# Active Control of Bluff-Body Flows Using Plasma Actuators

## Abstract

**:**

## 1. Introduction

## 2. Flow Control Definitions and Preliminary Remarks

## 3. AFC Local Actuators

#### DBD Plasma Actuators

## 4. Fundamentals of Bluff-Body Flows—The Circular Cylinder

#### 4.1. Stable Regime

#### 4.2. Flow Instabilities

#### 4.3. Boundary Layer Transition

## 5. AFC Application on Flows Around Bluff Cylinders

#### 5.1. Symmetric Perturbations

#### 5.1.1. Effect of Actuator Configuration

#### 5.1.2. Effect of Excitation Frequency

#### 5.1.3. Effect of Antisymmetric Perturbations

#### 5.1.4. Effect of Waveform Modulation

#### 5.2. Asymmetric Perturbations

#### 5.2.1. Continuous and Periodic Excitation

#### 5.2.2. Transient Perturbations

## 6. Discussion

## 7. Conclusions

## Conflicts of Interest

## Abbreviations

AC | Alternating Current |

AFC | Active Flow Control |

CFD | Computational Fluid Dynamics |

DBD | Dielectirc Barrier Discharge |

EHD | Electrohydrodynamic |

PIV | Particle Image Velocimetry |

## References

- Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Proceedings of the Third International Congress of Mathematicians, Heidelberg, Germany, 8–13 August 1904; pp. 484–491. [Google Scholar]
- Gad-el-Hak, M. Flow Control: Passive, Active, and Reactive Flow Management; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Joslin, R.D.; Miller, D.N. (Eds.) Fundamentals and Applications of Modern Flow Control; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annu. Rev. Fluid Mech.
**2010**, 42, 505–529. [Google Scholar] [CrossRef] - Cattafesta, L.N.; Sheplak, M. Actuators for Active Flow Control. Annu. Rev. Fluid Mech.
**2011**, 43, 247–272. [Google Scholar] [CrossRef][Green Version] - Choi, H.; Jeon, W.P.; Kim, J. Control of Flow Over a Bluff Body. Annu. Rev. Fluid Mech.
**2008**, 40, 113–139. [Google Scholar] [CrossRef][Green Version] - Quen, L.K.; Abu, A.; Kato, N.; Muhamad, P.; Sahekhaini, A.; Abdullah, H. Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser. Appl. Ocean. Res.
**2014**, 44, 82–91. [Google Scholar] [CrossRef] - Resvanis, T.; Rao, Z.; Vandiver, K. Effects of Strake Coverage and Marine Growth on Flexible Cylinder Vortex-Induced Vibrations. J. Offshore Mech. Arct. Eng.
**2016**, 138, 051801–051801-11. [Google Scholar] [CrossRef] - Senga, H.; Larsen, C.M. Forced motion experiments using cylinders with helical strakes. J. Fluids Struct.
**2017**, 68, 279–294. [Google Scholar] [CrossRef] - Mastrokalos, M.E.; Papadopoulos, C.I.; Kaiktsis, L. Optimal stabilization of a flow past a partially hydrophobic circular cylinder. Comput. Fluids
**2015**, 107, 256–271. [Google Scholar] [CrossRef] - Huang, H.; Liu, M.; Gu, H.; Li, X.; Wu, X.; Sun, F. Effect of the slip length on the flow over a hydrophobic circular cylinder. Fluid Dyn. Res.
**2018**, 50, 025515. [Google Scholar] [CrossRef] - Hasegawa, M.; Sakaue, H. Microfiber Coating for Drag Reduction by Flocking Technology. Coatings
**2018**, 8. [Google Scholar] [CrossRef] - Tombazis, N.; Bearman, P.W. A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. J. Fluid Mech.
**1997**, 330, 85–112. [Google Scholar] [CrossRef] - Shi, X.D.; Feng, L.H. Control of flow around a circular cylinder by bleed near the separation points. Exp. Fluids
**2015**, 56, 214. [Google Scholar] [CrossRef] - De Giorgi, M.G.; De Luca, C.; Ficarella, A.; Marra, F. Comparison between synthetic jets and continuous jets for active flow control: Application on a NACA 0015 and a compressor stator cascade. Aerosp. Sci. Technol.
**2015**, 43, 256–280. [Google Scholar] [CrossRef] - Chen, W.L.; Li, H.; Hu, H. An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Exp. Fluids
**2014**, 55, 1707. [Google Scholar] [CrossRef] - Gao, D.; Chen, G.; Chen, W.; Huang, Y.; Li, H. Active control of circular cylinder flow with windward suction and leeward blowing. Exp. Fluids
**2019**, 60, 26. [Google Scholar] [CrossRef] - Blevins, R.D. The effect of sound on vortex shedding from cylinders. J. Fluid Mech.
**1985**, 161, 217–237. [Google Scholar] [CrossRef] - Konstantinidis, E.; Balabani, S.; Yianneskis, M. The effect of flow perturbations on the near wake characteristics of a circular cylinder. J. Fluids Struct.
**2003**, 18, 367–386. [Google Scholar] [CrossRef] - Hong, S.; Huang, G.; Yang, Y.; Liu, Z. Introduction of DMD Method to Study the Dynamic Structures of a Three-Dimensional Centrifugal Compressor with and without Flow Control. Energies
**2018**, 11. [Google Scholar] [CrossRef] - Chen, J.; Lu, W.; Huang, G.; Zhu, J.; Wang, J. Research on Pulsed Jet Flow Control without External Energy in a Blade Cascade. Energies
**2017**, 10. [Google Scholar] [CrossRef] - Williams, J.F.; Zhao, B. The active control of vortex shedding. J. Fluids Struct.
**1989**, 3, 115–122. [Google Scholar] [CrossRef] - Roussopoulos, K. Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech.
**1993**, 248, 267–296. [Google Scholar] [CrossRef] - Muddada, S.; Patnaik, B. An active flow control strategy for the suppression of vortex structures behind a circular cylinder. Eur. J. Mech. Fluids
**2010**, 29, 93–104. [Google Scholar] [CrossRef] - Leontini, J.S.; Lo Jacono, D.; Thompson, M.C. Wake states and frequency selection of a streamwise oscillating cylinder. J. Fluid Mech.
**2013**, 730, 162–192. [Google Scholar] [CrossRef][Green Version] - Leontini, J.S.; Lo Jacono, D.; Thompson, M.C. A numerical study of an inline oscillating cylinder in a free stream. J. Fluid Mech.
**2011**, 688, 551–568. [Google Scholar] [CrossRef][Green Version] - Marzouk, O.A.; Nayfeh, A.H. Reduction of the loads on a cylinder undergoing harmonic in-line motion. Phys. Fluids
**2009**, 21, 083103. [Google Scholar] [CrossRef][Green Version] - Perdikaris, P.G.; Kaiktsis, L.; Triantafyllou, G.S. Chaos in a cylinder wake due to forcing at the Strouhal frequency. Phys. Fluids
**2009**, 21, 101705. [Google Scholar] [CrossRef][Green Version] - Al-Mdallal, Q.; Lawrence, K.; Kocabiyik, S. Forced streamwise oscillations of a circular cylinder: Locked-on modes and resulting fluid forces. J. Fluids Struct.
**2007**, 23, 681–701. [Google Scholar] [CrossRef] - Anagnostopoulos, P. Numerical study of the flow past a cylinder excited transversely to the incident stream. Part 1: Lock-in zone, hydrodynamic forces and wake geometry. J. Fluids Struct.
**2000**, 14, 819–851. [Google Scholar] [CrossRef] - Leontini, J.S.; Stewart, B.E.; Thompson, M.C.; Hourigan, K. Wake state and energy transitions of an oscillating cylinder at low Reynolds number. Phys. Fluids
**2006**, 18, 067101. [Google Scholar] [CrossRef][Green Version] - Carberry, J.; Sheridan, J.; Rockwell, D. Controlled oscillations of a cylinder: forces and wake modes. J. Fluid Mech.
**2005**, 538, 31–69. [Google Scholar] [CrossRef] - Williamson, C.; Roshko, A. Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct.
**1988**, 2, 355–381. [Google Scholar] [CrossRef] - Ongoren, A.; Rockwell, D. Flow structure from an oscillating cylinder Part 1. Mechanisms of phase shift and recovery in the near wake. J. Fluid Mech.
**1988**, 191, 197–223. [Google Scholar] [CrossRef] - Kumar, S.; Lopez, C.; Probst, O.; Francisco, G.; Askari, D.; Yang, Y. Flow past a rotationally oscillating cylinder. J. Fluid Mech.
**2013**, 735, 307–346. [Google Scholar] [CrossRef] - Baek, S.J.; Sung, H.J. Quasi-periodicity in the wake of a rotationally oscillating cylinder. J. Fluid Mech.
**2000**, 408, 275–300. [Google Scholar] [CrossRef][Green Version] - Baek, S.J.; Sung, H.J. Numerical simulation of the flow behind a rotary oscillating circular cylinder. Phys. Fluids
**1998**, 10, 869–876. [Google Scholar] [CrossRef][Green Version] - Tokumaru, P.T.; Dimotakis, P.E. Rotary oscillation control of a cylinder wake. J. Fluid Mech.
**1991**, 224, 77–90. [Google Scholar] [CrossRef] - Jeon, D.; Gharib, M. On circular cylinders undergoing two-degree-of-freedom forced motions. J. Fluids Struct.
**2001**, 15, 533–541. [Google Scholar] [CrossRef] - Ongoren, A.; Rockwell, D. Flow structure from an oscillating cylinder Part 2. Mode competition in the near wake. J. Fluid Mech.
**1988**, 191, 225–245. [Google Scholar] [CrossRef] - Baranyi, L. Numerical simulation of flow around an orbiting cylinder at different ellipticity values. J. Fluids Struct.
**2008**, 24, 883–906. [Google Scholar] [CrossRef] - Nazarinia, M.; Lo Jacono, D.; Thompson, M.C.; Sheridan, J. Flow behind a cylinder forced by a combination of oscillatory translational and rotational motions. Phys. Fluids
**2009**, 21, 051701. [Google Scholar] [CrossRef][Green Version] - Detemple-Laake, E.; Eckelmann, H. Phenomenology of Kármán vortex streets in oscillatory flow. Exp. Fluids
**1989**, 7, 217–227. [Google Scholar] [CrossRef] - Konstantinidis, E.; Liang, C. Dynamic response of a turbulent cylinder wake to sinusoidal inflow perturbations across the vortex lock-on range. Phys. Fluids
**2011**, 23, 075102. [Google Scholar] [CrossRef] - Kim, S.H.; Park, J.Y.; Park, N.; Bae, J.H.; Yoo, J.Y. Direct numerical simulation of vortex synchronization due to small perturbations. J. Fluid Mech.
**2009**, 634, 61–90. [Google Scholar] [CrossRef] - Konstantinidis, E.; Balabani, S. Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J. Fluids Struct.
**2007**, 23, 1047–1063. [Google Scholar] [CrossRef] - Konstantinidis, E.; Balabani, S.; Yianneskis, M. Bimodal vortex shedding in a perturbed cylinder wake. Phys. Fluids
**2007**, 19, 011701. [Google Scholar] [CrossRef] - Konstantinidis, E.; Balabani, S.; Yianneskis, M. The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations. J. Fluid Mech.
**2005**, 543, 45–55. [Google Scholar] [CrossRef] - Kim, W.; Yoo, J.Y.; Sung, J. Dynamics of vortex lock-on in a perturbed cylinder wake. Phys. Fluids
**2006**, 18, 074103. [Google Scholar] [CrossRef] - Meneghini, J.; Bearman, P. Numerical Simulation of High Amplitude Oscillatory Flow About a Circular Cylinder. J. Fluids Struct.
**1995**, 9, 435–455. [Google Scholar] [CrossRef] - Barbi, C.; Favier, D.P.; Maresca, C.A.; Telionis, D.P. Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J. Fluid Mech.
**1986**, 170, 527–544. [Google Scholar] [CrossRef] - Gibeau, B.; Koch, C.R.; Ghaemi, S. Active control of vortex shedding from a blunt trailing edge using oscillating piezoelectric flaps. Phys. Rev. Fluids
**2019**, 4, 054704. [Google Scholar] [CrossRef] - Saenz-Aguirre, A.; Fernandez-Gamiz, U.; Zulueta, E.; Ulazia, A.; Martinez-Rico, J. Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control. Sustainability
**2019**, 11, 2809. [Google Scholar] [CrossRef] - Oualli, H.; Hanchi, S.; Bouabdellah, A.; Askovic, R.; Gad-El-Hak, M. Interaction between the near wake and the cross-section variation of a circular cylinder in uniform flow. Exp. Fluids
**2008**, 44, 807–818. [Google Scholar] [CrossRef] - Aissa, M.; Bouabdallah, A.; Oualli, H. Radial Deformation Frequency Effect on the Three-Dimensional Flow in the Cylinder Wake. ASME J. Fluids Eng.
**2014**, 137, 011104–011104-11. [Google Scholar] [CrossRef] - Wu, J.; Shu, C. Numerical study of flow characteristics behind a stationary circular cylinder with a flapping plate. Phys. Fluids
**2011**, 23, 073601. [Google Scholar] [CrossRef] - Shukla, S.; Govardhan, R.; Arakeri, J. Flow over a cylinder with a hinged-splitter plate. J. Fluids Struct.
**2009**, 25, 713–720. [Google Scholar] [CrossRef] - Akaydin, H.D.; Elvin, N.; Andreopoulos, Y. The performance of a self-excited fluidic energy harvester. Smart Mater. Struct.
**2012**, 21, 025007. [Google Scholar] [CrossRef] - Glezer, A.; Amitay, M. Syntetic Jets. Annu. Rev. Fluid Mech.
