Next Article in Journal
Novel Design and Modeling of a Soft Pneumatic Actuator Based on Antagonism Mechanism
Next Article in Special Issue
Extended-State-Observer-Based Super Twisting Control for Pneumatic Muscle Actuators
Previous Article in Journal
Real-Time Implementation of a New MPPT Control Method for a DC-DC Boost Converter Used in a PEM Fuel Cell Power System
Previous Article in Special Issue
Admittance-Controlled Teleoperation of a Pneumatic Actuator: Implementation and Stability Analysis
Article

Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation

Department of Mechatronic Engineering, National Taiwan Normal University, 162, Section 1, He-ping East Road, Taipei 106, Taiwan
*
Authors to whom correspondence should be addressed.
Actuators 2020, 9(4), 106; https://doi.org/10.3390/act9040106
Received: 14 September 2020 / Revised: 15 October 2020 / Accepted: 16 October 2020 / Published: 20 October 2020
(This article belongs to the Special Issue Pneumatic, Hybrid Pneumatic–Electric, and Vacuum-Powered Actuators)
Implementation of a prototype of a 4-degree of freedom (4-DOF) upper-limb exoskeleton robot for rehabilitation was described in this paper. The proposed exoskeleton robot has three DOFs at the shoulder joint and one DOF at the elbow joint. The upper-limb exoskeleton robot is driven by pneumatic muscle actuators (PMA) via steel cables. To implement the passive rehabilitation control, the rehabilitation trajectories expressed in the Fourier series were first planned by the curve fitting. The fuzzy sliding mode controller (FSMC) was then applied to the upper-limb exoskeleton robot for rehabilitation control. Several rehabilitation scenarios were carried out to validate the designed PMA-actuated exoskeleton robot. View Full-Text
Keywords: pneumatic muscle actuator; exoskeleton robot; rehabilitation; fuzzy sliding mode control pneumatic muscle actuator; exoskeleton robot; rehabilitation; fuzzy sliding mode control
Show Figures

Figure 1

MDPI and ACS Style

Chen, C.-T.; Lien, W.-Y.; Chen, C.-T.; Wu, Y.-C. Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation. Actuators 2020, 9, 106. https://doi.org/10.3390/act9040106

AMA Style

Chen C-T, Lien W-Y, Chen C-T, Wu Y-C. Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation. Actuators. 2020; 9(4):106. https://doi.org/10.3390/act9040106

Chicago/Turabian Style

Chen, Chun-Ta, Wei-Yuan Lien, Chun-Ting Chen, and Yu-Cheng Wu. 2020. "Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation" Actuators 9, no. 4: 106. https://doi.org/10.3390/act9040106

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop