# Feedforward Plus Feedback Control of an Electro-Hydraulic Valve System Using a Proportional Control Valve

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Feedforward Control for Nonlinearity Compensation

#### 2.1. Inverse Generalized P–I Model

#### 2.2. Parameter Identification and Experimental Validation

## 3. Identification of EHVS Linear Dynamics Model

## 4. EHVS Feedback Controller

## 5. Feedforward Plus Feedback Controller and Experimental Validation

#### 5.1. Tracking Performance Test

**Remark**

**1.**

#### 5.2. Robustness Test

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lee, I.-Y.; Oh, D.-H.; Ji, S.-W.; Yun, S.-N. Control of an overlap-type proportional directional control valve using input shaping filter. Mechatronics
**2015**, 29, 87–95. [Google Scholar] [CrossRef] - Milić, V.; Šitum, Ž.; Essert, M. Robust H
_{∞}position control synthesis of an electro-hydraulic servo system. ISA Trans.**2010**, 49, 535–542. [Google Scholar] [CrossRef] [PubMed] - Guo, K.; Wei, J.; Fang, J.; Feng, R.; Wang, X. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer. Mechatronics
**2015**, 27, 47–56. [Google Scholar] [CrossRef] - Gu, G.-Y.; Zhu, L.-M.; Su, C.-Y.; Ding, H.; Fatikow, S. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Trans. Autom. Sci. Eng.
**2016**, 13, 313–332. [Google Scholar] [CrossRef] - Yang, Z.; He, Z.; Li, D.; Yu, J.; Cui, X.; Zhao, Z. Direct drive servo valve based on magnetostrictive actuator: Multi-coupled modeling and its compound control strategy. Sen. Actuators Phys.
**2015**, 235, 119–130. [Google Scholar] [CrossRef] - Taghizadeh, M.; Yarmohammadi, M.J. Development of a self-tuning PID controller on hydraulically actuated stewart platform stabilizer with base excitation. Int. J. Control. Autom. Syst.
**2018**, 16, 2990–2999. [Google Scholar] [CrossRef] - Won, D.; Kim, W. Disturbance observer based backstepping for position control of electro-hydraulic systems. Int. J. Control. Autom. Syst.
**2015**, 13, 488–493. [Google Scholar] [CrossRef] - Zhao, J.; Wang, J.; Wang, S. Fractional order control to the electro-hydraulic system in insulator fatigue test device. Mechatronics
**2013**, 23, 828–839. [Google Scholar] [CrossRef] - Al Janaideh, M.; Rakheja, S.; Su, C.-Y. An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron.
**2011**, 16, 734–744. [Google Scholar] [CrossRef] - Ko, Y.-R.; Hwang, Y.; Chae, M.; Kim, T.-H. Direct identification of generalized Prandtl–Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans.
**2017**, 70, 209–218. [Google Scholar] [CrossRef] [PubMed] - Liu, Y.; Shan, J.; Gabbert, U. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications. Smart Mater. Struct.
**2014**, 24, 015012. [Google Scholar] [CrossRef] - El-Shaer, A.H.; Janaideh, M.A.; Krejci, P.; Tomizuka, M. Robust performance enhancement using disturbance observers for hysteresis compensation based on generalized Prandtl–Ishlinskii model. J. Dyn. Syst. Meas. Control.
**2013**, 135. [Google Scholar] [CrossRef] - Sayyaadi, H.; Zakerzadeh, M.R. Position control of shape memory alloy actuator based on the generalized Prandtl–Ishlinskii inverse model. Mechatronics
**2012**, 22, 945–957. [Google Scholar] [CrossRef] - Kim, T.-H.; Maruta, I.; Sugie, T. Robust PID controller tuning based on the constrained particle swarm optimization. Automatica
**2008**, 44, 1104–1110. [Google Scholar] [CrossRef] - Esbrook, A.; Tan, X.; Khalil, H.K. Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans. Control. Syst. Technol.
**2013**, 21, 725–738. [Google Scholar] [CrossRef] - Maruta, I.; Kim, T.-H.; Song, D.; Sugie, T. Synthesis of fixed-structure robust controllers using a constrained particle swarm optimizer with cyclic neighborhood topology. Expert Syst. Appl.
**2013**, 40, 3595–3605. [Google Scholar] [CrossRef] - Devasia, S. Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE Trans. Autom. Control.
**2002**, 47, 1865–1871. [Google Scholar] [CrossRef][Green Version] - Fan, Y.; Tan, U.-X. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking. IEEE/AMSE Trans. Mechatron.
**2019**, 24, 853–862. [Google Scholar] [CrossRef] - Jung, S.; Choi, S.B.; Ko, Y.; Kim, J.; Lee, H. Pressure control of an electro-hydraulic actuated clutch via novel hysteresis model. Control. Eng. Pract.
**2019**, 91. [Google Scholar] [CrossRef]

