Biomakers in Chronic Chagas Cardiomyopathy
Abstract
:1. Introduction
2. Methods
3. Statistical Analyses
4. Results
Hemodynamic Parameters Measured by the Echocardiogram
5. Outcome
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Chagas Disease (American Trypanosomiasis); WHO: Geneva, Switzerland, 2017; Available online: http://wwwwhoint/mediacentre/factsheets/fs340/en/ (accessed on 1 April 2022).
- Nunes, M.C.; Beaton, A.; Acquatella, H.; Bern, C.; Bolger, A.F.; Echeverria, L.E.; Dutra, W.O.; Gascon, J.; Morillo, C.A.; Oliveira-Filho, J.; et al. Chagas cardiomyopathy: An update of current clinical knowledge and management: A scientific statement from the American Heart Association. Circulation 2018, 138, e169–e209. [Google Scholar] [CrossRef] [PubMed]
- Benziger, C.P.; do Carmo, G.A.; Ribeiro, A.L. Chagas Cardiomyopathy. Cardiol. Clin. 2017, 35, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.L.; Nunes, M.P.; Teixeira, M.M.; Rocha, M.O. Diagnosis and management of Chagas disease and cardiomyopathy. Nat. Rev. Cardiol. 2012, 9, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Rocha, M.O.; Teixeira, M.M.; Ribeiro, A.L. An update on the management of Chagas cardiomyopathy. Expert Rev. Anti-Infect. Ther. 2007, 5, 727–743. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.L.; dos Reis, A.M.; Barros, M.V.; de Sousa, M.R.; Rocha, A.L.; Perez, A.A.; Pereira, J.B.; Machado, F.S.; Rocha, M.O. Brain natriuretic peptide and left ventricular dysfunction in Chagas’ disease. Lancet 2002, 360, 461–462. [Google Scholar] [CrossRef]
- Talvani, A.; Rocha, M.O.; Cogan, J.; Maewal, P.; Lemos, J.D.; Ribeiro, A.L.; Teixeira, M.M. Brain natriuretic peptide and left ventricular dysfunction in chagasic cardiomyopathy. Mem. Do Inst. Oswaldo Cruz 2004, 99, 645–649. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, B.M.; Botoni, F.A.; Ribeiro, A.L.; Pinto, A.S.; Reis, A.M.; Nunes, M.D.; Rocha, M.O. Correlation between BNP levels and Doppler echocardiographic parameters of left ventricle filling pressure in patients with Chagasic cardiomyopathy. Echocardiography 2009, 26, 521–527. [Google Scholar] [CrossRef]
- D’Aloia, A.; Faggiano, P.; Aurigemma, G.; Bontempi, L.; Ruggeri, G.; Metra, M.; Nodari, S.; Dei Cas, L. Serum levels of carbohydrate antigen 125 in patients with chronic heart failure: Relation to clinical severity, hemodynamic and Doppler echocardiographic abnormalities, and short-term prognosis. J. Am. Coll. Cardiol. 2003, 41, 1805–1811. [Google Scholar] [CrossRef] [Green Version]
- Pontremoli, R. The role of urate-lowering treatment on cardiovascular and renal disease: Evidence from CARES, FAST, ALL-HEART, and FEATHER studies. Curr. Med. Res. Opin. 2017, 33, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, I.S.; Latini, R.; Florea, V.G.; Kuskowski, M.A.; Rector, T.; Masson, S.; Signorini, S.; Mocarelli, P.; Hester, A.; Glazer, R.; et al. C-reactive protein in heart failure: Prognostic value and the effect of valsartan. Circulation 2005, 112, 1428–1434. [Google Scholar] [CrossRef]
- Nägele, H.; Bahlo, M.; Klapdor, R.; Schaeperkoetter, D.; Rödiger, W. CA 125 and its relation to cardiac function. Am. Heart J. 1999, 137, 1044–1049. [Google Scholar] [CrossRef]
