The Microbial Community of the Respiratory Tract of Commercial Chickens and Turkeys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction
2.3. 16S rDNA Sequencing
2.4. Analysis of Microbial Composition
2.5. Statistical Analysis
3. Results
3.1. DNA Extraction and Sequencing
3.2. Microbial Composition of the Chicken URT
3.3. Microbial Composition of the Turkey URT
3.4. Comparison of the Compositions of the Microbial Communities of Chicken and Turkey URTs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sid, H.; Benachour, K.; Rautenschlein, S. Co-infection with Multiple Respiratory Pathogens Contributes to Increased Mortality Rates in Algerian Poultry Flocks. Avian Dis. 2015, 59, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W.A. An updated comprehensive review on ornithobacteriosis: A worldwide emerging avian respiratory disease. Open Vet. J. 2021, 11, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Glisson, J.R. Bacterial respiratory disease of poultry. Poult. Sci. 1998, 77, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken Gut Microbiota: Importance and Detection Technology. Front. Vet. Sci. 2018, 5, 254. [Google Scholar] [CrossRef] [PubMed]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 2018, 49, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.Y.; Lee, T.K.; Sul, W.J. Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens-A Review. Asian-Australas. J. Anim. Sci. 2015, 28, 1217–1225. [Google Scholar] [CrossRef] [Green Version]
- Glendinning, L.; McLachlan, G.; Vervelde, L. Age-related differences in the respiratory microbiota of chickens. PLoS ONE 2017, 12, e0188455. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, M.Z.; Malys, T.; Ivanov, Y.V.; Park, J.; Bakr Shabbir, M.A.; Rabbani, M.; Yaqub, T.; Harvill, E.T. Microbial communities present in the lower respiratory tract of clinically healthy birds in Pakistan. Poult. Sci. 2014, 94, 612–620. [Google Scholar] [CrossRef]
- Patel, J.G.; Patel, B.J.; Patel, S.S.; Raval, S.H.; Parmar, R.S.; Joshi, D.V.; Chauhan, H.C.; Chandel, B.S.; Patel, B.K. Metagenomic of clinically diseased and healthy broiler affected with respiratory disease complex. Data Br. 2018, 19, 82–85. [Google Scholar] [CrossRef]
- Haesendonck, R.; Verlinden, M.; Devos, G.; Michiels, T.; Butaye, P.; Haesebrouck, F.; Pasmans, F.; Martel, A. High Seroprevalence of Respiratory Pathogens in Hobby Poultry. Avian Dis. 2014, 58, 623–627. [Google Scholar] [CrossRef]
- Barbosa, E.V.; Cardoso, C.V.; de Cássia Figueira Silva, R.; de Mello Figueiredo Cerqueira, A.; Liberal, M.H.T.; Castro, H.C. Ornithobacterium rhinotracheale: An Update Review about an Emerging Poultry Pathogen. Vet. Sci. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marois, C.; Oufour-Gesbert, F.; Kempf, I. Detection of Mycoplasma synoviae in poultry environment samples by culture and polymerase chain reaction. Vet. Microbiol. 2000, 73, 311–318. [Google Scholar] [CrossRef]
- Kleven, S.H. Mycoplasmas in the etiology of multifactorial respiratory disease. Poult. Sci. 1998, 77, 1146–1149. [Google Scholar] [CrossRef]
- Umali, D.V.; Shirota, K.; Sasai, K.; Katoh, H. Immunology, Health, and Disease: Characterization of Ornithobacterium rhinotracheale from commercial layer chickens in eastern Japan. Poult. Sci. 2018, 97, 24–29. [Google Scholar] [CrossRef]
- Sajnani, M.R.; Sudarsanam, D.; Pandit, R.J.; Oza, T.; Hinsu, A.T.; Jakhesara, S.J.; Solosanc, S.; Joshi, C.G.; Bhatt, V.D. Metagenomic data of DNA viruses of poultry affected with respiratory tract infection. Data Br. 2018, 16, 157–160. [Google Scholar] [CrossRef]
