cui, H.J. Study on Salt-Alkali Tolerance and Growth Promotion Effect of Endophytic Trichoderma of Salix linearistipularis Root. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Anderson, I.; Abt, B.; Lykidis, A.; Klenk, H.-P.; Kyrpides, N.; Ivanova, N. Genomics of Aerobic Cellulose Utilization Systems in Actinobacteria. PLoS ONE 2012, 7, e39331. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.L.; Zhao, W.Q.; Liu, M. Response of polyphenol oxidase and catalase activities to warming in Alpine shrub growing zone and non-rhizosphere soil. Chin. J. Appl. Ecol. 2019, 30, 3681–3688. [Google Scholar]
- Si, P.; Shao, W.; Yu, H.; Yang, X.; Gao, D.; Qiao, X.; Wang, Z.; Wu, G. Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Front. Microbiol. 2018, 9, 3147. [Google Scholar] [CrossRef]
- Pankratov, T.A.; Kirsanova, L.A.; Kaparullina, E.N. Telmatobacter bradus gen. nov. sp. nov. a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int. J. Syst. Evol. Microbiol. 2012, 62, 430. [Google Scholar]
- Wang, H.; Guo, S.; Huang, M.; Thorsten, L.H.; Wei, J. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci. China-Life Sci. 2010, 53, 1163–1169. [Google Scholar] [CrossRef]
- He, Y.; Zhou, G.; Wang, S.; Li, H. Fungal diversity in Cunninghamia lanceolata plantation soil. Acta Ecol. Sin. 2014, 34, 2725–2736. [Google Scholar]
- Beimforde, C.; Feldberg, K.; Nylinder, S.; Rikkinen, J.; Tuovila, H.; Doerfelt, H.; Gube, M.; Jackson, D.J.; Reitner, J.; Seyfullah, L.J.; et al. Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Mol. Phylogen. Evol. 2014, 78, 386–398. [Google Scholar] [CrossRef]
- Tang, K.; Yuan, B.; Lai, Q.L.; Wang, R.G.; Bao, H.Z.; Feng, F.Y. Hymeno bacter terrenus sp. nov., isolated from biological soil crusts. Int. J. Syst. Evol. Microbiol. 2015, 65, 4557–4562. [Google Scholar] [CrossRef]
- Mosier, S.L.; Kane, E.S.; Richter, D.L.; Lilleskov, E.A.; Jurgensen, M.F.; Burton, A.J.; Resh, S.C. Interactive effects of climate change and fungal communities on wood-derived carbon in forest soils. Soil Biol. Biochem. 2017, 115, 297–309. [Google Scholar] [CrossRef]
- Sardinha, M.; Muller, T.; Schmeisky, H.; Joergensen, R.G. Microbial performance in soils along a salinity gradient under acidic conditions. Appl. Soil Ecol. 2003, 23, 237–244. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Ni, Y.; Zhong, Q. Effects of artificial forest and grass on soil fungal community at southern Ningxia mountain. China Environ. Sci. 2018, 38, 1449–1458. [Google Scholar]
- Liu, F.-C.; Xing, S.-J.; Ma, H.-L.; Du, Z.-Y.; Ma, B.-Y. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition. J. Appl. Ecol. 2014, 25, 1475–1482. [Google Scholar]
- Cao, H.; Gao, G.; Ding, G.; Zhang, Y.; Zhao, Y.; Ren, Y.; Chen, Y.; Guo, M. Community Structure and Diversity of Soil Fungi in Four Habitats in Hulun Buir Sandy Land. Sci. Silvae Sin. 2019, 55, 118–127. [Google Scholar]
- Aerts, R.; de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 1999, 84, 44–54. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, Y.; Yu, H.; Zhang, Y.A. Ganoderma lucidum cultivation affect microbial community structure of soil, wood segments and tree roots. Sci. Rep. 2020, 10, 3435. [Google Scholar] [CrossRef] [PubMed]
- Joergensen, R.G.; Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 2018, 116, 419–430. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef]