- Núñez, J.; Llàcer, P.; Bertomeu-González, V.; Bosch, M.J.; Merlos, P.; García-Blas, S.; Montagud, V.; Bodí, V.; Bertomeu-Martínez, V.; Pedrosa, V.; et al. Carbohydrate Antigen-125–Guided Therapy in Acute Heart Failure: CHANCE-HF: A Randomized Study. JACC Heart Fail. 2016, 4, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.L.; Hung, T.C.; Lai, Y.H.; Lu, C.S.; Wu, Y.J.; Yeh, H.I. Beyond malignancy: The role of carbohydrate antigen 125 in heart failure. Biomark. Res. 2013, 1, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordu, S.; Ozhan, H.; Alemdar, R.; Aydin, M.; Caglar, O.; Yuksel, H.; Kandis, H. Carbohydrate antigen-125 and N-terminal pro-brain natriuretic peptide levels: Compared in heart-failure prognostication. Tex. Heart Inst. J. 2012, 39, 30. [Google Scholar]
- Núñez, J.; Llàcer, P.; García-Blas, S.; Bonanad, C.; Ventura, S.; Núñez, J.M.; Sánchez, R.; Fácila, L.; de la Espriella, R.; Vaquer, J.M.; et al. CA125-guided diuretic treatment versus usual care in patients with acute heart failure and renal dysfunction. Am. J. Med. 2020, 133, 370–380. [Google Scholar] [CrossRef]
- Anker, S.D.; Doehner, W.; Rauchhaus, M.; Sharma, R.; Francis, D.; Knosalla, C.; Davos, C.H.; Cicoira, M.; Shamim, W.; Kemp, M.; et al. Uric acid and survival in chronic heart failure. Circulation 2003, 107, 1991–1997. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, S.; Furumoto, T.; Tsuchihashi-Makaya, M.; Goto, K.; Goto, D.; Yokota, T.; Kinugawa, S.; Yokoshiki, H.; Takeshita, A.; Tsutsui, H. JCARE-CARD Investigators. Hyperuricemia predicts adverse outcomes in patients with heart failure. Int. J. Cardiol. 2011, 151, 143–147. [Google Scholar] [CrossRef]
- Huang, H.; Huang, B.; Li, Y.; Huang, Y.; Li, J.; Yao, H.; Jing, X.; Chen, J.; Wang, J. Uric acid and risk of heart failure: A systematic review and meta-analysis. Eur. J. Heart Fail. 2014, 16, 15–24. [Google Scholar] [CrossRef]
- Huynh, K.; Van Tassell, B.; Chow, S.L. Predicting therapeutic response in patients with heart failure: The story of C-reactive protein. Expert Rev. Cardiovasc. Ther. 2015, 13, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, T.; Bot, I.; Kuiper, J. The IL-12 cytokine family in cardiovascular diseases. Cytokine 2019, 122, 154188. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Papadavid, E.; Makavos, G.; Andreadou, I.; Varoudi, M.; Gravanis, K.; Theodoropoulos, K.; Pavlidis, G.; Triantafyllidi, H.; Moutsatsou, P.; et al. Lowering interleukin-12 activity improves myocardial and vascular function compared with tumor necrosis factor-a antagonism or cyclosporine in psoriasis. Circ. Cardiovasc. Imaging 2017, 10, e006283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, G.R.; Gomes, J.A.; Fares, R.C.; de Souza Damásio, M.P.; Chaves, A.T.; Ferreira, K.S.; Nunes, M.C.; Medeiros, N.I.; Valente, V.A.; Corrêa-Oliveira, R.; et al. Plasma cytokine expression is associated with cardiac morbidity in chagas disease. PLoS ONE 2014, 9, e87082. [Google Scholar] [CrossRef]
- Aleksova, A.; Beltrami, A.P.; Carriere, C.; Barbati, G.; Lesizza, P.; Perrieri-Montanino, M.; Isola, M.; Gentile, P.; Salvioni, E.; Not, T.; et al. Interleukin-1β levels predict long-term mortality and need for heart transplantation in ambulatory patients affected by idiopathic dilated cardiomyopathy. Oncotarget 2017, 8, 25131. [Google Scholar] [CrossRef] [Green Version]
- Sandek, A.; Bauditz, J.; Swidsinski, A.; Buhner, S.; Weber-Eibel, J.; von Haehling, S.; Schroedl, W.; Karhausen, T.; Doehner, W.; Rauchhaus, M.; et al. Altered intestinal function in patients with chronic heart failure. J. Am. Coll. Cardiol. 2007, 50, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
- Sousa, G.R.; Gomes, J.A.; Damasio, M.P.; Nunes, M.C.; Costa, H.S.; Medeiros, N.I.; Fares, R.C.; Chaves, A.T.; Corrêa-Oliveira, R.; Rocha, M.O. The role of interleukin 17-mediated immune response in Chagas disease: High level is correlated with better left ventricular function. PLoS ONE 2017, 12, e0172833. [Google Scholar] [CrossRef]
- Cardoso, C.S.; Sabino, E.C.; Oliveira, C.D.; de Oliveira, L.C.; Ferreira, A.M.; Cunha-Neto, E.; Bierrenbach, A.L.; Ferreira, J.E.; Haikal, D.S.; Reingold, A.L.; et al. Longitudinal study of patients with chronic Chagas cardiomyopathy in Brazil (SaMi-Trop project): A cohort profile. BMJ Open 2016, 6, e011181. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
Patients (n = 50) | |
---|---|
Age (years) | 53.4 (±10.3) |
Sex (n male, %) | 32 (64%) |
Systolic blood pressure | 102.6 (±13.3) |
Heart rate (bpm) | 61.6 (±7.2) |
NYHA III/IV (n, %) | 13 (26%) |
LVEDD (mm) | 65.2 (±7.91) |
LVEF (%) | 37.4 (±9.2) |
LA index vol (mL/m2) | 42.1 (±18.8) |
RV dilation (n, %) | 14 (28%) |
Acei or ARB (n, %) | 41 (82%) |
Beta-blocker (n, %) | 44 (81.6%) |
Diuretics (n, %) | 31 (63.6%) |
Digoxin (n, %) | 12 (24%) |
Amiodarone (n, %) | 22 (44%) |
BNP (pg/mL) | 254 (154–445) |
Ca-125 (U/mL) | 9 (5.5–17.2) |
Uric acid (mg/dL) | 6.2 (±2) |
CPR (mg/dL) | 4.5 (4.5–7.3) |
TNFα | 2.5 (2.2–2.9) |
IL-1β | 3.6 (3.3–4.3) |
IL-6 | 4.1 (3.6–7.7) |
IL-8 | 6.8 (5.7–11.3) |
IL-10 | 2.5 (2.2–2.7) |
IL-12 | 2.7 (2.5–2.9) |
Adverse event (n, %) | 18 (36%) |
Death (n, %) | 6 (12%) |
Event-Free (32 Patients—64%) | Adverse Cardiac Event (18 Patients—36%) | p | |
---|---|---|---|
LVEDD mm | 63 (±8.1) | 69 (±5.7) | 0.007 |
LVESD mm | 50.5 (±9.7) | 57 (±6.8) | 0.016 |
DT ms | 218 (185–283) | 187 (156–228) | 0.064 |
PSAP mmHg | 31.5 (26.2–38.7) | 35 (24.5–39) | 0.4 |
E/e’ | 8.4 (5.8–11.9) | 10 (5.4–13) | 0.7 |
LA index volume mL/m2 | 36.6 (±12.5) | 54.5 (±24.7) | 0.003 |
BNP pg/mL | 201 (93–374) | 392 (237–911) | 0.004 |
Ca-125 U/mL | 8.5 (5.5–14,5) | 11 (5.8–24) | 0.4 |
Uric acid mg/dL | 5.9 (±1.8) | 6.7 (±2.3) | 0.2 |
C-reactive protein mg/dL | 4.5 (4.5–6.9) | 4.5 (4.5–8.8) | 0.5 |
Albumin g/dL | 4.3 (±0.3) | 4.08 (±0.4) | 0.038 |
Sodium meq/L | 141 (139–142) | 139 (138–141) | 0.14 |
Use of amiodarone | 31.2% | 66.7% | 0.017 |
Pulmonary rales | 12.9% | 38.9% | 0.042 |
RV dilation | 15.6% | 50% | 0.019 |
TNFα | 2.57 (2.3–2.9) | 2.5 (2.1–14.6) | 0.8 |
IL-1β | 3.58 (3.3–3.8) | 3.7 (3.5–6.8) | 0.3 |
IL-6 | 4.01 (3.5–5.7) | 6 (3.7–11.3) | 0.1 |
IL-8 | 6.5 (5.7–7.6) | 9.9 (6.1–26.4) | 0.047 |
IL-10 | 2.44 (2.1–2.7) | 2.68 (2.25–4.23) | 0.29 |
IL-12 | 2.73 (2.43–2.92) | 2.9 (2.7–3.6) | 0.019 |