- Johnson, T.J.; Youmans, B.P.; Noll, S.; Cardona, C.; Evans, N.P.; Peter Karnezos, T.; Ngunjiri, J.M.; Abundo, M.C.; Lee, C.-W. A Consistent and Predictable Commercial Broiler Chicken Bacterial Microbiota in Antibiotic-Free Production Displays Strong Correlations with Performance. Appl. Environ. Microbiol. 2018, 84, e00362-18. [Google Scholar] [CrossRef] [Green Version]
- Ngunjiri, J.M.; Taylor, K.J.M.; Abundo, M.C.; Jang, H.; Elaish, M.; Mahesh, K.C.; Ghorbani, A.; Wijeratne, S.; Weber, B.P.; Johnson, T.J.; et al. Farm Stage, Bird Age, and Body Site Dominantly Affect the Quantity, Taxonomic Composition, and Dynamics of Respiratory and Gut Microbiota of Commercial Layer Chickens. Appl. Environ. Microbiol. 2019, 85, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Landman, W.J.M.; Corbanie, E.A.; Feberwee, A.; Van Eck, J.H.H. Aerosolization of Mycoplasma synoviae compared with Mycoplasma gallisepticum and Enterococcus faecalis. Avian Pathol. 2004, 33, 210–215. [Google Scholar] [CrossRef]
- Sivaseelan, S.; Balachandran, P.; Balasubramaniam, G.A.; Madheswaran, R. Synergistic pathological effect of Mycoplasma gallisepticum with Ornithobacterium rhinotracheale infection in layer chicken. Indian J. Anim. Sci. 2015, 85, 32–36. [Google Scholar]
- Baum, S.G. Mycoplasma Infections. In Goldman-Cecil Medicine, 24th ed.; Goldman, L., Schafer, A.I., Eds.; Saunders: Philadelphia, PA, USA, 2011; Volume 2, pp. 1912–1916. ISBN 978-1-4377-1604-7. [Google Scholar]
- Lorenc, Z.; Paśko, S.; Kursa, O.; Pakuła, A.; Sałbut, L. Spectral technique for detection of changes in eggshells caused by Mycoplasma synoviae. Poult. Sci. 2019, 98, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- van Veen, L. Ornithobacterium rhinotracheale infecties bij pluimvee: Een overzicht [Ornithobacterium rhinotracheale infections in poultry: A review]. Tijdschrift Diergeneeskd. 2000, 125, 113–116. [Google Scholar]
- Bradbury, J.M. Avian mycoplasma infections: Prototype of mixed infections with mycoplasmas, bacteria and viruses. Annales Institut Pasteur Microbiol. 1984, 135, 83–89. [Google Scholar] [CrossRef]
- Ferguson-Noel, N.; Noormohammadi, A.H. Mycoplasma Synoviae Infection. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley: Ames, IA, USA, 2013; Volume 2, pp. 900–906. [Google Scholar] [CrossRef]
- Thachil, A.J.; Velayudhan, B.T.; Shaw, D.P.; Halvorson, D.A.; Nagaraja, K.V. Pathogenesis of Ornithobacterium rhinotracheale in egg-laying hens with coexisting infectious bronchitis virus and Escherichia coli infections. J. Appl. Poult. Res. 2009, 18, 780–788. [Google Scholar] [CrossRef]
- Wang, C.; Pors, S.E.; Olsen, R.H.; Bojesen, A.M. Transmission and pathogenicity of Gallibacterium anatis and Escherichia coli in embryonated eggs. Vet. Microbiol. 2018, 217, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Morales-Erasto, V.; Falconi-Agapito, F.; Luna-Galaz, G.A.; Saravia, L.E.; Montalvan-Avalos, A.; Soriano-Vargas, E.; Fernández-Díaz, M. Coinfection of Avibacterium paragallinarum and Ornithobacterium rhinotracheale in Chickens from Peru. Avian Dis. 2016, 60, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, 1–11. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez-Peña, A.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2011, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2019. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 4 April 2022).
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2 Elegant Graphics for Data Analysis (Use R!), 2nd ed.; Springer: New York, NY, USA, 2016; ISBN 978-0-387-98141-3. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. Gplots: Various R Programming Tools for Plotting Data. R Package Version 3.0.1.1. 2019. Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 4 April 2022).
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; CRC Press: Boca Raton, FL, USA, 2020; Available online: https//plotly-r.com (accessed on 4 April 2022).