**Figure 3.**Input-output relationship between the input $v(k)$ and the measured output ${y}_{\mathrm{hyste}}(k)$.

**Figure 4.**Schematic diagram of the direct identification method of the inverse generalized P–I model ${\widehat{\mathsf{\Phi}}}^{-1}$.

**Figure 5.**Comparison of the responses of the directly identified inverse model ${\widehat{\mathsf{\Phi}}}^{-1}[{y}_{\mathrm{hyste}}](k)$ with the measured nonlinearities.

**Figure 6.**Relationship between the input $r(k)$ and the output of the inverse compensation ${\mathsf{\Phi}}^{*}\circ {\widehat{\mathsf{\Phi}}}^{-1}[r](k)$.

**Figure 7.**Output ${y}_{\mathrm{dyna}}(t)$ of the EHVS combined with the inverse model ${\widehat{\mathsf{\Phi}}}^{-1}[r](t)$ excited by the PRBS signal $r(t)$.

**Figure 8.**Bode diagrams of the identified linear dynamics models where the red line corresponds to the nominal model.

**Figure 9.**Comparison of the measured output ${y}_{\mathrm{dyna}}(t)$ and the output ${y}_{\mathrm{nomi}}(t)$ of the identified nominal model.

**Figure 15.**Experimental results of the feedforward plus feedback control system integrated in cascade structure.

**Figure 16.**Experimental results of the feedforward plus feedback control system integrated in parallel structure.

**Figure 17.**Robustness validation of the feedforward plus feedback control system integrated in parallel structure.

Component | Model | Specifications | Manufacturer |
---|---|---|---|

Proportional control valve | D1FBE01CC0NF0016 | P,A,B: 350 bar max., T: 210 bar max. | Parker |

Flow sensor | QG200 | 0.03-40 L/min | Hydrotechnik |

CompactRIO real-time controller | NI cRIO-9024 | Real-time controller at 800 MHz | NI |

w/512 MB DRAM, 4 GB storage | |||

Analog output module | NI 9263 | Four channels, sampling rate: 100 kS/s, | NI |

resolution: 16 bits, range: ±10 V | |||

Analog input module | NI 9223 | Four channels, sampling rate: 1 MS/s, | NI |

resolution: 16 bits, range: ±10 V |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ko, Y.-R.; Kim, T.-H.
Feedforward Plus Feedback Control of an Electro-Hydraulic Valve System Using a Proportional Control Valve. *Actuators* **2020**, *9*, 45.
https://doi.org/10.3390/act9020045

**AMA Style**

Ko Y-R, Kim T-H.
Feedforward Plus Feedback Control of an Electro-Hydraulic Valve System Using a Proportional Control Valve. *Actuators*. 2020; 9(2):45.
https://doi.org/10.3390/act9020045

**Chicago/Turabian Style**

Ko, Young-Rae, and Tae-Hyoung Kim.
2020. "Feedforward Plus Feedback Control of an Electro-Hydraulic Valve System Using a Proportional Control Valve" *Actuators* 9, no. 2: 45.
https://doi.org/10.3390/act9020045