# Adaptive Control Design and Stability Analysis of Robotic Manipulators

## Abstract

**:**

## 1. Introduction

## 2. Lyapunov Approach

#### 2.1. Background

#### 2.2. Adaptive Control of Robotic Manipulators

#### 2.3. The Role of Friction in Stability Analysis

#### 2.4. Limitations

#### 2.5. Operational Space Control Case

#### 2.6. Force Control Case

## 3. Hyperstability Approach

#### 3.1. PID+MRAC Control

#### 3.2. Modelling and Analysis of One-Linkage Scenario

#### 3.3. Modelling and Analysis of Two-DOF Link Scenario

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Liang, Q.; Zhang, D.; Wu, W. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining. Sensors
**2016**, 16, 1926. [Google Scholar] [CrossRef] [PubMed] - Zhang, D.; Wei, B. Study on Payload Effects on the Joint Motion Accuracy of Serial Mechanical Mechanisms. Machines
**2016**, 4, 21. [Google Scholar] [CrossRef] - Li, Z.; Barenji, A.; Huang, G. Toward a Block-chain Cloud Manufacturing System as a Peer to Peer Distributed Network Platform. Robot. Comput. Integr. Manuf.
**2018**, 54, 133–144. [Google Scholar] [CrossRef] - Blanes, C.; Mellado, M.; Beltran, P. Novel Additive Manufacturing Pneumatic Actuators and Mechanisms for Food Handling Grippers. Actuators
**2014**, 3, 205–225. [Google Scholar] [CrossRef][Green Version] - Khatib, O. A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robot. Autom.
**1987**, 3, 45–53. [Google Scholar] [CrossRef] - Landau, Y.D. Adaptive Control: The Model Reference Approach; Marcel Dekker: New York, NY, USA, 1979. [Google Scholar]
- Song, A.; Pan, L.; Xu, G. Adaptive motion control of arm rehabilitation robot based on impedance identification. Robotica
**2015**, 33, 1795–1812. [Google Scholar] [CrossRef] - Koivumäki, J.; Mattila, J. Stability-guaranteed impedance control of hydraulic robotic manipulators. IEEE/ASME Trans. Mechatron.
**2017**, 22, 601–612. [Google Scholar] [CrossRef] - Xu, G.; Song, A. Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network. J. Intell. Robot. Syst.
**2011**, 62, 501–525. [Google Scholar] [CrossRef] - Li, P.; Ge, S.S.; Wang, C. Impedance control for human-robot interaction with an adaptive fuzzy approach. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 5889–5894. [Google Scholar]
- Li, Z.; Liu, J.; Huang, Z.; Peng, Y.; Pu, H.; Ding, L. Adaptive Impedance Control of Human–Robot Cooperation Using Reinforcement Learning. IEEE Trans. Ind. Electron.
**2017**, 64, 8013–8022. [Google Scholar] [CrossRef] - Sharifi, M.; Behzadipour, S.; Vossoughi, G. Nonlinear model reference adaptive impedance control for human–robot interactions. Control Eng. Pract.
**2014**, 32, 9–27. [Google Scholar] [CrossRef] - Dubowsky, S.; Desforges, D. The application of model-referenced adaptive control to robotic manipulators. J. Dyn. Syst. Meas. Control
**1979**, 101, 193–200. [Google Scholar] [CrossRef] - Cao, C.; Hovakimyan, N. Design and Analysis of a Novel L1 Adaptive Control Architecture with Guaranteed Transient Performance. IEEE Trans. Autom. Control
**2008**, 53, 586–591. [Google Scholar] [CrossRef] - Jain, P.; Nigam, M.J. Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System. Adv. Electron. Electr. Eng.
**2013**, 3, 477–484. [Google Scholar] - Nguyen, N.; Krishnakumar, K.; Boskovic, J. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 18–21 August 2008; pp. 1–19. [Google Scholar]
- Idan, M.; Johnson, M.D.; Calise, A.J. A Hierarchical Approach to Adaptive Control for Improved Flight Safety. AIAA J. Guid. Control Dyn.
**2002**, 25, 1012–1020. [Google Scholar] [CrossRef] - Li, X.; Cheah, C.C. Adaptive regional feedback control of robotic manipulator with uncertain kinematics and depth information. In Proceedings of the American Control Conference, Montreal, QC, Canada, 27–29 June 2012; pp. 5472–5477. [Google Scholar]
- Rossomando, F.G.; Soria, C.; Patiño, D.; Carelli, R. Model reference adaptive control for mobile robots in trajectory tracking using radial basis function neural networks. Latin Am. Appl. Res.
**2011**, 41, 177–182. [Google Scholar] - Sharifi, M.; Behzadipour, S.; Vossoughi, G.R. Model reference adaptive impedance control in Cartesian coordinates for physical human–robot interaction. Adv. Robot.
**2014**, 28, 1277–1290. [Google Scholar] [CrossRef] - Ortega, R.; Panteley, E. L1—Adaptive Control Always Converges to a Linear PI Control and Does Not Perform Better than the PI. In Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 24–29 August 2014; pp. 6926–6928. [Google Scholar]
- Horowitz, R.; Tomizuka, M. An Adaptive Control Scheme for Mechanical Manipulators—Compensation of Nonlinearity and Decoupling Control. J. Dyn. Syst. Meas. Control
**1986**, 108, 1–9. [Google Scholar] [CrossRef] - Sadegh, N.; Horowitz, R. Stability Analysis of an Adaptive Controller for Robotic Manipulators. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987; pp. 1223–1229. [Google Scholar]
- Slotine, J.E.; Li, W. On the adaptive control of robotic manipulators. Int. J. Robot. Res.
**1987**, 6, 49–58. [Google Scholar] [CrossRef] - Sadegh, N.; Horowitz, R. Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators. Int. J. Robot. Res.
**1990**, 9, 74–92. [Google Scholar] [CrossRef] - Sentis, L.; Park, J.; Khatib, O. Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Trans. Robot.
**2010**, 26, 483–501. [Google Scholar] [CrossRef] - Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson/Prentice Hall: New York, NY, USA, 2005. [Google Scholar]
- Candelas, F.; García, G.; Puente, S. Experiences on using Arduino for laboratory experiments of automatic control and robotics. IFAC-PapersOnLine
**2015**, 48, 105–110. [Google Scholar] [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wei, B. Adaptive Control Design and Stability Analysis of Robotic Manipulators. *Actuators* **2018**, *7*, 89.
https://doi.org/10.3390/act7040089

**AMA Style**

Wei B. Adaptive Control Design and Stability Analysis of Robotic Manipulators. *Actuators*. 2018; 7(4):89.
https://doi.org/10.3390/act7040089

**Chicago/Turabian Style**

Wei, Bin. 2018. "Adaptive Control Design and Stability Analysis of Robotic Manipulators" *Actuators* 7, no. 4: 89.
https://doi.org/10.3390/act7040089