Fault Tolerant Control of Vehicle Lateral Dynamic Using a New Pneumatic Forces Multiple Model
Abstract
:1. Introduction
- The design of a less conservative FTC with noise rejection, which deals with sensor faults and eight multiple models
2. Multiple Model of Pneumatic Lateral Forces
2.1. Modelling of the Vehicle Lateral Dynamic
2.2. Multiple Model of Tire Lateral Forces
3. Vehicle T–S Fuzzy Model Formulation
4. FTC of Vehicle T–S Fuzzy Model
4.1. Vehicle Closed Loop Fuzzy Model
4.2. Design of the Robust Fuzzy Controllers
4.3. Description of the FTC Strategy
5. Simulation Examples
5.1. First Scenario
5.2. Second Scenario
5.3. Comparison
6. Conclusions
- The FTC designed in this work copes successfully with the nonlinear feature of the vehicle model.
- After the detection of a sensor fault, the stability of the system is guaranteed, even though the switching between controllers.
- performance ensures high immunity against noises and external disturbances.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Matrices and Vectors | Dimension | Matrices and Vectors | Dimension |
---|---|---|---|
(2,2) | (2,1) | ||
(2,1) | (2,2) | ||
(2,1) | |||
(2,2) | |||
(1,2) | (1,2) | ||
(2,1) | (1,2) | ||
(4,4) | (4,1) | ||
(2,2) | (2,2) | ||
(2,2) | (2,4) | ||
(2,1) | (1,2) | ||
(12,12) | (2,2) | ||
(2,2) | (4,4) | ||
(2,2) | (5,1) | ||
(5,5) | (7,7) | ||
(7,7) | (2,2) | ||
(2,2) | (2,1) | ||
(2,1) | (2,1) | ||
(2,1) | (4,1) | ||
(5,5) | (2,2) | ||
(2,2) | (2,2) |
References
- Gananchchelvi, P.; Jiao, Y.; Pukish, M.S. Current trends in in-vehicle electrical engineering applications. In Proceedings of the IECON 2012 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 6268–6273. [Google Scholar] [CrossRef]
- Guo, S. The application of CAN-bus technology in the vehicle. In Proceedings of the 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 19–22 August 2011; pp. 755–758. [Google Scholar] [CrossRef]
- Oudghiri-Bentaie, M.; Chadli, M. Control and Sensor Fault-Tolerance of Vehicle Lateral Dynamics. FAC Proc. Vol. 2008, 41, 123–128. [Google Scholar]
- El Youssfi, N.; Oudghiri, M.; Bachtiri, E.R. Control design and sensors fault tolerant for vehicle dynamics (a selected paper from SSD’17). Int. J. Digit. Signals Smart Syst. 2018, 1, 50–67. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, Y.; Jiang, F.; Chen, R.; Wang, Y. Active Fault-Tolerant Control Based on Multiple Input Multiple Output-Model Free Adaptive Control for Four Wheel Independently Driven Electric Vehicle Drive System. Appl. Sci. 2019, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cong, J.; Gu, L.; Dong, M. Fault-tolerant control for vehicle with vertical and lateral dynamics. Proc. Inst. Mech. Eng. Part D 2019, 233, 3165–3184. [Google Scholar] [CrossRef]
- Du, H.; Zhang, N.; Dong, G. Stabilizing Vehicle Lateral Dynamics With Considerations of Parameter Uncertainties and Control Saturation Through Robust Yaw Control. IEEE Trans. Veh. Technol. 2010, 59, 2593–2597. [Google Scholar] [CrossRef]
- Abzi, I.; Kabbaj, M.; Benbrahim, M. Design of Fractional Order Sliding Mode Controller for Lateral Dynamics of Electric Vehicles. In Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems, ICEERE 2020, Saidia, Morocco, 13–15 April 2020; Springer: Singapore; Volume 681, pp. 573–581. [Google Scholar]
- Alaridh, I.; Aitouche, A.; Zemouche, A. Chapter 10—Actuator and Sensor Fault Detection Based on LPV Unknown Input Observer Applied to Lateral Vehicle Dynamics. In New Trends in Observer-Based Control; Boubaker, O., Zhu, Q., Mahmoud, M.S., Ragot, J., Karimi, H.R., Dávilla, J., Eds.; Emerging Methodologies and Applications in Modelling; Academic Press: Cambridge, MA, USA, 2019; pp. 267–287. [Google Scholar] [CrossRef]