**2002**, 34, 503–529. [Google Scholar] [CrossRef] - Zhang, Z.; Wu, Y.; Jia, M.; Zong, H.; Cui, W.; Liang, H.; Li, Y. Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator. Sens. Actuators Phys.
**2015**, 235, 71–79. [Google Scholar] [CrossRef] - Zong, H.; Chiatto, M.; Kotsonis, M.; De Luca, L. Plasma Synthetic Jet Actuators for Active Flow Control. Actuators
**2018**, 7. [Google Scholar] [CrossRef] - Woszidlo, R.; Ostermann, F.; Nayeri, C.N.; Paschereit, C.O. The time-resolved natural flow field of a fluidic oscillator. Exp. Fluids
**2015**, 56, 125. [Google Scholar] [CrossRef] - Gregory, J.; Tomac, M.N. A Review of Fluidic Oscillator Development. In Proceedings of the 43rd Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013. [Google Scholar] [CrossRef]
- Corke, T.C.; Post, M.L.; Orlov, D.M. Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp. Fluids
**2009**, 46, 1–26. [Google Scholar] [CrossRef] - Thomas, F.O.; Corke, T.C.; Iqbal, M.; Kozlov, A.; Schatzman, D. Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control. AIAA
**2009**, 47, 2169–2178. [Google Scholar] [CrossRef][Green Version] - De Giorgi, M.G.; Sciolti, A.; Campilongo, S.; Ficarella, A. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges. Energies
**2017**, 10, 334. [Google Scholar] [CrossRef] - Pescini, E.; Marra, F.; De Giorgi, M.; Francioso, L.; Ficarella, A. Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers. Exp. Therm. Fluid Sci.
**2017**, 81, 482–498. [Google Scholar] [CrossRef] - Pescini, E.; Martínez, D.; De Giorgi, M.; Ficarella, A. Characterization of the effects of a dielectric barrier discharge plasma actuator on a coaxial jet in a Bunsen burner. Exp. Therm. Fluid Sci.
**2018**, 91, 292–305. [Google Scholar] [CrossRef] - Robinson, M. A History of the Electric Wind. Am. J. Phys.
**1962**, 30, 366–372. [Google Scholar] [CrossRef] - Whalley, R.D.; Choi, K.S. The starting vortex in quiescent air induced by dielectric barrier discharge plasma. J. Fluid Mech.
**2012**, 703, 192–203. [Google Scholar] [CrossRef] - Greenblatt, D.; Wygnanski, I.J. The control of flow separation by periodic excitation. Prog. Aerosp. Sci.
**2000**, 36, 487–545. [Google Scholar] [CrossRef] - Mishra, B.K.; Panigrahi, P.K. Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode. Phys. Fluids
**2017**, 29, 024104. [Google Scholar] [CrossRef] - Vernet, J.A.; Örlü, R.; Alfredsson, P.H. Flow separation control by dielectric barrier discharge plasma actuation via pulsed momentum injection. AIP Adv.
**2018**, 8, 075229. [Google Scholar] [CrossRef][Green Version] - Jukes, T.N.; Choi, K.S. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Phys. Fluids
**2009**, 21, 084103. [Google Scholar] [CrossRef] - Santhanakrishnan, A.; Jacob, J.; Suzen, Y. Flow Control Using Plasma Actuators and Linear/Annular Plasma Synthetic Jet Actuators. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar] [CrossRef]
- Wang, J.J.; Choi, K.S.; Feng, L.H.; Jukes, T.N.; Whalley, R.D. Recent developments in DBD plasma flow control. Prog. Aerosp. Sci.
**2013**, 62, 52–78. [Google Scholar] [CrossRef] - Benard, N.; Moreau, E. Response of a circular cylinder wake to a symmetric actuation by nonthermal plasma discharges. Exp. Fluids
**2013**, 54, 1467. [Google Scholar] [CrossRef] - Moreau, E. Airflow control by nonthermal plasma actuators. J. Phys. Appl. Phys.
**2007**, 40, 605–636. [Google Scholar] [CrossRef] - Kriegseis, J.; Möller, B.; Grundmann, S.; Tropea, C. Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J. Electrost.
**2011**, 69, 302–312. [Google Scholar] [CrossRef] - Kotsonis, M. Diagnostics for characterization of plasma actuators. Meas. Sci. Technol.
**2015**, 26, 092001. [Google Scholar] [CrossRef] - Benard, N.; Moreau, E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids
**2014**, 55, 1846. [Google Scholar] [CrossRef] - Soloviev, V.R.; Krivtsov, V.M. Surface barrier discharge modelling for aerodynamic applications. J. Phys. Appl. Phys.