- Galili, T.; O’Callaghan, A.; Sidi, J.; Sievert, C. Heatmaply: An R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 2018, 34, 1600–1602. [Google Scholar] [CrossRef] [PubMed]
- Heberle, H.; Vaz Meirelles, G.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Mikulski, D.; Ognik, K.; Juśkiewicz, J.; Zduńczyk, Z.; Jankowski, J. Increased Dietary Inclusion Levels of Lysine Are More Effective than Arginine in Supporting the Functional Status of the Gut in Growing Turkeys. Animals 2021, 11, 2351. [Google Scholar] [CrossRef]
- Rath, S.; Rud, T.; Karch, A.; Pieper, D.H.; Vital, M. Pathogenic Functions of Host Microbiota. Microbiome 2018, 6, 174. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Zeineldin, M.; Lowe, J.; Aldridge, B. Contribution of the Mucosal Microbiota to Bovine Respiratory Health. Trends Microbiol. 2019, 27, 753–770. [Google Scholar] [CrossRef]
- Wang, W.; Hu, H.; Zijlstra, R.T.; Zheng, J.; Gänzle, M.G. Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome 2019, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kursa, O.; Tomczyk, G.; Sawicka-Durkalec, A.; Giza, A.; Słomiany-Szwarc, M. Bacterial communities of the upper respiratory tract of turkeys. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.J.M.; Ngunjiri, J.M.; Abundo, M.C.; Jang, H.; Elaish, M.; Ghorbani, A.; Mahesh, K.C.; Weber, B.P.; Johnson, T.J.; Lee, C.-W. Respiratory and Gut Microbiota in Commercial Turkey Flocks with Disparate Weight Gain Trajectories Display Differential Compositional Dynamics. Appl. Environ. Microbiol. 2020, 86, e00431-20. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Vancanneyt, M.; Segers, P.; Ryll, M.; Köhler, B.; Ludwig, W.; Hinz, K.H. Coenonia anatina gen. nov., sp. nov., a novel bacterium associated with respiratory disease in ducks and geese. Int. J. Sys. Bacteriol. 1999, 49, 867–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Ishfaq, M.; Fan, Q.; Chen, C.; Li, J. A respiratory commensal bacterium acts as a risk factor for Mycoplasma gallisepticum infection in chickens. Vet. Immunol. Immunopathol. 2020, 230, 110127. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakayama, T.; Asakura, H. Draft Genome Sequence of Stenotrophomonas maltophilia CRB139-1, Isolated from Poultry Meat in Japan. Am. Soc. Microbiol. 2020, 9, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Burkholder, K.M.; Thompson, K.L.; Einstein, M.E.; Applegate, T.J.; Patterson, J.A. Influence of Stressors on Normal Intestinal Microbiota, Intestinal Morphology, and Susceptibility to Salmonella Enteritidis Colonization in Broilers. Poult. Sci. 2008, 87, 1734–1741. [Google Scholar] [CrossRef]
- Best, A.A.; Porter, A.L.; Fraley, S.M.; Fraley, G.S. Characterization of Gut Microbiome Dynamics in Developing Pekin Ducks and Impact of Management System. Front. Microbiol. 2017, 7, 2125. [Google Scholar] [CrossRef] [Green Version]
- Raviv, Z.; Ferguson-Noel, N.; Laibinis, V.; Wooten, R.; Kleven, S.H. Role of Mycoplasma synoviae in Commercial Layer Escherichia coli Peritonitis Syndrome. Avian Dis. 2007, 51, 685–690. [Google Scholar] [CrossRef]
- Kursa, O.; Tomczyk, G.; Sawicka, A. Prevalence and phylogenetic analysis of Mycoplasma synoviae strains isolated from Polish chicken layer flocks. J. Vet. Res. 2019, 63, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Kursa, O.; Tomczyk, G.; Sawicka-Durkalec, A. Occurrence of Ornithobacterium rhinotracheale in Polish turkey flocks. J. Vet. Res. 2022, 66, 77–84. [Google Scholar] [CrossRef]
- Díaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chickens | Turkeys | ||||||
---|---|---|---|---|---|---|---|
ID of Sample | Age (Weeks) | Year of Sampling | Location | ID of Sample | Age (Weeks) | Year of Sampling | Location |
Ch-1 | 45 | 2020 | Warmińsko-Mazurskie | T-1 | 11 | 2020 | Wielkopolskie |
Ch-2 | 45 | 2020 | Warmińsko-Mazurskie | T-2 | 11 | 2020 | Wielkopolskie |
Ch-3 | 45 | 2020 | Warmińsko-Mazurskie | T-3 | 48 | 2020 | Warmińsko-Mazurskie |
Ch-4 | 29 | 2020 | Warmińsko-Mazurskie | T-4 | 48 | 2020 | Warmińsko-Mazurskie |
Ch-5 | 29 | 2020 | Warmińsko-Mazurskie | T-5 | 21 | 2019 | Warmińsko-Mazurskie |
Ch-6 | 29 | 2020 | Warmińsko-Mazurskie | T-6 | 21 | 2019 | Warmińsko-Mazurskie |
Ch-7 | 22 | 2019 | Warmińsko-Mazurskie | T-7 | 37 | 2019 | Lubelskie |
Ch-8 | 18 | 2019 | Wielkopolskie | T-8 | 3 | 2019 | Wielkopolskie |
Ch-9 | 26 | 2020 | Warmińsko-Mazurskie | T-9 | 6 | 2019 | Wielkopolskie |
Ch-10 | 26 | 2020 | Warmińsko-Mazurskie | T-10 | 3 | 2019 | Śląskie |
Ch-11 | 26 | 2020 | Warmińsko-Mazurskie | T-11 | 50 | 2020 | Warmińsko-Mazurskie |
Ch-12 | 27 | 2020 | Warmińsko-Mazurskie | T-12 | 21 | 2019 | Lubelskie |
Ch-13 | 27 | 2020 | Warmińsko-Mazurskie | T-13 | 36 | 2019 | Kujawsko-Pomorskie |
Ch-14 | 27 | 2020 | Warmińsko-Mazurskie | T-14 | 2 | 2020 | Podlaskie |
Ch-15 | 42 | 2020 | Warmińsko-Mazurskie | T-15 | 49 | 2020 | Warmińsko-Mazurskie |
Ch-16 | 42 | 2020 | Warmińsko-Mazurskie | T-16 | 49 | 2020 | Warmińsko-Mazurskie |
Ch-17 | 42 | 2020 | Warmińsko-Mazurskie | T-17 | 49 | 2020 | Warmińsko-Mazurskie |
Ch-18 | 34 | 2020 | Warmińsko-Mazurskie | T-18 | 30 | 2019 | Warmińsko-Mazurskie |
Ch-19 | 34 | 2020 | Warmińsko-Mazurskie | T-19 | 36 | 2019 | Warmińsko-Mazurskie |
Ch-20 | 34 | 2020 | Warmińsko-Mazurskie | T-20 | 21.5 | 2019 | Śląskie |
Ch-21 | 21 | 2020 | Warmińsko-Mazurskie | T-21 | 8 | 2019 | Kujawsko-Pomorskie |
Ch-22 | 21 | 2020 | Warmińsko-Mazurskie | T-22 | 20 | 2019 | Warmińsko-Mazurskie |
Ch-23 | 21 | 2020 | Warmińsko-Mazurskie | T-23 | 13 | 2019 | Warmińsko-Mazurskie |
Ch-24 | 27 | 2019 | Podkarpackie | T-24 | 13 | 2019 | Warmińsko-Mazurskie |
Ch-25 | 22 | 2019 | Wielkopolskie | T-25 | 13 | 2019 | Warmińsko-Mazurskie |
Ch-26 | 22 | 2019 | Wielkopolskie | T-26 | 30 | 2020 | Warmińsko-Mazurskie |
Ch-27 | 25 | 2020 | Lubelskie | ||||
Ch-28 | 25 | 2020 | Lubelskie |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kursa, O.; Tomczyk, G.; Adamska, K.; Chrzanowska, J.; Sawicka-Durkalec, A. The Microbial Community of the Respiratory Tract of Commercial Chickens and Turkeys. Microorganisms 2022, 10, 987. https://doi.org/10.3390/microorganisms10050987
Kursa O, Tomczyk G, Adamska K, Chrzanowska J, Sawicka-Durkalec A. The Microbial Community of the Respiratory Tract of Commercial Chickens and Turkeys. Microorganisms. 2022; 10(5):987. https://doi.org/10.3390/microorganisms10050987
Chicago/Turabian StyleKursa, Olimpia, Grzegorz Tomczyk, Karolina Adamska, Justyna Chrzanowska, and Anna Sawicka-Durkalec. 2022. "The Microbial Community of the Respiratory Tract of Commercial Chickens and Turkeys" Microorganisms 10, no. 5: 987. https://doi.org/10.3390/microorganisms10050987
APA StyleKursa, O., Tomczyk, G., Adamska, K., Chrzanowska, J., & Sawicka-Durkalec, A. (2022). The Microbial Community of the Respiratory Tract of Commercial Chickens and Turkeys. Microorganisms, 10(5), 987. https://doi.org/10.3390/microorganisms10050987