- Huang, C.; Naghdy, F.; Du, H. FDI Based Fault-Tolerant Control for Steer-by-Wire Systems. In Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 21–24 August 2018; pp. 199–204. [Google Scholar]
- Wang, D.; Li, Y. Fault tolerant control with actuation reconfiguration. In Proceedings of the Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), Hangzhou, China, 15–19 June 2004; Volume 2, pp. 1506–1509. [Google Scholar]
- Parra, A.; Cagigas, D.; Zubizarreta, A.; Rodríguez, A.J.; Prieto, P. Modelling and Validation of Full Vehicle Model based on a Novel Multibody Formulation. In Proceedings of the IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 675–680. [Google Scholar]
- Aouaouda, S.; Chadli, M.; Bouhali, O. Observer-based fault tolerant tracking control for vehicule lateral dynamics. In Proceedings of the 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013; pp. 51–56. [Google Scholar] [CrossRef]
- Coskun, S.; gari, R. Improved Vehicle Lateral Dynamics with Takagi–Sugeno H∞, Fuzzy Control Strategy for Emergency Maneuvering. In Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 21–24 August 2018; pp. 859–864. [Google Scholar] [CrossRef]
- Bakker, E.; Pacejka, H.B.; Lidner, L. A New Tire Model with an Application in Vehicle Dynamics Studies; SAE Technical Paper; SAE International: Monte Carlo, Monaco, 1989. [Google Scholar] [CrossRef]
- Jin, X.; Yu, Z.; Yin, G.; Wang, J. Improving Vehicle Handling Stability Based on Combined AFS and DYC System via Robust Takagi–Sugeno Fuzzy Control. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2696–2707. [Google Scholar] [CrossRef]
- Bhoraskar, A.; Sakthivel, P. A review and a comparison of Dugoff and modified Dugoff formula with Magic formula. In Proceedings of the 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, 27–28 January 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Hernández-Alcantara, D.; Amezquita-Brooks, L.; Morales-Menéndez, R.; Olivier Sename, R. The cross-coupling of lateral-longitudinal vehicle dynamics: Towards decentralized Fault-Tolerant Control Schemes. Mechatronics 2018, 50, 377–393. [Google Scholar] [CrossRef]
- Petrov, P.; Nashashibi, F. Modeling and Nonlinear Adaptive Control for Autonomous Vehicle Overtaking. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1643–1656. [Google Scholar] [CrossRef] [Green Version]
- Aouaouda, S.; Chadli, M.; Righi, I. Active FTC Approach Design for T–S Fuzzy Systems Under Actuator Saturation. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 483–488. [Google Scholar]
- You, F.; Li, M. Fault tolerant control for T–S fuzzy systems with interval time-varying delay. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 223–228. [Google Scholar]
- Lan, J.; Patton, R.J. Integrated Design of Fault-Tolerant Control for Nonlinear Systems Based on Fault Estimation and T–S Fuzzy Modeling. IEEE Trans. Fuzzy Syst. 2017, 25, 1141–1154. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
- Dhouha, K.; Hamdi, G.; El hajjaji, A.; Chaabane, M. Adaptive Observer and Fault Tolerant Control for Takagi–Sugeno Descriptor Nonlinear Systems with Sensor and Actuator Faults. Int. J. Control. Autom. Syst. 2018, 16, 972–982. [Google Scholar] [CrossRef]
- Aouaouda, S.; Chadli, M.; Boukhnifer, M.; Karimi, H.R. Robust fault tolerant tracking controller design for vehicle dynamics: A descriptor approach. Mechatronics 2015, 30, 316–326. [Google Scholar] [CrossRef]
- Dahmani, H.; Pagès, O.; El Hajjaji, A.; Daraoui, N. Observer-Based Robust Control of Vehicle Dynamics for Rollover Mitigation in Critical Situations. IEEE Trans. Intell. Transp. Syst. 2014, 15, 274–284. [Google Scholar] [CrossRef]