**2009**, 42, 125208. [Google Scholar] [CrossRef] - Mertz, B.; Corke, T. Single-dielectric barrier discharge plasma actuator modelling and validation. J. Fluid Mech.
**2011**, 669, 557–583. [Google Scholar] [CrossRef] - Kriegseis, J.; Schwarz, C.; Tropea, C.; Grundmann, S. Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators. J. Phys. Appl. Phys.
**2013**, 46, 055202. [Google Scholar] [CrossRef] - Maden, I.; Maduta, R.; Kriegseis, J.; Jakirlić, S.; Schwarz, C.; Grundmann, S.; Tropea, C. Experimental and computational study of the flow induced by a plasma actuator. Int. J. Heat Fluid Flow
**2013**, 41, 80–89. [Google Scholar] [CrossRef] - Kotsonis, M.; Ghaemi, S.; Veldhuis, L.; Scarano, F. Measurement of the body force field of plasma actuators. J. Phys. Appl. Phys.
**2011**, 44, 045204. [Google Scholar] [CrossRef] - Debien, A.; Benard, N.; David, L.; Moreau, E. Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl. Phys. Lett.
**2012**, 100, 013901. [Google Scholar] [CrossRef] - Cattafesta, L.N. Design of Synthetic Jets. In Syntetic Jets: Fundamentals and Applications; Mohseni, K., Mittal, R., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 49–97. [Google Scholar]
- Feng, L.H.; Wang, J.J.; Pan, C. Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder. J. Fluids Struct.
**2010**, 26, 900–917. [Google Scholar] [CrossRef] - Feng, L.H.; Wang, J.J. The virtual aeroshaping enhancement by synthetic jets with variable suction and blowing cycles. Phys. Fluids
**2014**, 26, 014105. [Google Scholar] [CrossRef] - Konstantinidis, E.; Bouris, D. The effect of nonharmonic forcing on bluff-body aerodynamics at a low Reynolds number. J. Wind. Eng. Ind. Aerodyn.
**2010**, 98, 245–252. [Google Scholar] [CrossRef] - Benard, N.; Moreau, E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Appl. Phys. Lett.
**2012**, 100, 193503. [Google Scholar] [CrossRef] - Benard, N.; Moreau, E. Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. Appl. Phys.
**2010**, 43, 145201. [Google Scholar] [CrossRef] - Triantafyllou, G.S.; Kupfer, K.; Bers, A. Absolute instabilities and self-sustained oscillations in the wake of circular cylinders. Phys. Rev. Lett.
**1987**, 59, 1914–1917. [Google Scholar] [CrossRef] - Williamson, C.H.K. Vortex Dynamics in the Cylinder Wake. Annu. Rev. Fluid Mech.
**1996**, 28, 477–539. [Google Scholar] [CrossRef] - Gerrard, J.H. The wakes of cylindrical bluff bodies at low Reynolds number. Math. Phys. Sci.
**1978**, 288, 351–382. [Google Scholar] [CrossRef] - Thompson, M.C.; Hourigan, K. The shear-layer instability of a circular cylinder wake. Phys. Fluids
**2005**, 17, 021702. [Google Scholar] [CrossRef][Green Version] - Sosa, R.; Artana, G.; Benard, N.; Moreau, E. Mean lift generation on cylinders induced with plasma actuators. Exp. Fluids
**2011**, 51, 853–860. [Google Scholar] [CrossRef] - Artana, G.; Sosa, R.; Moreau, E.; Touchard, G. Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators. Exp. Fluids
**2003**, 35, 580–588. [Google Scholar] [CrossRef] - Hyun, K.T.; Chun, C.H. The wake flow control behind a circular cylinder using ion wind. Exp. Fluids
**2003**, 35, 541–552. [Google Scholar] [CrossRef] - Sung, Y.; Kim, W.; Mungal, M.G.; Cappelli, M.A. Aerodynamic modification of flow over bluff objects by plasma actuation. Exp. Fluids
**2006**, 41, 479–486. [Google Scholar] [CrossRef] - Kopiev, V.F.; Kazansky, P.N.; Kopiev, V.A.; Moralev, I.A.; Zaytsev, M.Y. HF DBD plasma actuators for reduction of cylinder noise in flow. J. Phys. Appl. Phys.
**2017**, 50, 475204. [Google Scholar] [CrossRef] - Sosa, R.; D’Adamo, J.; Artana, G. Circular cylinder drag reduction by three-electrode plasma actuators. J. Phys. Conf. Ser.