- Pan, J.; Huang, C.; Peng, F.; Wang, T.; Liao, J.; Ma, S.; Xue, X. Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr. Under saline soil conditions. Res. Cold Arid Reg. 2022, 14, 393–402. [Google Scholar] [CrossRef]
- Siemens, J.A.; Zwiazek, J.J. Hebeloma crustuliniforme modifies root hydraulic responses of trembling aspen (Populus tremuloides) seedlings to changes in external pH. Plant Soil 2011, 345, 247–256. [Google Scholar] [CrossRef]
- Han, Q.; Huang, J.; Long, D.; Wang, X.; Liu, J. Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain. Mycorrhiza 2017, 27, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Long, D.; Liu, J.; Han, Q.; Wang, X.; Huang, J. Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China. Sci. Rep. 2016, 6, 24336. [Google Scholar] [CrossRef] [PubMed]
- Hrynkiewicz, K.; Szymanska, S.; Piernik, A.; Thiem, D. Ectomycorrhizal Community Structure of Salix and Betula spp. at a Saline Site in Central Poland in Relation to the Seasons and Soil Parameters. Water Air Soil Pollut. 2015, 226, 99. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.C.; Abed, R.M.M.; Albach, D.C.; Palinska, K.A. Bacterial and Archaeal Diversity in Hypersaline Cyanobacterial Mats Along a Transect in the Intertidal Flats of the Sultanate of Oman. Microb. Ecol. 2018, 75, 331–347. [Google Scholar] [CrossRef]
- Thiour-Mauprivez, C.; Schellenberger, R.; Zenk, F.; Martinet, J.; Blouin, M.; Jacquiod, S. Plant mediates soil water content effects on soil microbiota independently of its water uptake. Rhizosphere 2023, 75, 331–347. [Google Scholar] [CrossRef]
Soil Properties | Male | Female |
---|---|---|
SOM (%) | 4.52 ± 1.23 b | 7.66 ± 1.39 a |
TP (mg/kg) | 14.12 ± 4.35 a | 17.36 ± 7.33 a |
TK (mg/kg) | 223.52 ± 53.25 a | 316.81 ± 202.49 a |
TN (mg/kg) | 76.93 ± 23.84 b | 113.47 ± 19.71 a |
S-AKP (μmol/d/g) | 19.13 ± 4.29 a | 21.25 ± 0.78 a |
S-UE (μg/d/g) | 712.48 ± 127.40 b | 859.23 ± 136.09 a |
S-CAT (μmol/d/g) | 63.20 ± 0.40 a | 63.27 ± 0.27 a |
S-SC (mg/d/g) | 176.22 ± 47.30 a | 203.18 ± 24.39 a |
PH | 8.43 ± 0.16 a | 8.23 ± 0.17 b |
EC (us/cm) | 191.08 ± 42.71 a | 190.73 ± 18.22 a |
SWC (%) | 22.68 ± 4.23 b | 26.90 ± 4.65 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Li, Y.; Wang, W.; Chen, L.; Han, Z.; Ma, S.; Wang, W. Effects of Male and Female Strains of Salix linearistipularis on Physicochemical Properties and Microbial Community Structure in Saline–Alkali Soil. Microorganisms 2023, 11, 2455. https://doi.org/10.3390/microorganisms11102455
Cui H, Li Y, Wang W, Chen L, Han Z, Ma S, Wang W. Effects of Male and Female Strains of Salix linearistipularis on Physicochemical Properties and Microbial Community Structure in Saline–Alkali Soil. Microorganisms. 2023; 11(10):2455. https://doi.org/10.3390/microorganisms11102455
Chicago/Turabian StyleCui, Haojun, Yan Li, Wenyi Wang, Lili Chen, Zhouqing Han, Shurong Ma, and Weidong Wang. 2023. "Effects of Male and Female Strains of Salix linearistipularis on Physicochemical Properties and Microbial Community Structure in Saline–Alkali Soil" Microorganisms 11, no. 10: 2455. https://doi.org/10.3390/microorganisms11102455
APA StyleCui, H., Li, Y., Wang, W., Chen, L., Han, Z., Ma, S., & Wang, W. (2023). Effects of Male and Female Strains of Salix linearistipularis on Physicochemical Properties and Microbial Community Structure in Saline–Alkali Soil. Microorganisms, 11(10), 2455. https://doi.org/10.3390/microorganisms11102455