- Oudghiri, M. Commande Multi Modèles Tolérante aux Défauts: Application au Contrôle de la Dynamique d’un Véhicule Automobile. Ph.D. Thesis, Université de Picardie Jules Verne, Amiens, France, 2008. [Google Scholar]
- Kharrat, D.; Gassara, H.; El-hajjaji, A.; Chaabane, M. Delay-Partitioning Approach to State and Sensor/Actuator Fault Estimation for T–S Fuzzy Systems with Time-Delay. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Polack, P.; Altché, F.; d’Andréa-Novel, B.; de La Fortelle, A. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles? In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 812–818. [Google Scholar]
- Zhang, H.; Wang, J. Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach. IEEE Trans. Veh. Technol. 2016, 65, 489–494. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, L.; Wang, Z.; Zuo, L.; Song, J. All-Wheel Braking Force Allocation During a Braking-in-Turn Maneuver for Vehicles With the Brake-by-Wire System Considering Braking Efficiency and Stability. IEEE Trans. Veh. Technol. 2016, 65, 4752–4767. [Google Scholar] [CrossRef]
- Guo, H.; Liu, F.; Xu, F.; Chen, H.; Cao, D.; Ji, Y. Nonlinear Model Predictive Lateral Stability Control of Active Chassis for Intelligent Vehicles and Its FPGA Implementation. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2–13. [Google Scholar] [CrossRef]
- Guerra, T.; Kruszewski, A.; Vermeiren, L.; Tirmant, H. Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form. Fuzzy Sets Syst. 2006, 157, 1248–1259. [Google Scholar] [CrossRef]
- Kharrat, D.; Gassara, H.; Chaabane, M.; El-Hajjaji, A. Fault tolerant control based on adaptive observer for Takagi–Sugeno fuzzy descriptor systems. In Proceedings of the 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2015; pp. 273–278. [Google Scholar] [CrossRef]
- Boyd, S.; Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Oudghiri, M.; Chadli, M.; Hajjaji, A. Robust Observer-based Fault-tolerant Control for Vehicle Lateral Dynamics. Int. J. Veh. Des. 2008, 48, 173–189. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Robust output-feedback yaw control for in-wheel motor driven electric vehicles with differential steering. Neurocomputing 2016, 173, 676–684. [Google Scholar] [CrossRef]
- Ding, S.X.; Schneider, S.; Ding, E.L.; Rehm, A. Fault tolerant monitoring of vehicle lateral dynamics stabilization systems. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; pp. 2000–2005. [Google Scholar] [CrossRef]
Coefficients | Values |
---|---|
60,088 | |
3425 | |
60,412.7 | |
4814 | |
a | −0.767 |
b | −5.106 |
c | 0.9694 |
Parameters | Values |
---|---|
m | 1740 Kg |
3214 Kg m | |
1.04 m | |
1.76 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abzi, I.; Kabbaj, M.N.; Benbrahim, M. Fault Tolerant Control of Vehicle Lateral Dynamic Using a New Pneumatic Forces Multiple Model. Actuators 2020, 9, 120. https://doi.org/10.3390/act9040120
Abzi I, Kabbaj MN, Benbrahim M. Fault Tolerant Control of Vehicle Lateral Dynamic Using a New Pneumatic Forces Multiple Model. Actuators. 2020; 9(4):120. https://doi.org/10.3390/act9040120
Chicago/Turabian StyleAbzi, Imane, Mohammed Nabil Kabbaj, and Mohammed Benbrahim. 2020. "Fault Tolerant Control of Vehicle Lateral Dynamic Using a New Pneumatic Forces Multiple Model" Actuators 9, no. 4: 120. https://doi.org/10.3390/act9040120
APA StyleAbzi, I., Kabbaj, M. N., & Benbrahim, M. (2020). Fault Tolerant Control of Vehicle Lateral Dynamic Using a New Pneumatic Forces Multiple Model. Actuators, 9(4), 120. https://doi.org/10.3390/act9040120