**2009**, 166, 012015. [Google Scholar] [CrossRef] - D’Adamo, J.; Leonardo, L.; Castro, F.; Sosa, R.; Duriez, T.; Artana, G. Circular Cylinder Drag Reduction By Three-Electrode Plasma Symmetric Forcing. ASME J. Fluids Eng.
**2017**, 139, 061202–061202-14. [Google Scholar] [CrossRef] - Zhang, X.; Choi, K.S.; Huang, Y.; Li, H. Flow control over a circular cylinder using virtual moving surface boundary layer control. Exp. Fluids
**2019**, 60, 104. [Google Scholar] [CrossRef][Green Version] - Thomas, F.O.; Kozlov, A.; Corke, T.C. Plasma Actuators for Cylinder Flow Control and Noise Reduction. AIAA
**2008**, 46, 1921–1931. [Google Scholar] [CrossRef] - Konstantinidis, E.; Bouris, D. Vortex synchronization in the cylinder wake due to harmonic and nonharmonic perturbations. J. Fluid Mech.
**2016**, 804, 248–277. [Google Scholar] [CrossRef] - Feng, L.H.; Wang, J.J. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech.
**2010**, 662, 232–259. [Google Scholar] [CrossRef] - Feng, L.H.; Wang, J.J. Modification of a circular cylinder wake with synthetic jet: Vortex shedding modes and mechanism. Eur. J. Mech. Fluids
**2014**, 43, 14–32. [Google Scholar] [CrossRef] - Ma, L.Q.; Feng, L.H. Vortex formation and evolution for flow over a circular cylinder excited by symmetric synthetic jets. Exp. Therm. Fluid Sci.
**2019**, 104, 89–104. [Google Scholar] [CrossRef] - Jukes, T.N.; Choi, K.S. Control of unsteady flow separation over a circular cylinder using dielectric barrier discharge surface plasma. Phys. Fluids
**2009**, 21, 094106. [Google Scholar] [CrossRef] - Wang, C.; Tang, H.; Yu, S.C.M.; Duan, F. Lock-on of vortex shedding to a pair of synthetic jets with phase difference. Phys. Rev. Fluids
**2017**, 2, 104701. [Google Scholar] [CrossRef] - McLaughlin, T.; Munska, M.; Vaeth, J.; Dauwalter, T.; Goode, J.; Siegel, S. Plasma-Based Actuators for Cylinder Wake Vortex Control. In Proceedings of the 2nd AIAA Flow Control Conference, Portland, OR, USA, 28 June–1 July 2004. [Google Scholar] [CrossRef]
- Konstantinidis, E.; Balabani, S. Flow structure in the locked-on wake of a circular cylinder in pulsating flow: Effect of forcing amplitude. Int. J. Heat Fluid Flow
**2008**, 29, 1567–1576. [Google Scholar] [CrossRef] - Perrin, R.; Braza, M.; Cid, E.; Cazin, S.; Chassaing, P.; Mockett, C.; Reimann, T.; Thiele, F. Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number. J. Fluids Struct.
**2008**, 24, 1313–1325. [Google Scholar] [CrossRef] - Kourentis, L.; Konstantinidis, E. Uncovering large-scale coherent structures in natural and forced turbulent wakes by combining PIV, POD, and FTLE. Exp. Fluids
**2012**, 52, 749–763. [Google Scholar] [CrossRef] - Jukes, T.N.; Choi, K.S. Long Lasting Modifications to Vortex Shedding Using a Short Plasma Excitation. Phys. Rev. Lett.
**2009**, 102, 254501. [Google Scholar] [CrossRef] - Xu, S.J.; Zhou, Y.; Wang, M.H. A symmetric binary-vortex street behind a longitudinally oscillating cylinder. J. Fluid Mech.
**2006**, 556, 27–43. [Google Scholar] [CrossRef][Green Version] - Kim, K.H.; Choi, J.I. Lock-in regions of laminar flows over a streamwise oscillating circular cylinder. J. Fluid Mech.
**2019**, 858, 315–351. [Google Scholar] [CrossRef] - Feng, L.H.; Wang, J.J.; Pan, C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys. Fluids
**2011**, 23, 014106. [Google Scholar] [CrossRef] - Feng, L.H.; Wang, J.J. Synthetic jet control of separation in the flow over a circular cylinder. Exp. Fluids
**2012**, 53, 467–480. [Google Scholar] [CrossRef] - Ma, L.; Feng, L. Experimental investigation on control of vortex shedding mode of a circular cylinder using synthetic jets placed at stagnation points. Sci. China Technol. Sci.
**2013**, 56, 158–170. [Google Scholar] [CrossRef] - Liu, Y.G.; Feng, L.H. Suppression of lift fluctuations on a circular cylinder by inducing the symmetric vortex shedding mode. J. Fluids Struct.
**2015**, 54, 743–759. [Google Scholar] [CrossRef]