Variables | Survival | Death | Sig |
---|---|---|---|
LVEDD mm | 64 (±8.1) | 69 (±4.6) | 0.14 |
LVESD mm | 52 (±9.4) | 58 (±6.5) | 0.14 |
DT ms | 211 (183–281) | 151 (120–183) | 0.08 |
PSAP mmhg | 32 (26–39) | 36 (32–46) | 0.15 |
E/e’ | 8.7 (5.7–12) | 13 (5.6–21) | 0.69 |
LA index vol mL/m2 | 41 (±18) | 60 (±0.7) | 0.16 |
BNP pg/mL | 221 (119–392) | 790 (452–1063) | 0.01 |
Ca-125 U/mL | 8 (5.5–14.5) | 20 (10.3–74) | 0.056 |
Uric acid mg/dL | 6 (±1.8) | 7.7 (±2.8) | 0.05 |
C-reactive protein mg/L | 4.5 (4.5–7) | 5.7 (4.5–18) | 0.17 |
Albumim g/dL | 4.2 (±0.4) | 4.3 (±0.3) | 0.7 |
Sodium meq/L | 141(138–142) | 140 (138–141) | 0.6 |
RV dilation | 22.7% | 66.7% | 0.044 |
Pulmonary rales | 18.6% | 60% | 0.07 |
TNFα | 2.5 (2.2–2.8) | 10.5 (2.5–31) | 0.1 |
IL-1β | 3.6 (3.3–3.8) | 8.53 (3.61–16) | 0.08 |
IL-10 | 2.2 (2.2–2.7) | 5 (2.1–14) | 0.4 |
IL-6 | 3.6 (3.6–5.7) | 10 (3.4–18) | 0.3 |
IL-8 | 6.7 (5.7–8.7) | 22.6 (6.3–245) | 0.2 |
IL-12 | 2.7 (2.5–2.9) | 4.2 (2.7–11.2) | 0.069 |
Variables | Significance | Estimated Risk | CI |
---|---|---|---|
Clinical | |||
NYHA | 0.074 | 8.039 | 0.817–79.063 |
Hepatomegy/edema | 0.19 | 2.919 | 0.588–14.482 |
Radiological congestion | 0.179 | 4.384 | 0.508–37.814 |
Pulmonary rales | 0.017 | 3.125 | 1.224–7.978 |
Ecocardiographic | |||
LVEDD | 0.115 | 1.107 | 0.976–1.256 |
LA index volume | 0.145 | 1.037 | 0.987–1.090 |
RV dilation | 0.037 | 6.081 | 1.112–33.259 |
Laboratorial | |||
BNP pg/mL | 0.558 | 1 | 0.999–1.002 |
CA-125 U/mL | 0.054 | 1.010 | 1.000–1.067 |
Uric acid mg/dL | 0.061 | 1.388 | 0.985–1.955 |
CPR mg/dL | 0.054 | 1.157 | 0.997–1.343 |
TNFα | 0.010 | 1.089 | 1.021–1.161 |
Il-1β | 0.006 | 1.254 | 1.068–1.472 |
Il-12 | 0.009 | 1.330 | 1.074–1.646 |
Variables | Significance | Estimated Risk | CI |
---|---|---|---|
IL-1β | 0.078 | 1.200 | 0.980–1.471 |
Pulmonary rales | 0.104 | 2.391 | 0.835–6.842 |
RV dilation | 0.849 | 1.252 | 0.123–12.765 |
IL-1β | 0.006 | 1.254 | 1.068–1.472 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, A.B.; da Gama Torres, H.O.; Nunes, M.d.C.P.; de Assis Silva Gomes, J.; Rodrigues, A.B.; Pinho, L.L.N.; Rocha, M.O.; Botoni, F.A. Biomakers in Chronic Chagas Cardiomyopathy. Microorganisms 2022, 10, 1602. https://doi.org/10.3390/microorganisms10081602
Rodrigues AB, da Gama Torres HO, Nunes MdCP, de Assis Silva Gomes J, Rodrigues AB, Pinho LLN, Rocha MO, Botoni FA. Biomakers in Chronic Chagas Cardiomyopathy. Microorganisms. 2022; 10(8):1602. https://doi.org/10.3390/microorganisms10081602
Chicago/Turabian StyleRodrigues, Angela Braga, Henrique Oswaldo da Gama Torres, Maria do Carmo Pereira Nunes, Juliana de Assis Silva Gomes, Aline Braga Rodrigues, Laura Lopes Nogueira Pinho, Manoel Otavio Rocha, and Fernando Antonio Botoni. 2022. "Biomakers in Chronic Chagas Cardiomyopathy" Microorganisms 10, no. 8: 1602. https://doi.org/10.3390/microorganisms10081602
APA StyleRodrigues, A. B., da Gama Torres, H. O., Nunes, M. d. C. P., de Assis Silva Gomes, J., Rodrigues, A. B., Pinho, L. L. N., Rocha, M. O., & Botoni, F. A. (2022). Biomakers in Chronic Chagas Cardiomyopathy. Microorganisms, 10(8), 1602. https://doi.org/10.3390/microorganisms10081602