**Figure 1.**Schematic of the basic configuration of a dielectric barrier discharge (DBD) plasma actuator.

**Figure 2.**Flow induced by a single dielectric barrier discharge (DBD) plasma actuator operated in (

**a**) continuous (steady) mode and (

**b**) burst (unsteady) mode.

**Figure 3.**Development of starting vortex in quiescent air for a DBD plasma activated for 33 ms with AC at 25 kHz and $\pm 3.5$ kV. (

**a**) 8 ms, (

**b**) 24 ms, and (

**c**) 56 ms after the plasma was fired. The plasma is schematically shown in pink color. Reprinted from the work by the authors of [74] with the permission of AIP Publishing.

**Figure 4.**Electrohydrodynamic (EHD) force distribution derived from measurements of velocity field and from a theoretical model. Reprinted from the work by the authors of [85] with permission from Elsevier.

**Figure 5.**Different input waveforms having the same carrier frequency of the actuator. The definition of the modulation frequency ${f}_{m}$ is also shown for modulated waveforms.

**Figure 6.**Smoke visualization of the instantaneous flow around a circular cylinder at $R{e}_{D}\approx 2.5\times {10}^{3}$ before (

**a**) and after (

**b**) a plasma actuator was activated. Reprinted by permission from the work by the authors of [99], © Springer-Verlag, 2003.

**Figure 7.**Smoke visualization of the instantaneous flow around a circular cylinder with and without DBD plasma actuators at $R{e}_{D}=1.8\times {10}^{4}$: (

**a**) Forward electrode configuration, (

**b**) backward electrode configuration, and (

**c**) uncontrolled flow. The free stream is from right to left and the schematics on the lower half of the pictures show the flow induced by the DBD actuators. Reprinted by permission from the work by the authors of [101], © Springer-Verlag, 2006.

**Figure 8.**A DBD plasma actuator comprised of the three-electrode configuration. Numbers indicate the different electrodes (from the work by the authors of [103]). The arrow shows the free stream direction.

**Figure 9.**The subharmonic lock-on region of vortex shedding from a circular cylinder subjected to global symmetrical perturbations in-line with the free stream, i.e., perturbations of the free-stream velocity and streamwise cylinder oscillations. In the vertical axis label, $\Delta u$ is the peak-to-peak amplitude of velocity perturbation, ${f}_{e}$ is the exciation frequency, and d is the cylinder diameter, while in the horizontal axis, label ${f}_{o}$ is the natural frequency of vortex shedding in the unperturbed flow. Reprinted from the work by the authors of [19] with permission from Elsevier.

**Figure 10.**Phase-averaged vorticity distributions around a circular cylinder at $R{e}_{D}=4\times {10}^{4}$ with two DBD plasma actuators centered at $\pm {50}^{\circ}$. (

**a**) Baseline flow with actuator turned off; (

**b**) sinusoidal excitation at 300 Hz ($S{t}_{f}=0.75$); (

**c**) amplitude-modulated excitation at ${f}_{m}=150$ Hz ($S{t}_{f}=0.375$). The operating parameters of actuators in (

**b**) and (

**c**) correspond to the optimum for drag increase. Reprinted by permission from the work by the authors of [77], © Springer-Verlag, 2013.

**Figure 11.**Time evolution of phase-averaged drag coefficient ${C}_{D}$ (

**a**) and lift coefficient ${C}_{L}$ (

**b**) acting on a circular cylinder subjected to short-duration excitation from a single DBD-plasma actuator mounted at different azimuthal locations on the cylinder surface; $R{e}_{D}=1.5\times {10}^{4}$, ${C}_{F}=0.45\%$. ${C}_{D,0}$, and ${T}_{K}$, respectively are the drag coefficient and the period of vortex shedding of the uncontrolled flow. The pulse duration ($0.22{T}_{K}$) is indicated on the figure by a rectangle. Reprinted from the work by the authors of [74] with the permission of AIP Publishing.

**Figure 12.**Changes in the mean drag and lift fluctuations averaged over $8.5{T}_{K}$ after plasma actuation as a function of the pulse timing for a circular cylinder subjected to short-duration ($0.05{T}_{K}$) excitation from a single DBD-plasma actuator mounted at ${\theta}_{A}={75}^{\circ}$; $R{e}_{D}=1.5\times {10}^{4}$. ${t}_{0}/{T}_{K}$ represents the pulse timing with respect to the maximum in fluctuating lift ${C}_{L,0}$ when the plasma fires. Reprinted figure with permission from the work by the authors of [117]. Copyright by the American Physical Society, 2009.

**Figure 13.**Instantaneous force vector acting on a cylinder and vorticity distributions around the cylinder subjected to short-duration ($0.05{T}_{K}$) excitation from a single DBD-plasma actuator mounted at ${\theta}_{A}={75}^{\circ}$; $R{e}_{D}=1.5\times {10}^{4}$, ${C}_{F}=0.45\%$. (

**a**) $t/{T}_{K}=-0.8$. (

**b**) $t/{T}_{K}=-0.3$. (

**c**) $t/{T}_{K}=0.7$. (

**d**) $t/{T}_{K}=2.7$. In this case, the pulse timing ${t}_{0}/{T}_{K}=0.875$ is optimum for reducing drag and lift fluctuations. Reprinted figure with permission from the work by the authors of [117]. Copyright by the American Physical Society, 2009.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Konstantinidis, E. Active Control of Bluff-Body Flows Using Plasma Actuators. *Actuators* **2019**, *8*, 66.
https://doi.org/10.3390/act8030066

**AMA Style**

Konstantinidis E. Active Control of Bluff-Body Flows Using Plasma Actuators. *Actuators*. 2019; 8(3):66.
https://doi.org/10.3390/act8030066

**Chicago/Turabian Style**

Konstantinidis, Efstathios. 2019. "Active Control of Bluff-Body Flows Using Plasma Actuators" *Actuators* 8, no. 3: 66.
https://doi.org/10.3390/act8030066